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Figure 1: Automatic 3D material style transfer from different source images (insets) to a target 3D scene using our approach.

Abstract
This work proposes a technique to transfer the material style or mood from a guide source such as an image or
video onto a target 3D scene. It formulates the problem as a combinatorial optimization of assigning discrete
materials extracted from the guide source to discrete objects in the target 3D scene. The assignment is optimized
to fulfill multiple goals: overall image mood based on several image statistics; spatial material organization and
grouping as well as geometric similarity between objects that were assigned to similar materials. To be able to use
common uncalibrated images and videos with unknown geometry and lighting as guides, a material estimation
derives perceptually plausible reflectance, specularity, glossiness, and texture. Finally, results produced by our
method are compared to manual material assignments in a perceptual study.

1. Introduction

Not all 3D scenes come with assigned materials (i. e., re-

flectance properties); a 3D scanner might not deliver colors

or a model from the internet was simply crafted without. Im-

ages rendered with such scenes do not appear realistic, as

users expect certain materials for certain objects.

When creating thumbnails to browse large databases ma-

terials are often a must. When materials are not available, a

manual assignment is tedious. Especially, when a high num-

ber of objects and materials are involved, selecting, grouping,

and navigating is challenging. Further, deciding on an ob-

ject’s material is not obvious, for example when colored light,

e. g., due to indirect illumination is involved. The resulting

appearance depends on the spatial context; a white object

near a colored wall will exhibit color bleeding and not ap-

pear white anymore. In other situations, non-obvious rules,

that might even be unknown to the user, should be applied,

e.g., for architectural models, a common principle is to as-

sign darker materials to the floor than the walls to convey a

feeling of higher ceilings. In particular, when a number of

design variants should be examined (Fig. 1) from different

viewpoints, transferring mood from examples can serve as

an inspiration. Similarly, organizing material assignments

according to a style, might be beyond the user’s capabilities,

but can be important, as humans make certain color assump-

tions depending on the context (i. e., the Stroop [Str35] effect

for chroma). Automatically accounting for such expectations

makes scenes easier to understand and more pleasant.

Addressing these issues, our work proposes an automated

system that extracts materials from a guide source, such as

an image or video and assigns them to a target 3D scene.

The material extraction approximately captures appearance

from uncalibrated images of unknown geometry and lighting

using image-filtering heuristics. The material assignment is

formalized as an optimization problem that assigns discrete

materials to discrete objects in order to minimize a cost func-

tion that evaluates the perceptual difference to a guide source.

The cost function accounts for image differences as well as
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geometric matching between objects in the target 3D scene

and the guide source. Furthermore, to a certain extent, the

cost function grasps inter object relations including global

illumination aspects. The user can therefore, by providing a

simple guide source, attribute plausible materials to an entire

3D scene fully automatically.

2. Related Work

High-level style transfer within a single or amongst differ-

ent media has been a longstanding challenge in computer

graphics.

Materials Materials are reflectance properties shared by sev-

eral surfaces that can be acquired from images [TT00] and

clustered automatically [LKG∗03], or via user interaction

[PL07]. Nonetheless, dealing with appearance in a perceptu-

ally meaningful way stays challenging [PFG00,MPBM03].

One can produce plausible results for material modifica-

tions [KRFB06] in a single image, but, in contrast, our ap-

proach needs to map an image to materials of a 3D scene

that can be explored afterwards (including light and view

changes or animation). To this extent, we extract a Phong

model [Pho75]. It cannot reproduce all forms of appearance,

but many important effects.

Material and mood perception We are concerned with ma-

terial style perception (i. e., its mood), and how style can

be extracted and transferred. Humans perform remarkably

when quickly categorizing natural images into a classes (its

gist [OT01]). Possible cues include spatial organization of

textures [OT01,WM02], or color [CH10], but also the or-

ganization of shapes, colors, spatial proximity [Ber48], con-

gruence [Str35] and grouping (e. g., the scene’s Gestalt) can

influence the scene’s mood. Human observers are extremely

efficient in material categorization, which is a rapid effort-

less process; robust performance was reported even for a

160ms image display [Lav08], and only slightly more for

grey-leveled, blurred, or inverted-contrast stimuli.

