
Deep Screen Space

Oliver Nalbach1 Tobias Ritschel1,2 Hans-Peter Seidel1

MPI Informatik1 Saarland University / MMCI2

(a) (b) (c) (d)

Figure 1: Our approach replaces the framebuffer by a collection of view-dependent surfels produced on-the-fly (a) to compute shading such
as subsurface scattering (b, 1024× 512, 27 ms), ambient occlusion (c, 512× 512, 22 ms) or directional occlusion (d, 512× 512, 24 ms).

Abstract

Computing shading such as ambient occlusion (AO), subsurface
scattering (SSS) or indirect light (GI) in screen space has recently
received a lot of attention. While being efficient to compute, screen
space methods have several key limitations such as occlusions,
culling, under-sampling of oblique geometry and locality of the
transport. In this work we propose a deep screen space to overcome
all these problems while retaining computational efficiency. Instead
of projecting, culling, shading, rasterizing and resolving occlusions
of primitives using a z-buffer, we adaptively tessellate them into
surfels proportional to the primitive’s projected size, which are op-
tionally shaded and stored on-GPU as an unstructured surfel cloud.
Objects closer to the camera receive more details, like in classic
framebuffers, but are not affected by occlusions or viewing angle.
This surfel cloud can then be used to compute shading. Instead
of gathering, we propose to use splatting to a multi-resolution in-
terleaved framebuffer. This allows to exchange detailed shading
between pixels close to a surfel and approximate shading between
pixels distant to a surfel.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, Shading, Shadowing, and Texture;

Keywords: Interactive global illumination: Level-of-detail, Surfels:
Splatting, Graphics hardware

1 Introduction

Computing convincing indirect light in large and dynamic scenes
is still an elusive goal. Different effects, such as ambient occlu-
sion, subsurface scattering or indirect lighting in screen space have
recently received a lot of attention. (We subsume global illumi-
nation, subsurface scattering and ambient occlusion as “shading”
here.) While being efficient to compute, screen space methods have

several key limitations. Occluded pixels cannot send or receive shad-
ing. Consequently, shading appears and disappears, leading to the
impression that it is not part of the scene, but merely a part of the
medium (the “shower door” effect [Meier 1996]). Culling is the most
extreme case: Here primitives behind other primitives or outside
the frustum are ignored completely. More subtly, oblique primitives
only receive a low number of pixels and hence their contribution is
underestimated. Finally, screen space is limited to shading between
nearby pixels as other exchange would require excessively large
filters.

In this work, we propose a novel method to overcome all these prob-
lems while retaining computational efficiency. Instead of projecting,
culling, shading, rasterizing and resolving occlusions of primitives
using a z-buffer, we adaptively tessellate them into surfels propor-
tional to the primitive’s projected size, which are optionally shaded
and stored on-GPU as an unstructured surfel cloud. Thanks to the
tessellation, geometry closer to the camera receives more details,
like in classic framebuffers. However it is not affected by occlusion
or undersampling. This surfel cloud can then be used to compute
shading.

Instead of gathering, we propose to use a splatting to a multi-
resolution, interleaved framebuffer. This allows to exchange detailed
shading between pixels close to a surfel and approximate shading
between pixels distant to a surfel without the need of building a
hierarchical representation. All of those steps fit the fine-grained
parallelism of modern GPUs without the need of a stack or any
per-thread state as required in many other hierarchical approaches,
such as when tracing rays in a bounding volume hierarchy [Aila and
Laine 2009] or enumerating a light cut [Walter et al. 2005].

Our approach requires no pre-computation, allowing for the fully
dynamic scenes that are possible using screen space methods. A final
important quality our approach shares with screen space methods
is its output sensitivity and the fact that it strictly adapts the com-
putation to the current view. While a screen space method achieves
this by first quickly finding important pixels through rasterization,
we use fast tessellation hardware. All these parallels motivate us to
term our work deep screen space.

