
Vision, Modeling, and Visualization (2015)
D. Bommes, T. Ritschel and T. Schultz (Eds.)

The Bounced Z-buffer for Indirect Visibility

O. Nalbach1, T. Ritschel1,2 and H.-P. Seidel1

1MPI Informatik, Germany 2MMCI / Saarland University, Germany

Figure 1: Screen space methods for indirect illumination [NRS14a] (left) not only underestimate effects of invisible geometry
(left inset), but also routinely ignore visibility (right inset), which is added by our approach (middle) to produce results similar to
a path-tracing reference (right). Our approach renders this scene with 202 k triangles in 65 ms (768×512 px.).

Abstract
Synthesizing images of animated scenes with indirect illumination and glossy materials at interactive frame rates
commonly ignores indirect shadows. In this work we extend a class of indirect lighting algorithms that splat shading
to a framebuffer – we demonstrate deep screen space and ambient occlusion volumes – to include indirect visibility.
To this end we propose the bounced z-buffer: While a common z-buffered framebuffer, at each pixel, maintains
the distance from the closest surface and its radiance along a direction from the camera to that pixel, our new
representation contains the distance from the closest surface and its radiance after one indirect bounce into a
certain other direction. Consequently, with bounced z-buffering, only the splat from the nearest emitter in one
direction contributes to each pixel. Importance-sampling the bounced directions according to the product of cosine
term and BRDF allows to approximate full shading by a simple sum of neighboring framebuffer pixels.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

A wide range of methods is available to render global illu-
mination in animated scenes at interactive rates [RDGK12].
However, several important constraints remain: Scenes of
moderate geometric complexity allow for Instant Radiosity-
type [Kel97, LSK∗07, RGK∗08] or voxel-based solutions
[KD10, CNS∗11] that include indirect visibility, but fail to
produce detailed shading for massive tessellated or skinned
geometry which might not even fit into memory at once.
For such scenes, screen-space approaches [BSD08, RGS09,
JSG09,Tim13,NRS14a] show their strength in producing fine

spatial details of indirect light and shadow due to their output-
sensitive nature, at the price of ignoring indirect visibility.

Ignoring occlusions between senders responsible for a
shading effect and the corresponding receiving points leads
to bias. In the case of global illumination, the senders reflect
indirect light into the direction of the receivers and lack of
indirect visibility becomes visible as light bleeding through
surfaces. In the case of ambient occlusion, senders contribute
to darkening at nearby receiving points as they occlude parts
of the hemisphere over the receivers. Incorrect treatment of
visibility here leads to summing up multiple occlusion events

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

from the same direction and the resulting indirect shadows
consequently appear too dark compared to a reference.

Unfortunately, fast visibility queries between arbitrary
points in a scene need (hierarchical) spatial data structures
such as they are common in ray-tracing. For dynamic scenes,
their memory cost and building time precludes their use in
modern interactive applications such as computer games. Our
approach to indirect visibility is fire-and-forget as it does not
require any hierarchical data structures and – in the spirit of
screen space – does not even need to be aware of the entire
scene geometry at any point in time.

Differently from a common z-buffered framebuffer, which
at each pixel maintains the distance from the closest surface
and its radiance, the bounced z-buffer contains the distance
from the closest surface and its radiance after one bounce
from a certain other direction. Splatting onto the framebuffer
uses the bounced z-buffer and consequently, only the splat
from the nearest emitter in the respective direction contributes
to each pixel. Importance-sampling the bounced directions
according to the product of cosine term and BRDF allows
to approximate full shading by a simple sum of neighboring
framebuffer pixels. The idea is simple to implement and can
be used for different splatting-based approaches that lack
visibility, such as ambient occlusion volumes (AOV, Fig. 2)
[McG10] or deep screen space (DSS, Fig. 1) [NRS14a]. We
furthermore propose modifications to those target algorithms
to improve their splatting quality.

After reviewing previous work in Sec. 2, we introduce the
idea of a bounced z-buffer in Sec. 3. As an example, in Sec. 4,
we present an adapted deep screen space using a (hierarchical)
bounced z-buffer and demonstrate its effectiveness in Sec. 5.

