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Color selection is required in many computer graphics applications, but can
be tedious, as 1D or 2D user interfaces are employed to navigate in a 3D
color space. Until now the problem was considered a question of designing
general color spaces with meaningful, e. g., perceptual, parameters. In this
work, we show, how color selection usability improves by applying 1D or 2D
color manifolds which predict the most likely change of color in a specific
context. A typical use case is manipulating the color of a banana: instead of
presenting a 2D+1D RGB, CIE Lab or HSV widget, our approach presents
a simple 1D slider that captures the most likely change for this context.
Technically, for each context we learn a lower-dimensional manifold with
varying density from labeled Internet examples. We demonstrate the increase
in task performance of color selection in a user study.
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1. INTRODUCTION

The seemingly simple task of color selection is highly important
in many computer graphics applications, ranging from casual photo
manipulation to professional 2D and 3D content creation. Despite
being an often-used and important operation, exploring high-
dimensional colors using low-dimensional user interfaces such as
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linear or angular 1D slider or 2D widgets that control parameters of
a certain color space [Schwarz et al. 1987; Douglas and Kirkpatrick
1999] is often disappointing. Color selection using color templates
(e. g., PANTONE), or more specific, hue templates [O’Donovan
et al. 2011], is an alternative but does not scale well to many colors
(too large palettes) and fine-tuning of colors (too coarse palettes).

In this work, we seek to improve upon both paradigms in an
example scenario as follows: A user takes a picture of a wooden
chair and wants to adjust its color using a single 1D sweep or a
single click on a mobile device. In any common color space, such
a change is likely impossible: Going more red will require more
saturation, going less red, will require less, otherwise the result is
a color, but not a wood color anymore. Our approach learns this
relationship from labeled exemplar data and present the user a
single 1D slider to traverse the manifold of plausible wood colors.
Additionally, we want the manifold to compress the color space in
ranges that appear less frequently and to enlarge in frequently used
areas. For the chair examples, we will enlarge the brown-beige-red
areas while we shrink the green or blue areas.

The technical challenge addressed in this paper is to project a
high-dimensional color space with a density acquired from Internet
data, to a lower-dimensional color space such that neighborhood
of important colors is preserved, and embedded area is proportional
to density.

2. PREVIOUS WORK

Color Spaces. A vast choice of different physical color spaces
such as sRGB, perceptual color spaces such as CIE Lab and CIE
XYZ or color appearance models such as CIE CAM [Fairchild
2005] were proposed over the years. The discussion of what space
or what model is best for which purpose is extensive and will not
concern us here as it is mostly orthogonal to our approach to color
selection, where we are only interested in traversing an existing
high-dimensional color space in a meaningful low-dimensional way.

The idea of extracting statistics of colors has been used in
computer vision. An example is Hsu et al. [2002], who proposed a
specialized color space for human skin to be used for face detection.
They use principle component analysis (PCA), which implies that
the best manipulation happens along a particular linear direction
in RGB with equally-sized steps. Image-dependent PCA has also
been used to improve compression of color images [Clausen and
Wechsler 2000]. For a general survey of dimension-reduction tech-
niques in color science, where they are mostly applied to reducing
high-dimensional spectral signals to low-dimensional spaces, see
by Tzeng and Berns [2005]. We extend the aforementioned ideas
of linear, PCA-based color spaces to arbitrary embeddings (i. e., 1D
curves, or 2D surfaces) of varying density based on image statistics
acquired from the Internet. The color science community has
addressed the deformation of space to fit to certain data for problems
of linearization in agreement to some measurement, e. g., hue
[Lissner and Urban 2009]. Omer and Werman [2004] use a set of
1D-subsets of a color space (lines) to detect and reduce distortions
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Fig. 1. Our approach uses Internet image collections (1st col., only subset shown) to learn color manifolds. The 1D manifold for the class “Banana” with a
single degree of freedom (2nd col., top) and as a patch for two degrees of freedom (2nd col., bottom). The same manifold shown as a 1D line (3rd col.) or a 2D
patch (4th col.) in 3D color spaces. The same two colors are marked as squares in all visualizations. A key application is user interfaces where the manifold
(here 1D) is used as a slider which show only the appropriate colors (6th col.) instead of all colors as in common color pickers (5th col.).

of colors in acquisition and reproduction of images. They do not
extract a single 1D, 2D or 3D manifold, but multiple disconnected
1D lines and do not account for varying (perceptual) density. While
multiple disconnected lines can serve as a regularization to restrict
the set of colors to plausible ones, they do not allow for an intuitive
user interface as there is no obvious way how to embed a set of
disconnected lines into a single slider, such as done in this work.
Finally, they do not capture two-dimensional relationships.