2 Previous work

Screen space shading was first used for ambient occlusion [Mittring
2007; Shanmugam and Arikan 2007; Bavoil et al. 2008] and later

Olli
Schreibmaschinentext
Permission to make digital or hard copies of all or part of this workfor personal or classroom use is granted without fee provided thatcopies are not made or distributed for profit or commercial advantageand that copies bear this notice and the full citation on the firstpage. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copyotherwise, or republish, to post on servers or to redistribute tolists, requires prior specific permission and/or a fee. Requestpermissions from Permissions@acm.org.I3D '14, March 14 - 16 2014, San Francisco, CA, USACopyright 2014 ACM 978-1-4503-2717-6/14/03…$15.00.http://dx.doi.org/10.1145/2556700.2556708

Olli
Schreibmaschinentext

Olli
Schreibmaschinentext

Olli
Schreibmaschinentext

Olli
Schreibmaschinentext

Olli
Schreibmaschinentext

Olli
Schreibmaschinentext

Olli
Schreibmaschinentext

(a) Framebuffer (b) Samples (Classic) (c) Samples (Deep) (d) Multir-res. level 0 (e) Multir-res. level 1 (f) Multir-res. level 2

Figure 2: For shading an image (a) a classic framebuffer (b) has incomplete information while our deep framebuffer (c) is complete. To
compute its contribution to the original framebuffer, its surfels are splat in multiple resolutions (d–f). For pixels that are near to a surfel
position in image space, the full resolution is used (d), for more distant pixels, a hierarchy of random subsamples of the framebuffer (e, f) is
employed. The subsampling results in same-sized splats to cover increasingly large image regions without much overdraw.

extended to subsurface scattering [Jimenez et al. 2009] or diffuse
bounces [Ritschel et al. 2009]. In the following, we will focus on
attempts to overcome its limitations.

First, multi-resolution computation can improve screen space shad-
ing, demonstrated for the case of diffuse bounces by Nichols and
Wyman [2009]. Here, a hierarchy is built in screen space as a regular
quad tree. The contribution of VPLs [Keller 1997] to the screen is
computed by splatting at different increasingly coarse resolutions.
Instead of reducing the resolution of each layer and then splatting
one VPL to one layer, we splat to multiple randomly subsampled
images. In combination with feature-aware blurring, spatially small
details also receive a shading contribution, just with fewer samples.
An example is a thin blade of grass: When reducing the resolution,
the blade at some point completely disappears. In our approach, only
the number of subsampled and randomized framebuffers containing
pixels of the thin object decreases (Fig. 9).

Second, occlusion is an issue for screen space shading. The restric-
tion to the first visible surface was addressed using multiple views
[Ritschel et al. 2009] and shadow maps [Vardis et al. 2013], but
could also be solved using layered depth images (LDIs) [Shade et al.
1998]. However, occlusion is not the only problem of screen space
shading: Under-sampling of geometry under grazing view angles is
never resolved, even when using LDIs, while there is no good reason
to not consider occluders or emitters that are seen under a grazing
angle.

Next, sweeps along a discrete number of directions [Timonen 2013]
were proposed leading to significantly improved performance but
also to banding artifacts. In our approach, we blur to reduce high-
frequency noise which is unbiased with respect to the lighting from
the surfels, whereas banding is hard to remove later.

The gathering of common screen space image filtering is replaced
by splatting in the work of Sloan et al. [2007] and McGuire et al.
[2010]. The first uses pre-computed sphere proxy geometry with
limited geometric detail, the latter generates splatting primitives
from triangles. In contrast, we generate our splatting primitives
on-the-fly to capture important details that vary across a detail or
proxy (shadow edges, textures) and combine their contribution in a
novel multi-resolution scheme to reduce fill-rate.

Besides screen space, hierarchies of surfels are popular to compute
GI [Bunnell 2005; Christensen 2008] or scattering [Jensen and Buh-
ler 2002]. However, this hierarchy needs to be built and traversed,
which is both not the ideal solution for a GPU and applications are
limited to medium-sized scenes undergoing minor deformations in
practice. Further, the discretization into a surfel cloud is usually
done once and limits the geometric detail. We avoid a pre-defined
discretization and traversing or building hierarchies altogether. Our
approach produces new surfels even when zooming in and is only

limited by the (procedural) geometric detail the scene contains.