Colorization Transferring material style includes a two-fold

abstraction of the classic color transfer problem [RAGS01,

ICOL05,LWCO∗07,LWQ∗08,WYW∗10]. First, instead of

transferring colors, we transfer materials, that change their

impact on the final result depending on their spatial context,

and include a much higher number of parameters (such as

glossiness and textures). Second, a guide source image does

only provide approximate material information, but the target

3D scene has to provide a similar gist even when it is seen

from several different views. We take advantage of 3D scene

geometry to make our assignment more reliable than it could

be with images only.

Detail synthesis Another important part of style are surface

details often in form of texture. Texture synthesis [HB95]

takes a statistical approach and produces new instances from

a training example or manual statistical settings. The Image-

Analogies framework of Hertzmann et al. [HJO∗01] can pro-

duce new exemplars with details that fit specified content. In

the context of 3D models Mertens et al. [MKCD07] gener-

ate reflectance details by learning the geometric correlation

from another 3D model with reflectance. In a similar fashion,

Chajdas et al. [CLS10] consider local geometric structure to

assist the user in assigning textures. In contrast to our work,

their transfer is from 3D to 3D and does not consider the

resulting perceived appearance, but solely statistical physical

qualities. Extraction of a single texture to be then assigned to

a target 3D object is considered by Lagae et al. [LVLD10],

and we will extend their approach when extracting multiple

textures for multiple materials from an image. The CG2Real

system [JDA∗10] uses large image collections to decorate a

synthetic image with details. In contrast to our work, their

results are image compositions and cannot be used easily

used for 3D scenes (the output of our system).

3. Our Approach

Our system consists of two key components: material extrac-
tion (Sec. 3.2) and material assignment (Sec. 3.3). From a

guide source, which can be an image or video, a set of mate-

rials is extracted. Then the system finds the best assignment

of these materials to a target 3D scene (Fig. 2).

Figure 2: Our approach extracts materials from a 2D guide
source and assigns it to a resulting target 3D scene.

3.1. Definitions

Here, we introduce the basic definitions that our system builds

upon: materials, objects, material assignments and rendering.

We represent materials by (slightly modified) Phong coeffi-

cients [Pho75]: diffuse color, monochromatic specular inten-

sity and glossiness. Textures are represented using anisotropic

noise with a particular frequency spectrum [Per85] modulat-

ing the diffuse color. We decided to not optimize for the

number of materials, but assume it to be nm, a user-controlled

parameter.

A scene is hand-crafted and therefore usually segmented

into meaningful entities, or it needs to be segmented into

objects that will receive the extracted materials.We assume a

segmentation into no objects a given.

A material assignment A := {ai ∈ N
+|ai < nm, i < no} ∈

A is a mapping from every object i to a material ai. It is

neither assumed that every material is used, nor do we enforce
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that it has to be used more than a certain number of times (or

any other similar restriction).

We assume a set V of views on the scene which we will

simply call “the views” for which the assigned materials

should be optimal. It can either be a set with only one element

defining a single camera position and orientation, a camera

path, or a volume in space describing the potential viewpoints.

When the views fill the complete space, no view-specific

optimizations will be made.

Rendering in our context is an operator r(A,V ) := A×
V → (R2 → R

3) that converts our fixed target 3D scene

under some material assignment A and some views V into a

two-dimensional RGB image.

3.2. Material Extraction

Extracting physical materials from images is a very ill-posed

problem that we try to avoid. Instead, we extract perceptually

plausible materials by splitting the image into several compo-

nents that map to different shading parameters: Diffuse color,

specularity and texture (Fig. 3).

First, the input image L̂ is (inverse-gamma) converted into

linear units and white-balanced to L. Then, L is split into a

diffuse Ld and a specular scalar radiance Ls. For fast perfor-

mance and simplicity, the method of Yang [YWA10] is used,

but others are possible. Next, the diffuse radiance Ld is split

into a base Lb and a texture part Lt. Bilateral filtering [DD02]

is used to decompose Lb in Ld and Lt = Ld−Lb.