Lalonde and Efros [2007] have analyzed color distributions of
typical classes of images. A distance measure between distributions
can be used to measure color compatibility of one image to a certain
class or the compatibility of a foreground and a background. How-
ever, the distribution remains “high-dimensional” (3D), while we
seek to find an embedding in fewer dimensions. Oskam et al. [2012]
address the problem of global color balancing between images
using a sparse set of desired color correspondences by deforming
the color space. We also deform the color space but to the end of
embedding and flattening it to a lower-dimensional space.

Color selection. As a human-computer interaction, color
selection has received only little attention with the exception
of work by Schwarz et al. [1987] as well as by Douglas and
Kirkpatrick [1999]. They found that the choice of color space
has only little impact on performance when comparing different
color spaces and visual feedback is the most important usability
factor. We perform a similar study, including our color manifolds.
The objective of our embedding is to provide as much 3D color
space feedback as a 2D screen can contain. Different from us,
Shapira et al. [2009] present an exploratory interface to edit image
appearance interactively. Their approach is also concerned with
modeling the distribution of colors, but not by embedding them
in lower dimensions. Instead, color distribution is modeled as
mixture of Gaussians and used for manipulation. A user can visually
navigate the high-dimensional space of possible color manipulations
by transforming the Gaussian mixtures. Each pixel’s color follows
its distribution accordingly. Our color manifolds could be used in
their framework as additional constraints that restrict object color
to remain valid (e. g., plausible human skin color).

Color templates and themes. The relation of images to colors,
called “Image Themes” is extracted, transferred and enhanced in the
works of Wang et al. [2010; 2011]. We share the idea of acquiring
image statistics from Internet data, but for a different purpose.

Color templates are a pre-defined discrete selection of colors.
Popular Internet sites such as Adobe Kuler provide a large collection
of such color templates. Templates are well-suited for picking a
combination of colors, but less suited to fine adjustment of colors.
Hue templates were studied by Matsuda [1995] and later used for
color harmonization [Cohen-Or et al. 2006]. A perceptual study of
such color templates was conducted by O’Donovan et al. [2011].

Manifolds. In general, extraction of lower-dimensional
embeddings is applicable to many computer graphics problems.
Multi-dimensional-scaling (MDS), as used in the Design Gal-
leries framework [Marks et al. 1997], allows for embedding
higher-dimensional qualia into lower-dimensional layouts. Ma-
tusik et al. [2003] sample the even higher-dimensional space of
BRDFs to create a neighborhood graph that allows to move to
nearby plausible BRDFs. Our work is different in two regards. First,
the comparatively low-dimensionality of colors allows us to fit
a parametric model with an explicit dimensionality to the color
distribution resulting in a smooth and continuous manipulation and
layout of the color structure. Second, we have a density measure
defined on the high-dimensional color data that is preserved as local
area changes (Jacobian) of the embedding. Appearance manifolds
have been widely used in computer vision and computer graphics
community. Wang et al. [2006] build appearance manifolds to
capture time-variant appearance of materials from data captured
at a single instant in time. Xue et al. [2008] model the reflectance
of weathered surfaces from a single input image as a manifold and
use it for interactive editing of the weathering effects in an image.

3. OUR APPROACH

We will now describe our approach to create an n-dimensional
color manifold from images of a certain class represented in a
m ≥ n-dimensional color space. We experiment with values of
n = 1 (line) or n = 2 (surface) and m = 3 (radiance, reflectance).

In future work, higher values of m could be used for spaces
like spectral color; higher values of n in other applications or 3D
color selection. Every manifold belongs to an image class like
“sky”, “banana”, etc. We will not consider how to classify images
and assume a state of the art-classifier to be correct in many cases
[Lazebnik et al. 2006] in combination with a simple but effective
background removal. The extraction of all manifolds for each
class is independent and performed for all possible classes in a
pre-process step. As the manifolds are smooth, they can be serialized
into a file of a few hundred bytes. Exchanging those files is sufficient
for standardization, e. g., in print. As our manifold construction can
be performed at interactive rates, we optionally allow the user to
create a set of images and extract their color manifold on-the-fly.