Screen space shading bears similarities to Instant Radiosity [Keller
1997], where discrete points (VPLs) replaced the finite element
polygons of radiosity. Reflective shadow maps [Dachsbacher and
Stamminger 2005] are a particularly efficient way to produce such
points for indirect illumination from a single light. The idea is to
rasterize the scene from the view of the light and use the visible
parts as emitters to splat illumination. Such approaches work well
for a single primary light, but no obvious way exists to extend it to
general emitters or occluders e. g., in the presence of environment
maps or to ambient occlusion occluders.

Finally, our approach relates to the classic idea of micro-polygons
in REYES [Cook et al. 1987] that subdivides primitives to become
pixel-sized triangles and shades their vertices. Replacing polygons
by points was also used to render large [Wand et al. 2001] or proce-
dural geometry [Stamminger and Drettakis 2001] efficiently. In all
cases, points create the final image when they are shaded and used
to resolve visibility. In this paper, we compute shading contribution
from the surfels onto the framebuffer pixels, but the surfels never
become visible in the final image themselves.

3 Deep screen space

We will now explain our approach which is independent of a specific
shading effect such as ambient occlusion, subsurface scattering or in-
direct light. In our pipeline, we first compute a view-dependent point-
based representation from our scene primitives on-the-fly (Sec. 3.1)
which is then splatted onto a multi-resolution deferred shading buffer
(Sec. 3.2) which is finally combined into a single image (Sec. 3.3).

3.1 Tessellating the scene into a point cloud

The first step comprises turning the input triangle mesh of the scene
into a surfel cloud [Pfister et al. 2000]. Each surfel can be seen as
an oriented disk that is defined by its position, normal and radius
and may also be equipped with additional attributes like reflectance,
depending on the shading whose computation is desired. The surfels
in the cloud are supposed to roughly approximate the original scene
geometry but using more uniform primitives which significantly
simplifies the shading computations.

We use hardware tessellation to adaptively generate surfels from tri-
angles efficiently [Stamminger and Drettakis 2001; Bark et al. 2013].
Our goal is to achieve an approximately equal size in screen space
for all surfels, independent from their distance in world space and
orientation. This explicitly includes surfels that are very oblique or
even back-facing, which are never present in a common framebuffer.
As the target (world space) radius for the surfels stemming from one
triangle, we choose r∗ = s · tan(α/2) · (d+ dnear), where s scales

the surfel size (relative to the size of the screen), α is the vertical
opening angle of our camera, d the distance of the triangle’s center
to the camera’s near clipping plane and dnear the distance of the near
clipping plane, making surfels become larger again directly behind
the near plane (Fig. 3).

n1=5
n2=3

A1

A2

d1
dnear

d2

Te
ss

. C
on

tr
ol

Te
ss

. E
va

l.

Ve
rt

ex

In
pu

t

Figure 3: Our surfel tessellation pipeline for two triangles (see text).
Vertices are depicted as rectangles, surfels as disks.

Tessellation in OpenGL consists of a control and an evaluation stage
(Fig. 3). First, the tessellation control shader (TCS) computes into
how many output primitives an input primitive is to be tessellated.
Second, the tessellation evaluation shader (TES) computes each
output primitive. We are using tessellation in “point mode” where,
in difference from the common use to turn a triangle into many
triangles forming a smooth surface, triangles are converted into
points. OpenGL’s tessellation method will produce

v(i) =

{
3/4 i2 + 3/2 i+ 1 i is even
3 di/2e2 i is odd

vertices for a triangle if all tessellation levels are set to i in the
TCS. Using the formula for the even case, we approximate the
necessary tessellation level for a triangle with area A by solving
v(i) · πr∗2 = A for possible cases (i. e., where A ≥ 3πr∗2 and
i > 0) and taking the ceil which yields

i =

⌈√
12πA− 3π2r∗2

3πr∗
− 1

⌉
.