2. Previous Work

Screen space shading was first used for ambient occlu-
sion (AO) [Mit07, SA07, BSD08] and later extended to sub-
surface scattering [JSG09], diffuse bounces [RGS09, BBH13,
MMNL14] and surface-to-volume shading [NRS14b]. Differ-
ent ideas were proposed to overcome its limitations such as
multi-resolution [NW09], layering [VPG13], sweeps [Tim13]
and on-the-fly reconstruction of screen space-like surfel ge-
ometry [NRS14a].

Screen space methods typically do not account for visi-
bility, with the exception of image-space blocker accumula-
tion [SGNS07]: Their approach tracks a spherical harmonics
approximation of visibility in screen space that is updated
with spherical harmonics (SH) exponentiated values. It is
limited to diffuse or moderately glossy scenes and requires to
store a number of SH coefficients depending on the lighting
and shadow frequencies. Our approach adapts to all ranges
of materials from diffuse to mirror-like.

Instant Radosity [Kel97] accounts for visibility but does
not scale well to large scenes as VPLs are also placed where

they do not contribute to the framebuffer. Similarly, shadow
maps for each VPL, even when accelerated [RGK∗08], pro-
cess geometry that does not contribute. At the same time,
the level of detail resolved is limited by the shadow maps’
resolution and low compared to screen space shading.

Some point-based global illumination (PBGI) methods
splat approximations of scene geometry into buffers to re-
solve indirect visibility [Chr08, REG∗09], too. Differently,
we do not resolve visibility of all directions from a scat-
tered set of sparse points, but from sparse scattered posi-
tions into sparse scattered directions. We also avoid finding
a surfel or light cuts and use approximate level-of-detail
in the 2D framebuffer instead. Our approach can be seen
as an irregular decoupling of a hemicube [CG85] or micro-
buffers [REG∗09] into a map of depth-resolved samples of
indirect radiance. This light field is the same as the one used
by Lehtinen et al. [LALD12] where sophisticated reconstruc-
tion is applied to a low number of indirect light samples from
an initial path-tracing pass. In contrast, our method produces
such samples by means of splatting. We then use simple
cross-bilateral blur without re-projection for reconstructions
in milliseconds. Executing their improved reconstruction on
our result would produce even better results, but at much
higher reconstruction times (seconds to minutes).

Mattausch et al. [MBV∗15] exploit coherence in ray po-
sition and direction to efficiently cull groups of rays and
primitives in a hierarchy. To this end, the distance from the
the nearest primitive is stored along each ray, which is the
same data structure we use. Our work avoids creating any
hierarchy, both for occluders and occluding primitives, and
does not even require the geometry to fit into memory.

3. Method

Figure 2: Many splatting-based methods like AOV over-
occlude dense geometry, which is then compensated for by
tone-mapping (left). Augmenting a bounced z-buffer (middle)
and using reconstruction retrieves more detailed shading in
problematic areas and appears closer to the reference (right).

We propose to add visibility to approaches that use splat-
ting to transfer information from geometry, e.g., represented
as triangles or approximate cloud of disks to pixels on which
it (potentially) has an effect [DS06, SGNS07, NW09, McG10,

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

NRS14a]. Splatting nicely fits the parallel processing model
of GPUs and is output-sensitive because we can cull primi-
tives too far from view frustum bounds to have a noticeable
effect on visible primtives.

Classical rasterization can be seen as splatting of the
scenes’ primitives onto rays from the camera while track-
ing in each pixel the one closest to the camera by a z-buffer.
We transfer the idea to splatting-based GI and AO approaches.
The first difference is that we are interested in not only one
direction per pixel following a simple pinhole projection but
in multiple ones depending on the surface BRDF. The second
difference is that the splats do not simply correspond to pro-
jections of the primitives anymore but to projected regions of
influence with respect to the effect being computed.

Adding indirect visibility requires three steps: modifica-
tions to the framebuffer setup and the splatting (Sec. 3.1 and
Sec. 3.2) as well as a final reconstruction step (Sec. 3.3).