Overview. An overview of our approach for one class and
manifold is given in Fig. 2. First, we acquire color samples from
images or 3D models returned from an Internet query (Sec. 3.1).
Typically, this results in many millions of colors that are put into
a m-dimensional histogram in a certain high-dimensional source
color space such as RGB or CIE Lab (Sec. 3.2). Next, this histogram
is thresholded and only the α% most important colors are kept. On
the remaining colors, we either use principal component analysis
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Fig. 2. Flow of our approach: The first two steps are always identical (left):
Acquisition of color statistics (Sec. 3.1) and density estimation (Sec. 3.2).
The dimensionality reduction is analyzed for three variants (right): PCA
(Sec. 3.3.1), MDS (Sec. 3.3.2) or SOM (Sec. 3.3.3).

(PCA), multi-dimensional scaling (MDS) or self-organizing maps
(SOM) to perform dimensionality reduction (Sec. 3.3).

3.1 Acquisition

Color samples are acquired using 2D Internet image search and on-
line 3D model repositories. For images, Google Image Search is used
to acquire the top 100 images for one class. Note that our input image
set contains images with improper camera calibration (improper pho-
tometric calibration, incorrect white balance) and different drawing
styles. We do not filter this set or compensate for any different cam-
era calibration or image style, which would likely further improve
our results. We will distinguish in our results between weakly super-
vised acquisition (where images are used as they return from an In-
ternet search) and strongly supervised acquisition (invalid pixels are
manually excluded by an alpha mask). Optionally, users can interac-
tively remove and add images. If not mentioned otherwise, all of our
results are from weakly supervised sources without user interaction.

The problem with 2D images is that they are acquired under
unknown illumination and contain shading. Consequently, images
can be used better to study a luminance-free, 2D color space of
hue and saturation. Ideally, we would like to have a repository of
true reflectance data for the purpose of studying 3D color. For this,
data from online 3D model repositories are used. We assume that
textures of such models do indeed have reflectance of 3D models.
This is justified, as artists tend to use proper white balancing,
shadow removal, etc. on their textures. The only remaining difficulty
is that textures contain areas with pixel values that do not map
to the surface and should be excluded as they are not part of the
reflectance we seek to sample. We solve this by setting alpha to zero
in all textures and then draw the UV mapping polygons with alpha
set to one into the alpha channel. The result is a 2D RGBA image
that can be processed like other images. Unless stated otherwise,
2D images are used to study the full 3D color space and for results
in this paper, we use manifolds of radiance and not of reflectance.

For a certain class, image search results contain a foreground ob-
ject belonging to the class in front of a background. We use a simple
heuristic to remove this background. First, the image is blurred using
Bilateral filtering. Next, two neighbor pixels are connected only if
their CIEDE2000 color difference is less than a threshold. Finally, all
connected components that contain pixels on the image frame bound-
ary are considered as background. Fig. 3 shows several background-
removed images. Our removal tends to be conservative and while
it potentially removes pixels that belong to the class, it rarely keeps
background pixels, as seen e. g., around the “Snow White” example.

Fig. 3. Input images before (1st and 3rd col.) and after background removal
where removed pixels are marked as gray (2nd and 4th col.). Input images
courtesy of Dominik Stodulski (lady bug), Greg Lasley (grass hopper) and
Flickr user Loren Javier (Snow White).

The acquired images are now in the RGB color space, with al-
pha channel used as a mask. Pixels with an alpha value of zero
are skipped from further consideration. If the source color space
S = Rm should be different, a conversion e. g., to CIE Lab is per-
formed now. Finally, we randomly sample k (e. g., four million) pix-
els from them-D color space of our query data into a vector a ∈ Sk.

3.2 Density estimation

The purpose of this step is to turn a large collection of samples that
implicitly describe the frequency of a certain color into a simple
explicit representation of density, i. e., color frequency. To this
end, the source space is conceptually covered by a lattice of 16
bins along each dimension, into which the k sampled pixels of a
are inserted. We call the normalized bin value the density of this
color. We choose a regular grid instead of clustering for simplicity
and to allow for an efficient (i. e., interactive-rate) construction
of manifolds with a user in the loop. Next, this histogram is
thresholded and only the α% of bins with the highest density are
kept. An α = 15% is used to produce our results. This is done to
eliminate outliers that corrupt the manifold structure or colors that
might not belong to the class. See the supplemental material for
more details on our parameter choice. The result is a set b ∈ Sl

of l points in the m-D source color space with a density vector
d ∈ Rl. We clamp the density d between 0.1 |d| /l and 2 |d| /l to
avoid under- or over-estimated color importance. While the input
contained k i. e., millions of elements, the compact color point cloud
b typically contains l� k i. e., several hundreds of colors only.

3.3 Dimensionality reduction

We explore several dimensionality reduction methods for our
embedded manifolds: linear PCA (Sec. 3.3.1), as well as MDS
(Sec. 3.3.2) and SOM (Sec. 3.3.3) which are non-linear methods.