After determining the tessellation level, we adjust the actual radius
r such that the area of all surfels sums to A. The evaluation in
the TES simply computes averaged positions, normals etc. using a
barycentric coordinate which is made available by the tessellator
unit. Optionally, shading is computed and stored for every surfel as
well.

Discussion Using hardware tessellation to generate a point cloud
has a few shortcomings. First, surfels at edges will protrude from the
shape of the original triangle by r. In particular we get overlapping
surfels from adjacent triangles. To avoid this, we simply move the
three vertices of the original triangle based on which the new vertex
positions are computed towards the triangle’s center of mass by r
(done in the TCS). Second, the tessellation creates regular patterns
of surfels which might become visible in one way or the other when
computing the effect. We therefore jitter each surfel on the triangle
plane by a maximum distance of r. Third, the TES will create at
least three surfels for each original triangle, which might be too
small, especially for distant objects. Here, we have to assume that a
general LOD solution already reduced the number of triangles to a
reasonable pixel-to-vertex ratio [Luebke 2003]. Otherwise, the two
negative consequences will be reduced effect distance (due to the
too-small surfels) and possibly higher computation cost (due to the
increased number of surfels). An example is given in Fig. 4.

3.2 Splatting the point cloud onto a framebuffer

We will now describe how to compute the particular shading con-
tribution from the deep framebuffer to a common framebuffer. Dif-
ferent from the commonly used screen space methods which gather

a) b)

Figure 4: The problem with too many triangles per pixel. The
desired surfel size (a, left) is not achieved by our tessellation method
if the initial mesh already is too finely tessellated (b, left). As a
consequence, the effect distance will be less despite the exact same
settings being used (a/b,right). While this poses an inconsistency,
the result still looks similar, just lighter in this case.

from nearby pixels, we use splatting to scatter the shading contri-
bution from a surfel to multiple pixels. While complexity is the
same (number of surfel-pixel interactions compared to the number
of pixel-pixel interactions), this pattern appears to be a “step back”,
as gathering, in particular in regular stencils, is known as the pre-
ferred pattern on modern GPUs. However, no obvious way exists to
enumerate neighbors of a 2D pixel in a 3D surfel cloud without a
costly hierarchy, in particular proportional to world space distance,
such as achieved by our multi-resolution scattering explained next.

To compute the shading, we employ a special framebuffer layout
based on interleaved sampling [Segovia et al. 2006], but using mul-
tiple image levels with multiple interleaved patterns at the same
time. While the system of Segovia et al. [2006] is not competitive
or required on current GPUs anymore when gathering, it is very
useful for splatting, in particular in combination with our extension
to multiple image levels.

We splat into an array texture with lmax layers where each layer
corresponds to a different image resolution level. On image level
l ≥ 0 we partition the pixels of the image into 2l × 2l smaller
“sub-buffers”: For this, we take 2l × 2l neighborhoods of pixels
and randomly assign one pixel to each sub-buffer, taking the same
relative position in the sub-buffer that the neighborhood had in the
original image. Fig. 2 d–f show a possible layout for image levels 0
to 2. Different from MIP maps, the total number of pixels on each
image level is identical. The original pixels are merely distributed
among more and more sub-images as the level number increases. If
we now draw a quad of size n× n on image level l, we will invoke
the fragment shader for a random subset of (at least) n2 pixels in
a 2ln× 2ln neighborhood of the original framebuffer. This allows
us to subsample the effect, balancing precision and effect distance
in different ways at the same computation costs, depending on the
level we choose for splatting. By retaining the whole set of pixels
on all levels, every detail of the scene still has the chance to receive
shading from each surfel, only the probability decreases.

One main goal of our approach is to sample the shading contribution
of a surfel to the framebuffer finely for nearby and coarsely for far-
away geometry. To this end, we compute the shading contribution
to disjunct, increasingly large shells around the surfel’s center (in
world space) on increasing levels of our framebuffer. On each level,
each surfel splats a shell into one of the sub-buffers. A schematic of
this is shown in Fig. 5 while Fig. 2-d–f shows an actual rendering of
the first three framebuffer levels including several shells which have
been splatted.