3.1. Direction Setup

Figure 3: Directions in a bounced z-buffer are chosen ac-
cording to view, surface normal and BRDF at each pixel.
For simplicity the camera is shown looking at a flat surface,
which is however not a requirement.

Input is a deferred shading buffer, rasterized from the view
of the camera, providing for each pixel p the position xp ∈R3,
normal np ∈ R3 and material information ρp, in the form of
parameters to an analytical BRDF model, of the primitive vis-
ible at p. Based on this information, each pixel is associated
with a direction ωp (Fig. 3). For AO, uniform sampling of the
hemisphere centered around the surface normal is used, for GI
importance sampling according to the product of BRDF and
cosine term, to also deal with glossy receivers. This direction
is stored in an additional buffer.

3.2. Splatting

While splatting-based approaches typically use blending
[DS06, NW09, McG10, NRS14a] to sum up contributions
from multiple primitives, we only want to keep the informa-
tion from the closest one. Therefore any blending is disabled
and replaced by depth-buffering. When a splat, e.g., in the
form of a point [NRS14a] or a polygon [McG10], is drawn
for a primitive P, at each covered pixel p, first an intersection
test of the ray from xp into direction ωp and P is performed.
Note, that this is just a single-primitive intersection that does

Figure 4: First: An initially empty framebuffer. For each pixel,
a ray (arrows) starting at the first visible surface point has
been chosen. Second: The splat caused by the red primitive
covers the four leftmost pixels in the framebuffer, but only
two of the associated rays (colored) actually intersect the
primitive. Last: Thanks to depth buffering, finally, each pixel p
only contains the result from the closest primitive in direction
ωp. Note, that the location and size of the splats depend on
the respective algorithm. Unlike standard rasterization, the
original primitives are not simply projected to the screen.

not require an acceleration structure. If there is no intersec-
tion, the fragment is discarded. However, if the primitive is
hit at position y, the incident indirect illumination Lin

p is set
to the contribution of primitive P in direction −ωp. This is
either radiance from a Lambertian or glossy sender or oc-
clusion for AO shading. The squared distance between xp
and y, scaled by a maximal distance dmax to keep it in the
range [0,1], is used as the fragment’s depth value zp. Due to
the depth buffering, at each pixel p only the result from the
primitive closest to xp in direction ωp among all those which
were splatted onto p is kept. Fig. 4 gives an example.

An important observation is that the fact that the ray associ-
ated with some pixel p hits a primitive P does not imply that
a splat caused by P will also cover p. This is because there
usually is a fall-off of the shading effect limiting the splat
size. For example, for AO only primitives within a certain
radius are considered as occluders.

3.3. Reconstruction

After all primitives were splatted, the buffer represents an
unstructured sampling of the field of incident indirect illumi-
nation. From this, exitant indirect illumination is computed
in two steps: Importance weighting and filtering.

Weighting Recall that the sample directions were
importance-sampled. Therefore, we first need to divide the
incident indirect illumination by the probability density
αp = α(ωp|xp,np) for picking direction ωp at position xp
with normal np. This can either be implemented by storing
αp when ωp is generated as described in Sec. 3.1 into an
additional buffer, or by re-computing it (deterministically)
on-the-fly for a second time.

Filtering To reconstruct exitant indirect illumination Lout
p at

pixel p into the direction ωout of the camera, a weighted sum

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

over the incoming indirect radiance Lin
q of all pixels q in a

neighborhoodN (p) is used:

Lout
p = ∑

q∈Np

w(p,q) fr(xp,ωout,ωq)Lin
q 〈np,ωq〉+ / ∑

q∈Np

w(p,q).

The weight w(p,q) depends on the differences in position,
normal and material for pixels p and q. In other words, in
one step, the incident indirect illumination at q is used to
reconstruct the incident indirect illumination at p and at the
same time convolved with the BRDF fr and the geometric
term 〈np,ωq〉+.