3.3.1 Principal component analysis (PCA). Let µ ∈ Rm be the
density-weighted mean of b and C ∈ Rm×m the density-weighted
covariance matrix of the color distribution. The n eigenvectors
of C with the highest eigenvalues are a linear embedding into the
n-dimensional space. Our method embeds a line (n = 1) or plane
(n = 2) in the m−dimensional source space with higher weight
to high-density colors.

3.3.2 Multi-dimensional scaling (MDS). To embed colors
using MDS, we establish color neighborhoods, optimize a layout
to keep those neighborhoods and finally optimize for smoothly and
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completely filling the lower-dimensional space. The three steps are
explained in the next paragraphs.

To extract the manifold structure, we create a graph with weighted
edges. First, all colors in b are interpreted as nodes and an edge is
created between neighboring colors / nodes. The neighborhood is
still in the m-D source space and simple to find due to the regular
histogram structure. For the rare case, when the resulting set of
points has several disconnected components, we discard all but the
largest component. Next, we label each edge with the average den-
sity (di +dj)/2 of the two nodes i and j it connects. Conceptually,
edges in dense areas get longer, edges in sparse areas get shorter.
Finally, we approximate the geodesic distance between all pairs of
nodes (not just the neighbors) by shortest paths using the Floyd-
Warshall algorithm and insert it into a pairwise distance matrix
D ∈ Rl×l. This step is similar to the extension of Isomap [Tenen-
baum et al. 2000] over MDS, but using weighted edges instead.

The distance matrix D computed in the previous step is fed
into a classic MDS [Cox and Cox 2000]. The output are l new
n-dimensional color points c ∈ T l (T = Rn) that preserve the de-
sired distance matrix D in the lower-dimensional space in the least-
squares sense. As an MDS solution is unique up to a rotation and a
uniform scaling, we additionally normalize it to the unit hypercube
and rotate it, such that the direction of largest luminance variation
(found using PCA of the luminance of c) aligns with the first axis.

While b was a regular grid of a simple structure in the host
color space Rm, the embedding c is an irregular point cloud in Rn.
Therefore, it is not clear which, how many and if at all an element in
c maps to any coordinate location x in Rn. However, we would like
to use Rn for smooth navigation to enumerate Rm in a plausible
way. To reconstruct a smooth unique mapping f ∈ Rn → Rm

defined on the entire domain Rn, we employ radial basis function
(RBF) reconstruction: f(x) =

∑l
j=1 r(cj ,x)bj/

∑l
j=1 r(cj ,x)

where r is the kernel r(x,y) = exp(−(sm ||x− y||)2) with a
constant sm to control smoothness. Please see the supplemental
material for different settings of the smoothness parameter sm.

3.3.3 Self-organizing map (SOM). SOM produce a non-linear
mapping from the m-dimensional space to an n-dimensional grid of
weight nodes W ∈ Shn

[Kohonen 1990], where h is the grid’s size.
The nodes of W are initialized to random values and updated in

t training steps. In a training step i (1 ≤ i ≤ t), the node with the
minimum distance to a training sample is called the best matching
unit (BMU). The weight of the BMU and its neighbors are adjusted
toward the training sample. The magnitude of change and the
neighborhood size from the BMU decrease after each training
step [Kohonen 1990]. Fig. 4 shows the weight grid W during the
construction of the “Bananas” manifold at different training steps.

Let p ∈ Ss·t be the training sample set where s is the number
of training samples processed in each training step. Note that s
equals to 1 in the previous paragraph. The training sample set p
is constructed to contain colors from the compact color point cloud
b with distribution propotional to the density vector d.

In order to fully use the advantange of modern GPUs, at training
step i, we process a set of s samples p(i−1)s+1, ...,pis in parallel
as proposed in Batch SOM (Fig. 2 in [Lawrence et al. 1999]). The
distances between the training samples and nodes are calculated
using the CIEDE2000 color difference. Nodes are then updated
as described in Lawrence et al [1999]. To enforce smoothness
on the weight grid W, we further constrain the neighborhood
size to be bigger than a predefined smoothness parameter r0
(r0 ∈ N+, 1 ≤ r0 ≤ h/2).

For the 2D manifolds (n = 2), we empirically set the grid
size h = 32, s = 64 training samples each step, the smoothness

1D
 in

 3
D

Training step

2D
2D

 in
 3

D
1D

Fig. 4. Banana manifold construction (Fig. 1) using SOM: The first and
third row show the colors in the evolving 1D and 2D manifold. The second
and fourth row show the 1D and 2D color path resp. patch in the 3D RGB
cube. From left to right, the manifold is refined as new samples are added.

parameter r0 = 10 and t = 2000 training steps. For the 1D
manifolds (n = 1), we set h = 128, s = 64, r0 = 15 and
t = 4000 respectively. Please see the supplemental material for
more details about our parameter choices.