On the implementation side, we invoke a geometry shader lmax

times for each surfel, emitting a same-sized point primitive at the

Desired sampling Shell level 0 Level 1 Level 2
Shell

Splats

Same size

Same size

0

¼
½

1

Figure 5: To splat with radially decreasing density, we splat multiple
shells - each to a random element of a set of images which have
subsampled with decreasing density. E.g. the innermost shell (shown
in red) affects all pixels within a certain range, while the shell on
level 1 (shown in yellow), which has the same size in the framebuffer,
may cover pixels twice as far away but can only have an effect
on half of them, namely the ones which have been assigned to the
chosen sub-buffer. While each splat only covers a small subset of all
pixels, using a sufficient number of levels, the whole screen can be
covered by the sum of all splats.

position of the surfel’s center relative to the chosen sub-buffer. Note
that, although we consider shells in world space, we can bound them
using small quad-shaped point primitives. The sub-buffer to use is
chosen in a round-robin manner, based on the index of the surfel.
On image level l, the surfel’s radius used in shading computations
is to be scaled by a factor of 2l (so the surfel’s area is multiplied
by 2l · 2l) to compensate for the fact that each pixel can only be
affected by 1/(2l · 2l) of all surfels. In other words, the enlarged
surfel is used as approximation for 2l · 2l original surfels. As there
is no clipping between individual sub-buffers, we later need to check
for every fragment whether it really belongs to its given sub-buffer.

The size of the splat is determined by a function getMaxDist
taking a surfel-struct (encapsulating all the information about a
surfel) and a threshold ε as arguments. Semantically, it should return
the world-space distance from the surfel’s center in which the effect
of the surfel will be smaller than ε. This is similar to the bounds
used in light cuts [Walter et al. 2005], classic radiosity oracles or the
proxy sphere scaling in Sloan et al. [2007]. The screen space size
for the point primitive is then computed based on this distance. The
definition of the function is effect-dependent and may, for example,
take a stored amount of irradiance into account. Sec. 4 discusses the
effect-specific implementations of this function.

The only requirement for our approach to work is that the function
is linear in the surfel’s radius which is naturally the case for the
effects we demonstrate. Note that the size of the surfel splats in
screen space then will be the same for all image levels because with
each level, the surfel’s radius, and therefore also the radius where
its effect is larger than the threshold, increases by a factor of 2l

while the extent of the sub-buffers shrinks accordingly (Fig. 5, right
column). In particular, this means that the maximal distance of the
effect increases by a factor of two in each image level.

The fragment shader is passed the surfel information as well as the
inner and outer radius of the shell associated with each splat. In the
fragment shader, we first look up the world space position and nor-
mal associated with the fragment’s position for the respective image
level. To accelerate this lookup, we shuffle the position and normal
buffers in advance according to the chosen framebuffer layout, so
reads avoid indirection and are spatially coherent [Segovia et al.
2006]. If the world space position is not inside the shell given by the
surfel center and the inner and outer radius, we discard the fragment.
Otherwise, the effect is computed by a function computeEffect
that takes the surfel and the fragment’s position and normal. (Details
are given in Sec. 4.) We enable a suitable blending to sum up the
effect of all splats on each framebuffer pixel. To avoid unnecessary

computations, we can perform view frustum culling of a sphere
around the surfel’s center with the outer radius of the shell in each
geometry shader invocation.

3.3 Reconstructing the final image

After splatting, we have an array texture where different image levels
are still partitioned into sub-buffer grids. “Unshuffling” them will
typically leave us with noisy layers because of subsampling. We blur
each image level with a separated blur in x- and y-direction [Bavoil
et al. 2008]. We use weights similar to the ones for bilateral upsam-
pling [Sloan et al. 2007]. Summing up the layers produces the final
image.

4 Applications

Next, we discuss some shading operations enabled by our approach
and compare them to reference solutions (Fig. 7).