Thanks to the simplicity of the approach, scenes can be
rendered in high resolution, resulting in very similar values
of position, normal and material. A filter with large support
in the spatial, angular and material domain results in less vari-
ance but has a stronger bias, compared to a less-biased sharper
filter yielding a noisier result. Our reconstruction defers the
BRDF and geometry term to be computed exactly once per di-
rectional sample per pixel so that BRDF and geometry details
in the framebuffer (e.g., bump maps) are preserved.

4. Z-buffered Deep Screen Space

In this section, after briefly reviewing the deep screen space
pipeline [NRS14a] (Sec. 4.1), we describe how it can be
adapted to a bounced z-buffer (Sec. 4.2) and suggest opti-
mizations which are enabled or motivated by this adaptation
(Sec. 4.3). For a more thorough description of the method,
we refer to the original paper [NRS14a].

4.1. The Deep Screen Space Pipeline

The basic idea of deep screen space is to tessellate the scene
into a view-dependent level-of-detail surfel representation
(“surfelization”) which is then scattered to a multi-resolution
deferred shading buffer by means of splatting to compute the
effect of the surfels on their surroundings.

Surfelization In the surfelization step, the triangles of the
original scene are dissolved into a cloud of surfels, i.e., small
disks, represented by their position, normal and radius in
world space. The cloud is designed such that all surfels have
roughly the same projected radius in screen space, maintain-
ing the same total surface area. This step is implemented
using the hardware tessellation provided by modern GPUs,
which not only allows to output triangle meshes, but also only
the set of generated vertices of the tessellated mesh, each of
which becomes a surfel by associating it with a normal and
radius. In the case of indirect lighting, additional information
about each surfel’s material is necessary to be kept.

Splatting Into a Hierarchical Framebuffer To compute
shading from the surfel cloud, a splatting approach is used. A
hierarchical framebuffer with lmax levels is constructed. As
depicted in Fig. 5, pixels are partitioned into 4l sub-images

Figure 5: A possible layout for the hierarchical framebuffer
used in the splatting stage of the DSS pipeline.

for level l by distributing neighborhoods of 2l×2l pixels in
the original image. Each sub-image receives one of the pixels
at random, where the pixel takes the same relative position
that the neighborhood had with respect to the full-size image.

Opposed to naïve splatting, using one final-resolution
framebuffer, in the deep screen space pipeline, for each surfel
lmax, same-sized (in screen space) splats are drawn, namely
one into each level of the hierarchical framebuffer. The sub-
image receiving the splat is selected at random per level. As
the extent of the sub-images is halved with each level-step,
the distance covered by the splats in world space is doubled
accordingly. At the same time, the effect is sampled at a de-
creasing fraction of all the pixels that a corresponding (larger)
splat in a full-resolution buffer would cover.

On each level, the effect of the surfel on a different (world
space) shell around the surfel’s center is computed. The shell
for level l hereby has an inner radius of 0 on level 0 and of
dmax× 2l−1 units on the other levels, and an outer radius
of dmax× 2l units, where dmax is a distance depending on
the estimated influence of the surfel. This partitioning of the
effect over several shells corresponding to splats on different
framebuffer levels gives rise to the name shell splatting.

4.2. Shell Splatting with Visibility

To add visibility, for every pixel p, one unique direction ωp
is produced as described above (Sec. 3.1), but for each pixel
independent z values are maintained on each level of the
hierarchy. The buffer is splat with shells as explained in the
original paper but now visibility is tracked for each pixel
on each level as explained in Sec. 3.2. After splatting, but
before reconstruction, the levels have to be combined. As
only the contribution of the closest surfel in direction ωp is
relevant, the result from the finest level containing a surfel-hit
is selected. Since the levels correspond to disjoint distance
ranges and are ordered with respect to increasing distance,
this is the most “precise” result among all levels. The final
image is then reconstructed as explained in Sec. 3.3. Note,
that when splatting, different from the original approach, it is
not advised to reduce the size of splats from darker surfels,
as they now contribute valuable information as blockers of
indirect light; in other words: dmax is a constant and not
longer a function of the surfel.