Accounting for a material’s specularity is challenging:

highlights are only visible in some parts (white dots in Fig. 4)

of an object although the specularity is the same everywhere

on the object. We make the assumption that a continuous dif-

fuse base color Lb implies the continuity of material (material

segmentation). Conceptually, we can hereby associate a high-

light to all places where it could have appeared for a different

combination of light and viewpoint. The material segmenta-

tion is computed as follows: First, the CIE-LAB values of all

base diffuse pixels Lb are clustered using k-means [Mac67]

applying the CIEDE2000 [SWD05] color difference metric.

Next, disconnected k-means clusters are split into individual

segments. Finally, to compensate for over-segmentation (e. g.,

large gradients in the background), neighboring segments

are merged if the average color difference on their boundary

pixels is less than a certain threshold.

Figure 4: From left to right: Starting from an input image
L, with diffuse colors (yellow, blue) and different highlights
(white spots), the diffuse base color Lb is used for the material
segmentation to propagate specularity and glossiness.

To extract texture information, we use a bilateral Laplacian

pyramid [FAR07]. The pyramid is computed by convolving Lt

with a bank of nb bilateral filters and subtracting subsequent

levels. Doing so, strong edges in Lt, are excluded from the

frequency response. In practice, we use nb = 4 levels. An

additional filtering using a 5 × 5 Gaussian filtering accounts

for the local phase insensitivity of the HVS. This results in a

spatially varying map S : R2→ R
nb .

Using the material segmentation, the diffuse color, specu-

larity and texture coefficients are calculated within each seg-

ment using robust statistics [OAH11] resulting in k′ materials.

Depending on the scene structure, k′ might be very different

from the desired number of materials nc. Therefore, we in-

terpret the the k′ materials once again as a high-dimensional

(8D) point cloud and cluster it once more, resulting in the

desired nc final materials. In practice, segmenting into a hand-

ful of discrete materials is sufficient to well-match the guide

images.

We also support other guide inputs, such as image se-

quences that are processed on a per-frame basis and allow

for direct sketching of a guide sources that we designed a

simple user interface for. The system then updates the scene

according to sketched materials (e. g., a red circle with a high-

light and a blue square). To ease explanations, we will in the

following consider a single guide image as input.

3.3. Material Assignment

An appropriate assignment A is found by minimizing a cost

function d(A,V ). d is high, if the guide source is perceptually

different for the material assignment A under view V . The

cost is the sum of two components

d(A,V ) = widi(r(A,V ))+wgdg(A). (1)

A view-dependent image cost di compares the guide source

to a rendered image using the current view and assignment. A

view-independent geometric cost dg verifies that the assign-

ment is consistent with the geometry. wi,wg determine the

relative weighting between di and dg respectively. We detail

both components in the following, before showing how to

efficiently optimize for this cost function.

Image cost di penalizes perceived difference of material ap-

pearance for all rendered views with respect to the guide

source. Histogram calculations are used to compare the ma-

terial mood of two images. To account for spatial variation,

different local histograms are used in different parts of the

image. We use a grid of 3×3. The CIE LAB color space is

used, defining a 3D histogram with 10 bins in each dimension.

Continuous bins are computed using Parzen [Par62] windows.

Finally, the distance between two histograms is computed

using their intersection [SB91].

The final cost is then defined as the integral of the image

cost over all views. We could compute this integral using
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Figure 3: Our material extraction pipeline is shown from left to right. The input, a single image, is decomposed into diffuse and
specular radiance. Next, the diffuse radiance is split into base- and detail diffuse reflectance. The latter will be represented as
local statistics. Finally, the full high-dimensional material info (diffuse reflectance, specular intensity, and the detail statistics) is
segmented into discrete clusters which are assigned to the target 3d scene.

quadrature, i. e., computing it for a high number of views,

but, as shown later, picking just random views is a sufficient

Monte Carlo approximation.