4. ALGORITHM EVALUATIONS

4.1 Algorithm Comparison

Fig. 5 shows several dimensionality-reduced color spaces produced
using SOM, MDS and PCA respectively. PCA produces a line or
plane in 3D that minimizes the variance of the color distribution
b. If the colors do not follow a plane or line, which is mostly the
case, many colors can not be addressed. While simple to compute
and easy to store, PCA-based color manifolds consistently perform
worse, as also shown in our perceptual study. MDS preserves
intrinsic (geodesic) distances of the color distribution b and
performs well if a 1D or 2D manifold exists. The bottom row of
Fig. 5 shows a typical failure case of MDS where the distribution
forms a cycle and geodesic distances fail to produce an embedding
into a 1D or 2D disk. Such cyclic paths are rare in color distributions
but do exist. SOM naturally handles cyclic distributions which can
be an issue for MDS. The supplemental material provides more
detailed results for different classes using different dimensionality
reduction approaches.

4.2 User Study

We evaluated the usefulness of the proposed color manifolds in a
color adjustment and a color exploration task.

In the color adjustment task, 13 subjects were asked to adjust the
color of an image to match a reference image using different inter-
faces. Images used for manifold construction were excluded from
the user study. In each trial, the participants were presented a color
image and a second version of the same image that had a random
color assigned to a soft region defined by the authors. Subjects were
asked to adjust the color of the image back to the reference using
a specific color picker UI. Adjustment was performed by picking a
color inside the color picker and the image was modified by means
of recoloring [Gastal and Oliveira 2011]. This objective is a typical
color selection task in everyday photo editing. The UI was randomly
either a common RGB, Lab, HSV, a “reduced” RGB, “reduced” Lab,
“reduced” HSV where colors outside the color distribution of the
image class are grayed out as un-selectable as well as our proposed
1D or 2D manifold interfaces, produced using either PCA, MDS or
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Fig. 5. Different manifolds produced using different approaches. The first column (“Input”) shows the high-dimensional input used. The second column
(“Samples”) shows the color distribution in 3D RGB space. Next are the 1D and 2D manifolds (“Manifolds”) generated using SOM, MDS or PCA. Finally, we
show these 1D manifolds (“1D in 3D”) and 2D manifolds (“2D in 3D”) as paths and patches in 3D RGB space. The first row shows the results of the “Bananas”
class. The second row shows the results of an analytical color distribution. Here, SOM outperforms both PCA and MDS.
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Fig. 6. User study results: (a) Adjustment task: Normalized CIEDE2000 error of several adjustment UIs and their standard error of mean. Lower numbers are
better (less error). (b) Exploration task: Mean time, relative to common RGB (dotted line) and mean rank accompanied by their standard error of mean. Lower
time is better (faster). A higher rank indicates a better rating from the subjects. Different experimental conditions for the same UI are encoded as different colors.

SOM. The “reduced” color spaces acted as a control group to detect
whether an increase of performance of color manifolds was only due
to excluding irrelevant colors (e. g., “skin” does not include blue).
The task had to be finished either within a 5 second time budget
with multiple mouse clicks, by using two clicks or by multiple
clicks in an open-ended setting. We measured user performance
as the average CIEDE2000 color difference of all pixels and all
subjects denoted in percentage of the maximal error. Fig. 6a shows
the performance of different interfaces. As the mean difference
distribution was non-Gaussian (D’Agostino-Pearson), we used the
Kruskal-Wallis non-parametric test instead of ANOVA [Siegel and
Castellan 1988]. Dunn’s multiple comparisons test was used to
calculate the pairwise statistical significance between different in-
terfaces. Both our 1D and 2D SOM manifolds outperform classical
and reduced color pickers with statistical significance p < 0.05.