Ambient occlusion The ambient occlusion contribution of a sur-
fel to a pixel (in the computeEffect function) as well as its
influence radius, returned by getMaxDist, are computed using
the point-to-disk form factor [Wallace et al. 1989]. We achieve
quality similar to the ray-tracing reference but at speed similar to
HBAO [Bavoil et al. 2008] (Fig. 7-a). The “shower door” effect
[Meier 1996] is present in screen space ambient occlusion and all
following shading effects, but not when using our approach, as seen
when the camera moves as in the accompanying video. Remaining
artifacts are due to overestimation of occlusions, discretization into
disks and clamping of the distance term.

Directional occlusion Directional occlusion [Ritschel et al.
2009] is an improved occlusion computation to be combined
with image-based lighting [Heidrich and Seidel 1999]. Again,
the point-to-disk form factor is used for computeEffect and
getMaxDist. Instead of just accumulating the result, a lookup
into the pre-convolved environment map is made and the occluded
value is subtracted. This results in colored shadows and directional
occlusion effects (Fig. 7-b). Here, our approach can provide better
quality at higher speed. The improvement in quality is due to the
absence of occlusion problems. The increased performance is ob-
served because the scene requires a large gathering radius that would
result in a large image-space filter.

One-bounce indirect illumination To simulate one bounce of
indirect light, the surfels are additionally shaded in the tessellation
evaluation stage. Again, point-to-disk form factors are used, but
we can now include the shading infomation: A surfel with radius r
and radiosity B ∈ R3 uses r/εmax(Br, Bg, Bb) in getMaxDist.
Note, that this discards surfels which are in shadow automatically.
We can achieve results that improve over SSGI [Ritschel et al. 2009]
in terms of quality, in particular regarding the possible effect dis-
tance, and speed as seen in Fig. 7-c for the reason explained in the
previous paragraph. We also demonstrate specular SSGI (Fig. 7-d),
which would be very difficult to resolve using gathering. Our ap-
proach, as well as all screen space approaches we are aware of, does
not support indirect visibility.

Multiple scattering in translucent materials For subsurface
scattering, we first compute irradiance along with each sample.
Computation of the effect then is done as suggested by Jensen and
Buhler [2002] but replacing the gathering using a hierarchy by our
splatting technique. For simplicity, we chose getMaxDist to be

the same as for diffuse bounces as after fixing the scattering parame-
ters, the maximal distance will only vary depending on the amount of
irradiance and the surfel’s radius. We compare our results to screen
space scattering [Jimenez et al. 2009] in terms of performance and
a solution akin to Jensen and Buhler [2002] where we distributed
2 M points on the objects and evaluated the dipole in respect to each,
for a comparison in terms of quality. We observe quality similar
to Jensen and Buhler which takes several seconds to compute. Our
speed is in the order of milliseconds, as for Jimenez et al. which
cannot capture global details e. g., scattering from light not visible
in the framebuffer (Fig. 7-e).

5 Discussion

Parameters Running time and quality depend on the number of
pixels, the number of surfels, the splat size and the depth complexity
of the framebuffer. The number of splats depends on the chosen
surfel size and scene complexity: scenes with high depth complexity
are more costly but at least the cost for splatting one depth layer is
limited by the constant screen space size of the surfels. To capture
small-scale effects, e. g., occlusion of a floor on the leg of a chair,
we need to choose a sufficiently small surfel size. The size of the
splats depends on the value we choose for our effect-threshold ε (as
well as on surfel properties for some effects). In combination with a
suitable number of image levels, we need to choose ε small enough
for the effect to cover a sufficient distance in screen space. A larger
value for ε in conjunction with a larger number of image levels can
yield the same maximal distance, however the effect will become
less-detailed because of coarser sampling. Our method has three
parameters that on the one hand need to be tuned, but on the other
hand offer fine control over quality vs. speed (Fig. 8).