Geometry cost dg penalizes geometrical differences be-

tween objects in the scene and the guide source that share

the same material. A simple example illustrates the idea: A

still-life-like guide source with a green apple and a yellow

banana being is assigned to a 3D scene with an apple and a

banana object. In terms of image costs, a green banana and a

yellow apple are as plausible as a green apple and a yellow

banana. Nonetheless, it is more intuitive to assign materials

to similar shapes in the target and guide source, i. e., a yellow

material to banana-like and a green material to apple-like

shapes. Formally, we define:

dg(A) =
1

no

no

∑
j=0

min
0≤i<n′o

(da(i, j,Ai,A
′
j))

with

da(i, j,Ai,A
′
j) :=

{
ds(i, j) if Ai = A′j and
floatmax else,

where no and n′o are the numbers of objects in the target

and source, i and j are shapes of target and source, A and

A′ are the corresponding material assignments and ds is

a shape difference metric. To compute the difference be-

tween two shapes we employ a 2D Angular Radial Transform

(ART) [Bob01], and use the corresponding shape descriptor

vector composed of 35 elements. We use ART because of

its simplicity, quick computation, and robustness for shape-

based geometry matching [CTSO03]. We use the minimal

Euclidean distance between the descriptor vectors over a

range of orthographic views [CTSO03]. To make sure only

meaningful matches contribute to the geometry cost, we re-

define dg(A) as

dg(A) =
1

no

no

∑
j=0

qρ(min(da(i, j,Ai,A
′
j)))

0≤i<n′o

(2)

where ρ is a constant to define the minimum requirement for

meaningful shape matching and

qρ(x) :=

{
x if x≤ ρ and

1 else,

Note, that the geometric cost is view-independent.

If the guide source does not provide 3D shapes, i. e., for

images and videos, the 2D shape is directly used in the shape

metric. The shape extraction makes use of a different seg-

mentation than can be deduced from the derived materials

because, to use an example, two bananas in a guide source

might form one material cluster, yet their shape is still the

one of two single bananas, so nm = 1 while n′o = 2.

We use a multi-segmentation to decompose the guide

source [RFE∗06] because no single parameter setting for

a segmentation approach will be sufficient to produce all

meaningful segments. Mean shift [CM02] is used and the

bandwidth parameter is varied to three different values to

produce a fine, a medium, and a coarse segmentation. The re-

sulting segments are different from the material segmentation,

but only used to calculcate the geometry cost (Eq. 2).

3.4. Optimization

Given a cost function, we find the best assignment via sim-

ulated annealing (SA). SA is an iterative improvement algo-

rithm, in which permuted “neighboring” solutions are used

to evaluate the cost function and submitted to an acceptance

test. Permutations leading to a cost decrement are always

accepted while permutations resulting in an increase are ac-

cepted according to a probability based on the Boltzmann

factor [KJV83].

In general, a cost function is sampled for the current so-

lution ci = d(Ai,V ) as defined in Eq. 1. Next, the current

solution Ai is permuted to a neighboring solution B in a way

that depends on the cost. If the cost ci is high, a remote neigh-

bor is chosen, if it is low, a close neighbor is selected. Once,

a neighboring B is chosen, the next solution Ai+1.

To apply this principle to materials, we have to define a

neighborhood on our solution domain, i. e., the space of ma-

terial assignments A. Intuitively, we want remote neighbors

to change the material of many objects, and close neighbors

to change the material of fewer objects, formally

B j :=

{
p(Ai

j) if ci > ξ j

Ai
j, else,

where 0 < ξ j < cmax (a user parameter) is a random num-

ber and p(k) ∈ {1, . . . ,nm}2 a material index permutation

function to be defined next. The permutation 1< p(k)< nm

c© 2011 The Author(s)
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maps a current material index k onto a new material index.