The color exploration task was performed in two phases where
some participants created images using different interfaces and
other subjects ranked their images later on. In the creation phase,
subjects were asked to adjust the color of an image using different
interfaces until satisfied. Four expert users (computer graphics
hobbyists naı̈ve to the purpose of the study) participated in this step
performing 60 trials each. In every trial, participants were presented
one out of five different images where some parts needed to be
colored using one out of 12 different color pickers from the first
experiment. The resulting images were used in a second ranking
phase where we randomly chose 10 different sets of images. Every
set contained 12 images edited by one specific expert user on the
same input image using 12 different interfaces. 10 other subjects
were asked to sort the images by increasing color appearance quality.
Fig. 6b shows the average finishing time of different color pickers

relative to using an RGB color picker for a given set and the average
ranking for different color pickers. Similar to the adjustment study,
we used a Kruskal-Wallis test and Dunn’s post-hoc. Overall, our 1D
and 2D SOM outperform classical and reduced color pickers with
statistical significance p < 0.05, in both finishing time and ranking
in the exploration task. The supplementary material contains more
details on statistical significance of our studies.

Conclusion. Our studies re-confirm that the choice of classical
color pickers has only little impact on the performance of a color
selection interface. Our studies show that encoding “class” infor-
mation into classical color pickers, such as done in our “reduced”
pickers, does not improve the performance in both color adjustment
and color exploration task. Our data-driven 1D or 2D manifolds
outperform classical color pickers and reduced color pickers in both
color adjustment and exploration task. Furthermore, SOM is the best
choice compared to PCA and MDS. Unless stated otherwise, weakly
supervised SOM was used for further results shown in the paper.
The supplementary material contains more details on our studies.

5. RESULTS

5.1 Manifolds

This section shows 1D and 2D manifolds produced automatically
for a certain class, for classes with additional semantic parameters
or by classes interactively composed by a user.

1D and 2D manifolds. Manifolds generated for different
classes are shown in Fig. 7. As images contain shading, true
reflectance data as extracted from Internet 3D model repositories
can be superior (Fig. 8). If the class is not unique inside the
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Fig. 7. Input images returned by Google Image Search (1st col., only
subset shown), color distribution in 3D RGB space (2nd col.) and 1D as well
as 2D manifolds (3rd col.) produced by our weakly supervised SOM for
different classes (rows). Finally, we show these 1D manifolds (4th col.) and
2D manifolds (5th col.) as paths and patches in 3D RGB space.
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Fig. 8. Comparison of manifolds constructed from 2D images with shading
returned by Google Image Search (3rd col.) and reflectance from textures of
3D meshes acquired from Google Sketchup (5th col.). The color distribution
of the 2D images in 3D RGB space and the reflectance from the textures are
shown in the second and forth column, respectively.

image, we allow user annotation (Fig. 9) or make use of already
annotated data such as the SUN database [Xiao et al. 2010] or the
OpenSurface database [Bell et al. 2013]. Fig. 10 shows different
manifolds generated using different databases. Fig. 11 shows classes
of our 1D and 2D manifolds compared to the classical color pickers.
Manifolds are low-resolution images of only a few kilobyte that
are ready to be used in any application just by using any smooth
reconstruction filter. More details about our manifolds and training
data are available in the supplemental material.

Parametrized families of manifolds. The range of colors
found for a certain class sometimes depends on external conditions,
such as the colors of a forest follow the seasons or the sky’s color
changes over the course of a day. Our approach naturally supports
this observation by extending to families of manifolds gt(x),

Input

Sk
in

La
dy

bu
g

ManifoldsSamples

Weakly-supervised Strongly-supervised

ManifoldsSamples

Fig. 9. Comparison of weakly and strongly supervised manifolds. Weakly
supervised manifolds (3rd col.) are constructed using input images returned
by Google Image Search (1st col., only subset shown). Next, image pixels
that do not belong to the class are manually excluded and the refined images
are then used to construct the strongly supervised manifolds (5th col.).
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Fig. 10. Comparison of manifolds generated using different databases. The
first column shows a subset of the class from the OpenSurface database [Bell
et al. 2013]. Next are the manifolds generated using the input images from
the annotated database OpenSurface (2nd col.), Sun [Xiao et al. 2010] (3rd
col.), or weakly supervised images returned by Bing (4th col.) and Google
(5th col.) Image Search using the same keywords.

parametrized by a k-dimensional vector t ∈ Rk. To this end, we
acquire pairs (ai, ti) of image colors and parameter values, such
as when or where the image was taken. Then, we construct our
manifold for every value of the parametric domain,e. g., one 1D
MDS manifold for every time of the day as in Fig. 12.

Interactive manifold compositing. The efficient implemen-
tation of the manifold creation allows to interactively specify a set
of images and observe the resulting manifold (Fig. 13). Interactive
manifold creation could be used to summarize or further refine the
color organization of a set of images produced on-demand, e. g.,
by an image search. Please see the supplemental video for several
interactive manifold creation sessions.

5.2 Applications

Our manifolds allow for a range of applications, such as color
editing, palettes, stylization, compression and white balancing.