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

4.3. Additional Improvements

Surfelization Different limitations of the original deep
screen space tessellation lead to sub-optimal surfel clouds,
resulting in underestimation of indirect light. With added in-
direct visibility, not only light but also shadowing of indirect
light is underestimated and a higher-quality surfel cloud with
properly sized and placed surfels is even more desirable.

The surfelization described in [NRS14a] can only amplify
geometry, not reduce it. A typical scene also contains trian-
gles which are too small to directly tessellate them into surfels
of the desired size. In fact, the target surfel size might be much
larger than the initial triangle itself and several small trian-
gles should be grouped to one surfel. Another problem are
thin triangles, for which a placement of the surfels according
to the barycentric coordinates generated by the tessellation
hardware does not lead to even coverage of the triangle.

Figure 6: We handle extremely large or small triangles by
pre-tessellation (a) and post-filtering (c) passes, respectively.

We first compute an initial surfel cloud with fine surfels,
smaller than the target size, and store them using the trans-
form feedback mechanism (Fig. 6, a+b). Instead of simply
placing a surfel at the barycentric coordinates determined
by the hardware tessellation pattern, we compute the world
space position corresponding to the coordinates but then hash
this position into an offset in a lookup texture containing
pre-computed pseudo-random numbers. Using the respective
random number, the surfel is placed uniformly at random on
the initial triangle. This results in more even placement of
surfels, also for thin triangles.

In a second pass, we compare for each surfel P its area
AP resulting from the first tessellation pass with the actually
desired (“ideal”) area A∗P (cf. [NRS14a]). We discard the
surfel with probability max(1−A∗P/AP,0) by either emitting
it from the geometry shader or not (Fig. 6, c). The surfels
which are not discarded are then assigned their ideal radius.
In the case of indirect lighting, we additionally shade the
surfels in this step (Fig. 6, d).

This second pass is only conceptually separate from the
splatting. In fact, it can be integrated in the splatting pipeline
to save a second pass over the surfels. While our two passes
add computational cost during tessellation, they pay off in
speed by a faster splatting stage due to the lower number of
surfels and in quality of the constructed surfel cloud (Fig. 7).

More efficient use of fill rate In shell splatting, point prim-
itives are used to cover what is actually the projection of a

Figure 7: Surfels produced using the new approach (b, 109 k.
surfels, 7.4 ms) and the old one (a, 120 k.surfels, 4.1 ms).

3D-shell on the framebuffer. Fragments corresponding to the
inner part of the shell have to be detected and discarded using
a conditional because the effect of a surfel is otherwise not
distributed disjointly among the different levels. Not only are
these fragments “wasted” but also does the check whether
a fragment belongs to the inner part of the shell slow down
computations for all of the fragments.

We modify this behavior as follows: Instead of discarding
a fragment at a pixel p corresponding to a world space po-
sition xp, we compute which shell around the surfel which
xp belongs to and then perform the same computations as if
the fragment was actually placed on the corresponding level.
Note, that in the end only the highest-precision hit for each
pixel / direction is kept, so doing this, we never override hits
found on finer levels. We may override “non-hits” on finer
levels by actual surfel-hits but we never replace information
computed with one precision (i.e., subsampling rate) by in-
formation computed with a lower precision. In practice this
approach is not only faster but also produces cleaner results.

Min / Max MIP-map for splat culling Finally, an even
higher level of output-sensitivity is achieved by culling splats
against a min / max MIP map of the deferred position texture
before the splatting begins. During splatting, the smallest mip
level lMIP where all pixels covered by the splat in the original
image have been reduced to the same pixel pMIP is computed.
The values at pMIP of level lMIP in the min and max MIP
maps define a local axis-aligned bounding box (AABB) of
all receiver points in the framebuffer. Splats not intersecting
this AABB are culled.

5. Results and Discussion

In the following, we demonstrate the z-buffered DSS ap-
proach presented in the previous section applied to AO and
one-bounce indirect illumination with diffuse as well as
glossy receivers. Results for combining our approach with
ambient occlusion volumes [McG10] are seen in Fig. 2.