In a simple implementation, p(k) can be chosen to produce

a random number between 1 and nm. Our more advanced

implementation permutes material assignments while main-

taining a similar cost (Fig. 5). To find similar, i. e., nearby,

Figure 5: Left to right: Source image and target 3D scene;
the cost matrix of assigning materials to geometry; the cost
p(k) of permuting a material k

materials, the metric of Pellacini and Lawrence [PL07] is

used; it computes the average intensity difference over a high

number of random incoming and outgoing sampling direc-

tions. To accelerate the AS optimization, we can write the

distance between all materials as a nm× nm matrix M. For

each material, a row Mk in this matrix represents the similarity

to all other materials. In the matrix F a row

Fk := (
l=nm

∑
l=1

Mk,l)
−1

Mk

is a probability density function. Finally,

fk(x) := argminl

m=l

∑
m=1

Fk,l > x

is a cumulative density function. Using f , another random
number 0 < ξ′ < 1 allows us to choose a similar material

p(k) := fk(ξ′) with a probability proportional to its similarity.

3.5. Implementation Details

Evaluating the cost function – which involves rendering the

scene and computing global illumination for every sample

– naïvely, is far too costly. A GPU in combination with pre-

computation is used to accelerate this computation. First, a

deferred buffer [ST90] storing position, normal and material

ID for all views is pre-computed. As described above, we

pick a random view for every sampling. We use 256 views,

each in a resolution of 256×256 pixels. At runtime, only

the assignment of materials to material IDs in the buffer is

changed. It is done in parallel over all views and all pixels

using a simple shader program. To simulate light transport,

Instant Radiosity [Kel97] is used. 256 virtual point lights

with low-resolution shadow maps have shown to provide

sufficient accuracy here. The shadow maps for all VPLs are

independent of the samples and can be pre-computed as well.

4. Results

Results produced by our system are shown in Fig. 6. In the

first and second rows, kitchen scenes are stylized, notice how

different guide sources result in different moods (column).

In the third row, the different combinations of specularity

and texture frequency from the stones in the guide source

are captured and transferred to the target. The scene shows

a strong resemblance to the input photo despite the process

being fully automatic. In the fourth row, even though the

scene is mostly lit by indirect lighting, our system success-

fully captures the guide images’ mood. While in Fig. 10 a

guide painting is used, the construction of our Phong BRDF

ensures that materials stay realistic. Fig. 7 uses a guide video.

Our algorithm managed to detect the round shape of the jug-

gling balls and associated them adequately to the scene. The

results presented are produced without human intervention

and computed in under 2 minutes.

Figure 7: Transfer from a video to a target 3D scene. Note
how the juggling balls are mapped to the small spheres.

Our approach can also serve as the basis of a rough user

sketch-based system (Fig. 8). By analyzing the drawn shapes,

similarly shaped 3D objects are attributed the material that

is indicated by the user. By drawing specularities, the user

can further modify the specular coefficient. The process is

interactive and the transfer on target scenes can facilitate

material attribution in 3D scenes. One can handle all similar

objects can at once, or restrict modifications to a given target

view. When our system is presented a guide source where

ground truth material information is available, it successfully

recovers those materials to a large extent (Fig. 9). The two

additional materials in our reconstruction, are due to shadows

that were segmented into additional individual materials.

5. Discussion

Perceptual study To validate the performance of our ap-

proach, a perceptual study was performed in two steps. In the

first step, human performance in terms of quality and speed

of assigning materials to a 3D scene according to a guide

source was analyzed. Using the free software “Blender”, 14

subjects were asked to assign materials to a 3D scene ac-

cording to a guide image. Both expert (computer graphics

graduate students, faster half) and non-expert (university grad-

uate students, slower half) participated. The subjects received

instructions and training on how to perform assignments and

their results were captured after finishing (usually 20 min-

utes). There was a total of 13 assignment tasks and on average
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Figure 6: 3D Material style transfer on different target scenes (rows) from different sources (insets).

every subjects performed 4 assignments. Please see the sup-

plemental material for details. At the end of the study, when

asked “How pleasant was the material assignment tasks?”

the common answer was “Conveying mood using material

assignment is not intuitive, especially in case of dominant in-

direct lighting”. There were a couple of comments indicating

that material assignment task was really difficult, such as “I

think, my results were not good enough but had no idea how

to improve them anymore, searching for the right colors was

so difficult and tedious”.