User interaction. Our primary application of color manifolds
is continuous 1D or 2D color slider (Fig. 1). Instead of continuous
variation of color, a discrete sampling leads to meaningful
recoloring suggestions (Fig. 15) or when directly used as discrete
palettes (Fig. 14). Compared to simpler alternatives like clustering,
the discrete elements produced by our approach have a meaningful
one- or two-dimensional ordering and can be refined if required.

Color stylization. Our approach can be used to permute the
hue value in an image, while staying inside the manifold of plausible
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Arm Chair Genie

Wasp Sunset Fish (S) Flower (S)

Apple

Moss

LadybugLeaf Mango

Mickey Peacock

Cow

Fig. 11. Several manifolds generated using weakly supervised data from
the Internet images. The final two sets on the bottom row (denoted as (S))
show the manifolds of two categories from the SUN database.

Fig. 12. Two 1D parametric families of 1D manifolds. Each vertical slice
is a manifold in color space that changes along the horizontal dimension
depending on a (semantic) parameter. The supplemental material shows a
subset of the images used to construct the manifolds.

Fig. 13. Interactive manifold creation in five steps. Starting from a single
input image (1st col.), a user interactively adds more images (2nd to 5th
col.) to refine the “Butterfly” manifold. In every screenshot, the left column
shows the set of input images, the top right shows the color point cloud in
3D and the bottom right shows the 1D and 2D manifolds.
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Fig. 14. Palettes produced by equally-spaced sampling of a 1D manifold.
The pallettes cover the space well and in a meaningful order.

images (Fig. 16). To this end, the image is segmented manually, a
new random hue from the manifold is assigned to every segment.

Compression. Our approach can be used to compress color
information. First, the image is converted to CIE Lab. The
luminance L is not compressed and the chrominance is processed
further. Second, a color manifold is chosen, and all colors are
transformed into the new space and compressed. Quantization of
colors to a low number of bits is used to compress colors in our
example, but other operations such as DCT or wavelets would be
possible. Additionally, we can quantize less important coordinates
with 0 bits, skipping this dimension, i. e., reducing a 2D color
to a 1D color. For decompression they are transformed back and
combined with luminance (Fig. 17). Our technique is especially
useful to compress a set of images from the same class.

Fig. 15. Re-coloring suggestion galleries using the “Apples” (1st row),
“Skin” (2nd row) and “Sunset” (3rd row) manifold. Original image on the
second row courtesy of Ross Whitehead.

Fig. 16. An original image (1st col.) and its hue permutations (2nd to 4th
col.) using the “Apples” manifold. Original image courtesy of Keith Weller.

White balance. White balance seeks to disambiguate the
product a = Lr of a spatially-invariant, unknown scalar RGB
illuminant L and an unknown spatially-varying diffuse RGB
reflectance r. Humans are known to exploit knowledge of familiar
i. e., plausible, reflectance to disambiguate this product [Olkkonen
et al. 2008]. Our manifolds encode such knowledge and can
extend the popular “grey world assumption” to an “on-manifold
assumption”. This assumption defines the illuminant as the ratio
of the average color in a k pixel-image and grey Lgrey =

∑
ai/k.

In this framework, observing a slightly pink image would result
in a pink illuminant. If we, however, know that parts of the image
belong to the “human skin” class, pink might not be the illuminant,
but the reflectance and the illuminant is white. Along those lines,
our manifolds can be used to regularize plausible values for r as
follows. First, the set of image pixelsM that belong to a known
class are selected. Next, we solve for the best RGB illuminant L
that minimizes the cost function

∑
i∈M

∥∥αf (
ai
L
)− ai

L

∥∥2 where
αf (x) is the nearest color to x ∈ Rm on the manifold f . The cost
function optimizes for the manifold constraint that pixels inM after
white balancing should stay inside the manifold (Fig. 18). While
the cost is non-linear due to the projection operation αf , the space
is small enough (all possible colors) to be enumerate exhaustively
using a GPU-solver employing a 3D look-up table for αf .

The approach is limited in that it cannot disambiguate situations,
where the product of reflectance and illuminant, as well as the
reflectance itself are close to the manifold: a slight blue tint in a
human face which is likely not reflectance, but illuminant; a brown
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Fig. 17. Original (bottom left) and compression using our ”Sunset” mani-
fold (top right) and using the RGB space (insets).

Original Grey-world OurPS Auto Tone

Fig. 18. White balance (left to right): Original, grey-world assumption,
Adobe Photoshop CS6 Auto Tone, our approach, finally the mask and our
illuminant. The manifolds used are: “Skin”, “Donald” and “Bananas”.

shift might be the reflectance (tanned skin) or it might be a brownish
illuminant. The latter cannot be disambiguated.