Comparison with previous methods Fig. 8 provides a qual-
itative evaluation of our adapted method (third column) ver-
sus the original deep screen space without indirect visibility
(second column), a corresponding screen space method (first

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

Figure 8: Comparison of our method (3rd col.) to screen space competitors (1st col.), the original shell splatting (2nd col.) and
a reference (4th col.). The competing AO method used is horizon-based AO (HBAO) [BSD08], for the indirect light it is screen
space GI [RGS09]. See the accompanying video for animated versions of the scenes and the text for a discussion.

Table 1: Computation time for different stages and effects.

Stage Graveyard Still Life Dominoes

Tessellation 8.3 ms 8.8 ms 6.5 ms
Shuffling 4.0 ms 4.5 ms 4.5 ms
Splatting 38.5 ms 46.8 ms 61.2 ms
Unshuffling 1.3 ms 1.5 ms 1.5 ms
Reduction 0.3 ms 0.3 ms 0.3 ms
Blurring 3.5 ms 3.2 ms 3.0 ms

Total 55.8 ms 65.1 ms 77 ms

column) as well as a reference based on ray-tracing (last col-

umn). For our approach, timings of the individual stages are
given in Tbl. 1.

For AO, we chose horizon-based AO (HBAO) [BSD08] as
the screen space method, which is state of the art in quality.
For GI, we used screen space GI [RGS09]. We applied the
same geometry-aware blur to both, our method and the screen
space reference. (The original DSS result is blurred per level
as in [NRS14a].) All results were obtained for a resolution
of 768×512 pixels on a Nvidia GTX 770 GPU. We always
used a 4 samples per pixel for our new method, where each
sample corresponds to a unique direction.

The first row (Fig. 8) shows AO for a graveyard scene
(122 k tris, 375 k surfels). Albeit being the fastest of the four
approaches we compare, HBAO fails to reproduce proper

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

darkening due to triangles which are not visible or seen under
grazing angles. This leads to a quite different 3D perception
of the scene (e.g., arrow 1). Also the subtle shadowing of
the brick wall due to differently protruding bricks (2), which
is visible in the reference, is missing. DSS reproduces dark-
ening from invisible geometry but over-occlusion such as
in the corner of the brick wall (3) is a problem. This makes
scaling of the effect necessary which in turn reduces more
subtle shadowing too much. Our method most resembles the
reference, suffering the least from under- and over-occlusion.
The most noticeable difference to the reference is noise due
to the low number of sampled directions per pixel. Yet, unlike
the reference, our method runs at interactive speed.

The second and third row (Fig. 8) show indirect light and
the combination with direct light, respectively, for a still life
scene with glossy as well as diffuse objects (202 k tris, 167 k
surfels). Screen space GI misses both, indirect light, e.g.,
from the letters in the background (1), and indirect occluders,
e.g., inside of the skull (2) which is mistakenly lit by the
cloth below. Again, the screen space method is fastest in
comparison. Deep screen space deals with the light missing
for the screen space method but the lack of indirect visibility
is even worse, as can be seen inside the skull (2) or on the
pears (3) to the left. Our adapted deep screen space again is
closest to the reference with the same artifacts as for AO.

In the last two rows of Fig. 8 we show a scene containing
many colorful dominoes on a highly specular surface (1.4 k
tris, 237 k surfels). Since many faces of the dominoes are not
visible or cover only little screen area, the amount of available
indirect light samples in screen space varies strongly, result-
ing in perceivable noise. Due to the lack of indirect visibility,
the deep screen space result overestimates indirect light (e.g.,
1) or mixes light from differently colored emitters in some
places, leading to purple areas not found in the reference
(2). The z-buffered deep screen space is again closest to the
reference, even though we cannot achieve the same level of
specularity due to the blurring which is necessary to reduce
noise from sub-sampling.

Table 2: Amount of data after different tessellation stages
(Fig. 6) at the example of the Graveyard test scene (Fig. 8).