In a second step, 20 other subjects were asked to rank

the result images obtained in the first step. For each of the

13 assignment tasks we grouped our result and all results

of the manual assignment after 5 mintues (avg. group size:

5 images). Subjects were then asked to “sort the images

from best to worst in order of mood similarity to the guide

image”. Our algorithm can produce an assignment in less than

2 minutes, however, 64% rank our automatic assignment best

(84% best or second-best). Asking the same question for a

different group of images that contained our result and all

c© 2011 The Author(s)
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Figure 8: Four steps of user interaction. a.) A user draw two
spheres in two colors, being mapped to distinct shapes. b.) A
highlight is added to the blue patch, resulting in highlights to
appear on blue shapes in the target. c.) An elongated yellow
shape is added that is mapped to the banana. d.) Noise on
the yellow shape makes the banana appear textured.

Figure 9: a.): Our material extraction applied to b.): a ren-
dering of a 3D scene where ground truth materials are known.

results of the final assignment, 60% rank our automatic result

better then all other assignments (80% best or second-best).

One conclusion from the relatively low improvement between

5 and over 20 minutes achieved by manual assignment is that,

it is very hard to converge from an acceptable initial result to a

final, global illumination-compatible assigment that captures

the scene’s mood such as produced by our system.

Figure 10: Comparison between using our combination of
image and geometry cost (Left), using only the image cost
(Middle) and using only the geometric cost (Right).

Image and geometry cost Our cost function consist of an

image and a geometry term. Both play an important role and

only the combination of the both aspects will lead to a suc-

cessful assignment results (Fig. 10). Using only the image

term will give a similar image appearance, but wrong indi-

vidual object materials. Only using the geometric term will

assign the right materials to objects, but with no consistent

global organization.

Limitations and Assumptions While the system often suc-

ceeds in transferring the mood from a source image onto a

3D scene, it is subject to several limitations. In summary, our

system performs best for input images and target 3D scenes,

which can be well-segmented with neutral directional lighting

and similarities between source and target.

Certain assumptions about the image and the 3D scene

have to be made. The target 3D scene has to be segmented

into meaningful objects, i. e., objects that can be assigned a

discrete material label. In future work, spatial variation should

be addressed by generalizing the discrete assignment into a

continuous mapping. User-annotation (such as labels) and

structure information (such as symmetry) could be included

in future work. The source image has to be automatically

segmented, which is a hard problem and we can not expect it

to always work. While material extraction works well with

imperfect segmentations, shape similarity is more sensitive.

To circumvent this problem, we use multiple segmentations.

If no matches are found, the geometry cost (Eq. 2) will ap-

proach a constant for all assignments and optimizing Eq. 1

will revert to optimizing for the image cost alone.

Many limitations stem from the difficulty to robustly ex-

tract materials from images. We focus on visually plausible

materials in combination with an optimization based on simi-

larity to a guide image. Perfectly reconstructing physically-

correct reflectance from a single image is very difficult with-

out extra assumptions on the object geometry and scene light-

ing (Sec. 2) that we avoid. Nonetheless, our assumption of

material appearance constancy might not always hold; hard

shadows or unusual highlights happen to be erroneously inter-

preted as individual objects. Also, textures under strong per-

spective transformations are sometimes grouped into different

materials. Special materials like glass and other transparent

materials are not yet supported.

6. Conclusion

We proposed a technique to transfer material style from a

guide source to a target 3D scene. The problem was stated as

a combinatorial optimization of assigning discrete materials

(approximately extracted from the guide source) to discrete

objects in the target according to an image and geometry

cost function. Our system can effectively capture materials in

terms of highlights and diffuse detail textures and efficiently

apply them to a target scene or even whole databases in a

meaningful and automatic way.
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