6. DISCUSSION AND CONCLUSION

This paper proposed content-dependent color manifolds as a
replacement for established general color spaces by embedding a
curve or surface into a 3D color space. This allows for improved
color selection, as validated by perceptual studies, color stylization,
compression and white balancing.

Discussion. Our pipeline is specifically designed for high
performance and each step could be replaced to improve the quality
of the constructed manifolds. During density estimation (Sec. 3.2),
colors are quantized into l bins instead of using a continuous
estimation over k colors such as RBF or moving least squares.
This allows for higher performance and provides a unified input for
different dimensionality reduction methods (Sec. 3.3), furthermore
discrete histograms can be adapted easily to a simple outlier removal
step by thresholding the bins. While robust statistics [Maronna et al.
2006] in a continuous estimation will likely improve the quality
of outlier removal, it would further complicate our pipeline. We
have shown that increasing the resolution of the histogram gives
similar results in the supplementary material.
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Fig. 19. Limitations: Colors of some man-made and textured objects that
virtually exists in all hues and shades and consequently should be used
in 3D. The dimensionality reduction step would try hard to find the best
traversal in 3D, resulting in a desperate zig-zag enumeration of the entire
higher-dimensional space. Detailed explanations of this figure can be found
in the caption of Fig. 7.

Limitations. The main limitation of our work is the require-
ment of reliable classification, both to construct the manifold and
to use it. For construction, we found the quality of typical search
engine results to be sufficient, as indicated by our results. Typical
failure modes are ambiguous queries such as “apple”, which might
refer to a fruit as well as to a brand of computers. For weakly su-
pervised manifolds, we do not perform any preprocessing on the
input image set. As images returned from Google Image Search
might contain improper camera calibration, color distortions or the
inter-reflection between objects, they will likely produce less sharp
manifolds. Our simple background removal (Sec. 3.1) might fail to
remove background colors from several images in the set due to com-
plex backgrounds or objects with holes, etc. These parts normally
occupy a small part of the images which could be rectified by density
thresholding (Sec. 3.2). In some cases, colors that do not belong to
the class such as green in the “ladybug” (Fig. 9) are dominant. Even
though these outliers (colors) might greatly reduce the usability
of our manifold, they are closely related to the class semantically
(leaves in the “ladybug”) and we believe that they can act as sup-
plementary colors for a specific class. While manifold construction
faces all those challenges, once the manifolds for a class are made
available (such as in our supplemental material) they don’t need to
be acquired again. For manifold usage, the ideal classifier would also
detect the object class for a location inside the image or identify dif-
ferent classes if multiple classes are present in one image [Jia 2013].
Such classifiers are an active area of research in computer vision but
not yet readily available to computer graphics applications. If the
entire image belongs to a single class or the class is known a priori
our manifolds are ready to use. For some classes, the dimensionality
reduction is not always possible in a satisfying manner. We are able
to find potentially non-linear lower-dimensional structures, but only
if they are present. Classes that have a color distribution that roughly
follows a dominant line are well-described by 1D manifolds, classes
that are roughly distributed around a surface can be represented
using 2D manifolds. However it is futile and counterproductive, to
organize an inherently 2D distributions of colors into a 1D curve.
Fig. 19 contains more results of man-made objects or objects with
rich textures. Our method might fail to produce the manifolds for
these objects as they could have multiple dominant colors over the
surface and thus form multiple manifolds in color space. Please
see the supplementary material for more results. Finally, perceptual
organization of colors into lightness, saturation, or the periodicity
of hue would require additional considerations.
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Future work. In future work, we would like to extend our
idea to very high or infinite-dimensional input spaces such as
spectral colors or BDRFs while keeping smoothness, density and
distance-preservation of our embedding. Another generalization
could address textured variation or materials. Besides, comparison
to different elaborate interfaces such as image galleries [Shapira
et al. 2009] or color template [O’Donovan et al. 2011] in color
adjustment and exploration tasks is an interesting future direction.
Furthermore, to simplify the study, a detailed, soft selection is
assumed to exist and subjects were asked to modify the images by
picking a single color. This can be generalized in the spirit of “How
do humans colorize images?” by allowing multiple color selections,
in a manner similar to [Cole et al. 2008].

We hope that our intuitive 1D or 2D manifolds will substantially
ease the navigation of color spaces (as shown in the color adjustment
study) and improve color editing quality in general (as shown in
the color exploration study).
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