Stage Time Data size after

Initial full scene 122 k tris
Tri tessellation 1.2 ms 19 k tris
Fine surfelization 4.1 ms 797 k surfels
Filtering surfels 3.0 ms 375 k surfels

Time complexity The total running time for our method
consists of the time for tessellation on one hand and time
for splatting on the other. For tessellation, we again have to
consider several stages with different complexity (Tbl. 2).

During the initial tessellation step which is necessary to

handle very large triangles [NRS14a], we have to process all
of the scenes’ triangles. However, we can cull the triangles
against the view frustum (plus an additional safety margin
depending on the effect quality settings). The most costly
step in the surfelization is usually the second in which we
produce the fine surfel cloud, from which the final surfels are
selected afterwards, because it writes many small surfels. The
filtering step again has to consider all of the small surfels, but
in practice, it can be integrated into the splatting pass and run
concurrently (cf. Sec. 4.3). Splatting is the most expensive
step of the pipeline. Since all splats have the same size on
screen [NRS14a], the runtime depends on the number of
visible splats in the first place, i.e., the number of surfels that
cannot be culled times the number of levels in the framebuffer.
Again, since the surfels are constructed to have the same
projected size, the number of surfels basically only depends
on the depth complexity of the visible part of the scene.

Table 3: Memory consumption of our method, for different
shading effects and an output resolution of 768×512 px.

Data Memory requirement

Min / max MIP map 6 MB
Framebuffer layout 24 MB
Shuffled positions 18 MB
Shuffled bounce directions 18 MB
Layered framebuffer 6 MB (AO) / 18 MB (GI)

Total 72 MB (AO) / 84 MB (GI)

Memory requirement Tbl. 3 summarizes the memory con-
sumption of our method. Most of the memory is necessary to
store the framebuffer layout, i.e., the lookup textures used for
shuffling and unshuffling. Next is the hierarchical deferred
shading information itself. The only difference between AO
and GI is that for AO the effect can be computed using float
textures while GI needs 3D vectors.

Figure 9: Effect of ε on precision for far-range shading.

Problems and limitations In shell splatting, many small
surfels are approximated by fewer enlarged ones for the far

c© The Eurographics Association 2015.



O. Nalbach, T. Ritschel & H.-P. Seidel / The Bounced Z-buffer for Indirect Visibility

range, which implicitly assumes that the enlarged version
of the picked surfel is representative for surrounding surfels.
This assumption breaks when the surface normal changes
rapidly in the neighborhood of the selected surfel, for exam-
ple at convex or concave corners and becomes observable
for large values of ε [NRS14a] (which regulates the trade-
off between the amount of sub-sampling and runtime) as in
Fig. 9 (top left). Similarly, we may observe artifacts resulting
from enlarged surfels protruding through other geometry and
becoming wrongly visible to a pixel (Fig. 9, top right).

Another (typical) problem is temporal coherency. Not only
are the sampling directions randomly selected for each frame
but also does the subset of the surfel cloud which is sampled
at each pixel change, leading to flickering in animated scenes.
We currently apply simple re-projection [SYM∗12] for ani-
mated scenes as shown in the video (but not in any figure in
this article). Further research could address spatio-temporal
filtering of the bounced z buffer itself.

6. Conclusion

We have devised a conceptually simple and computationally
efficient method to add visibility to splatting-based global
illumination rendering. In future work, we would like to
address more advanced visibility such as for transparent or
volumetric occluders or receivers. Our filtering currently does
not yet make use of known distance information for advanced
filtering such as adaptive kernel sizes or re-projection. Finally,
an interesting algorithmic extension could associate every
pixel with an opening angle depending on the BRDF for
improved pre-filtering using finite sized solid angles.

Acknowledgements We thank Morgan McGuire for providing
the source code of his AOV implementation and the Sibenik cathedral
mesh by Marko Dabrovic.