ε = 0.01, 150msε = 0.1, 40msε = 0.4, 20msε = 0.8, 16ms

2 levels, 12ms 3 levels, 18ms 4 levels, 31ms 5 levels, 40ms

(b)

(a)

Figure 8: Decreasing ε reduces blur and noise while computation
time increases (a). Increasing the number of levels and keeping ε
constant increases computation time and effect distance (b).

Performance Tbl. 1 gives a performance breakdown for Fig. 7
(512× 512, 50 k tris).

Table 1: Computation time for different stages and shading effects.

Stage AO DO GI SSS
Tessellation 1.6 ms 1.6 ms 1.6 ms 1.6 ms
Shuffling 2 ms 2 ms 3 ms 2 ms
Splatting 14 ms 16 ms 44.7 ms 14.6 ms
Unshuffling 1 ms 1 ms 1.2 ms 1 ms
Blurring 3 ms 3 ms 5 ms 2.5 ms
Summing 0.4 ms 0.4 ms 0.5 ms 0.3 ms
Total 22 ms 24 ms 56 ms 22 ms

Algorithmic alternatives Upsampling and blurring are common
operations in interactive global illumination. Either the image is
upsampled from a low resolution, where splatting is efficient, but
details might be lost, or splatting is used, resulting in high quality but
suffering from reduced performance due to overdraw. We compare
our approach to those alternatives in Fig. 9.

42ms
(c) Ours

165ms
(b) Full resolution

47ms
(a) Upsampled

Figure 9: When simply computing the effect in half the resolution
and upsampling it, high frequencies are observed but small details,
such as this window from the Sibenik cathedral mesh, cannot be
recovered (a). Splatting in full resolution (b) looks crisp but is slower.
Our approach (c) balances the two and is fastest.

Limitations Our results share the problem of over-occlusion with
similar approaches [Bunnell 2005; Sloan et al. 2007] which cannot
be removed in an iteration between surfels, as we cannot efficiently
compute interactions between the huge number of surfels themselves.
Therefore, it is unclear how to add multiple bounces.

6 Conclusions and Further Work

We proposed a general technique for indirect shading of dynamic
deforming geometry that overcomes most limitations of screen space
methods, while providing similar efficiency. Our main limitations
are the approximate surfel discretization, the lack of a visibility
operator between surfels and receivers as well as the limitation to
one bounce. In future work, we would like to use our deep screen
space to extend screen space depth of field and motion blur.

Acknowledgements

The Sibenik Cathedral mesh used for Fig. 9 was originally created
by M. Dabrovic. The elephant gallop mesh data used in Fig. 6 and
the supplemental video was made available by Robert Sumner and
Jovan Popovic from the Computer Graphics Group at MIT.

Figure 6: Frames of an animation (800 × 600) showing temporally coherent ambient occlusion (Top, 27 ms) and subsurface scattering
(Bottom, 22 ms).

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proc. HPG, 145–149.

BARK, T., BITTNER, J., AND HAVRAN, V. 2013. Temporally co-
herent adaptive sampling for imperfect shadow maps. Computer
Graphics Forum (Proc. EGSR) 32, 4, 87–96.

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH 2008 talks.

BUNNELL, M. 2005. Dynamic ambient occlusion and indirect
lighting. In GPU Gems 2, M. Pharr, Ed. Addison-Wesley, 223–
33.

CHRISTENSEN, P. H., 2008. Point-based approximate color bleed-
ing.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
reyes image rendering architecture. In ACM SIGGRAPH Com-
puter Graphics, vol. 21, 95–102.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. I3D, 203–31.

HEIDRICH, W., AND SEIDEL, H.-P. 1999. Realistic, hardware-
accelerated shading and lighting. In Proc. SIGGRAPH, 171–78.

JENSEN, H. W., AND BUHLER, J. 2002. A rapid hierarchical ren-
dering technique for translucent materials. In Proc. SIGGRAPH,
576–81.

JIMENEZ, J., SUNDSTEDT, V., AND GUTIERREZ, D. 2009. Screen-
space perceptual rendering of human skin. ACM Trans. Appl.
Percept. 6, 4, 23:1–23:15.