References
[BBH13] BARAK T., BITTNER J., HAVRAN V.: Temporally coher-

ent adaptive sampling for imperfect shadow maps. Comp. Graph.
Forum (Proc. EGSR) 32, 4 (2013), 87–96. 2

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SIGGRAPH 2008 talks
(2008). 1, 2, 6

[CG85] COHEN M. F., GREENBERG D. P.: The hemi-cube: A
radiosity solution for complex environments. In ACM SIGGRAPH
Computer Graphics (1985), vol. 19, ACM, pp. 31–40. 2

[Chr08] CHRISTENSEN P. H.: Point-based approximate color
bleeding. Pixar Technical Memo, 2008. 2

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISE-
MANN E.: Interactive indirect illumination using voxel cone
tracing. Comp. Graph. Forum 30, 7 (2011), 1921–30. 1

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect
illumination. In Proc. I3D (2006), pp. 93–100. 2, 3

[JSG09] JIMENEZ J., SUNDSTEDT V., GUTIERREZ D.: Screen-
space perceptual rendering of human skin. ACM Trans. Appl.
Percept. 6, 4 (2009), 23:1–23:15. 1, 2

[KD10] KAPLANYAN A., DACHSBACHER C.: Cascaded light
propagation volumes for real-time indirect illumination. In Proc.
I3D (2010), pp. 99–107. 1

[Kel97] KELLER A.: Instant radiosity. In Proc. SIGGRAPH
(1997), pp. 49–56. 1, 2

[LALD12] LEHTINEN J., AILA T., LAINE S., DURAND F.: Re-
constructing the indirect light field for global illumination. ACM
Trans. Graph. 31, 4 (2012), 51:1–51:10. 2

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTI-
NEN J., AILA T.: Incremental instant radiosity for real-time
indirect illumination. In Proc. EGSR (2007), pp. 277–86. 1

[MBV∗15] MATTAUSCH O., BITTNER J., VILLANUEVA A. J.,
GOBBETTI E., WIMMER M., PAJAROLA R.: CHC+RT: Coherent
hierarchical culling for ray tracing. Comp. Graph. Forum (Proc.
EG), 2 (2015). 2

[McG10] MCGUIRE M.: Ambient occlusion volumes. In Proc.
HPG (2010). 2, 3, 5

[Mit07] MITTRING M.: Finding next gen: CryEngine 2. In SIG-
GRAPH courses (2007), pp. 97–121. 2

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D.,
LUEBKE D.: Fast global illumination approximations on deep
G-buffers. Tech. rep., NVIDIA Corp., 2014. 2

[NRS14a] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep
screen space. In Proc. I3D (2014). 1, 2, 3, 4, 5, 6, 7, 8

[NRS14b] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Shell
splatting for indirect lighting of volumes. In Proc. VMV (2014). 2

[NW09] NICHOLS G., WYMAN C.: Multiresolution splatting for
indirect illumination. In Proc. I3D (2009), pp. 83–90. 2, 3

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T.,
KAUTZ J.: The state of the art in interactive global illumina-
tion. Comput. Graph. Forum 31, 1 (2012), 160–88. 1

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P., KAUTZ J., DACHSBACHER C.: Micro-rendering
for scalable, parallel final gathering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 28, 5 (2009). 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 27, 5 (2008). 1, 2

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximat-
ing dynamic global illumination in image space. In Proc. i3D
(2009), pp. 75–82. 1, 2, 6

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In Proc. I3D (2007),
pp. 73–80. 2

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K.,
NOWROUZEZAHRAI D., SNYDER J.: Image-based proxy
accumulation for real-time soft global illumination. In Proc.
Pacific Graph. (2007), pp. 97–105. 2

[SYM∗12] SCHERZER D., YANG L., MATTAUSCH O., NEHAB
D., SANDER P. V., WIMMER M., EISEMANN E.: Temporal
coherence methods in real-time rendering. Comp. Graph. Forum
31, 8 (2012), 2378–408. 8

[Tim13] TIMONEN V.: Line-sweep ambient obscurance. In Comp.
Graph. Forum (2013), vol. 32, pp. 97–105. 1, 2

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-
view ambient occlusion with importance sampling. In Proc. I3D
(2013), pp. 111–18. 2

c© The Eurographics Association 2015.