KELLER, A. 1997. Instant radiosity. In Proc. SIGGRAPH, 49–56.

LUEBKE, D. P. 2003. Level of Detail for 3D Graphpics. Morgan
Kaufmann Pub.

MCGUIRE, M. 2010. Ambient occlusion volumes. In Proc. HPG.

MEIER, B. J. 1996. Painterly rendering for animation. In Proc.
SIGGRAPH, 477–484.

MITTRING, M. 2007. Finding next gen: CryEngine 2. In SIG-
GRAPH courses, 97–121.

NICHOLS, G., AND WYMAN, C. 2009. Multiresolution splatting
for indirect illumination. In Proc. I3D, 83–90.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. Surfels: Surface elements as rendering primitives. In Proc.
SIGGRAPH, 335–342.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approxi-
mating dynamic global illumination in image space. In Proc. i3D,
75–82.

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PÉROCHE, B.
2006. Non-interleaved deferred shading of interleaved sample
patterns. In Proc. Graphics Hardware, 53–60.

SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. 1998.
Layered depth images. In Proc. SIGGRAPH, 231–42.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In Proc. I3D, 73–80.

SLOAN, P.-P., GOVINDARAJU, N. K., NOWROUZEZAHRAI, D.,
AND SNYDER, J. 2007. Image-based proxy accumulation for
real-time soft global illumination. In Proc. Pacific Graph., 97–
105.

STAMMINGER, M., AND DRETTAKIS, G. 2001. Interactive sam-
pling and rendering for complex and procedural geometry. In
Proc. Rendering Techniques. 151–62.

TIMONEN, V. 2013. Line-sweep ambient obscurance. In Comp.
Graph. Forum, vol. 32, 97–105.

VARDIS, K., PAPAIOANNOU, G., AND GAITATZES, A. 2013.
Multi-view ambient occlusion with importance sampling. In Proc.
I3D, 111–18.

WALLACE, J. R., ELMQUIST, K. A., AND HAINES, E. A. 1989.
A ray tracing algorithm for progressive radiosity. SIGGRAPH
Comput. Graph. 23, 3, 315–24.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
A scalable approach to illumination. In ACM Trans. Graph. (Proc.
SIGGRAPH), vol. 24, 1098–1107.

WAND, M., FISCHER, M., PETER, I., MEYER AUF DER HEIDE,
F., AND STRASSER, W. 2001. The randomized z-buffer algo-
rithm: Interactive rendering of highly complex scenes. In Proc.
SIGGRAPH, 361–70.

ReferenceDeep screen spaceScreen spaceReferenceDeep screen spaceScreen space

>1s22 ms4 ms

(e
) S
ub
su
rf
ac
e
sc
at
te
rin
g

>1s56 ms51 ms

(d
) G
lo
ss
y
bo
un
ce

>1s50 ms50 ms

(c
) D
iff
us
e
bo
un
ce

>1s24 ms64 ms

(b
) D
ire
ct
io
na
l o
cc
lu
si
on

> 1s22 ms10 ms

(a
) A
m
bi
en
t o
cc
lu
si
on

Figure 7: Ambient occlusion, directional occlusion, GI and scattering for our test scene (512× 512, 50 k tris). Please see the video for an
animated version. The first column is a screen space reference (comparable in speed to ours); the second our result; the third is a reference
(comparable in quality to ours). The rightmost columns show details in the same order. Ambient occlusion (first row) in screen space [Bavoil
et al. 2008] looks plausible, but our approach is much more similar to a reference, producing shadows from triangles invisible in the framebuffer.
Directional occlusion (second row) in screen space [Ritschel et al. 2009] lacks occlusion from objects not present in screen space while our
approach reproduces it. Due to the larger filter size required for classic directional occlusion, our approach can even produce better quality
at higher speed. Diffuse and specular bounces (third and fourth row) in screen space [Ritschel et al. 2009] are usually spatially limited or
become slow. At the same speed, we can produce quality similar to the reference. Subsurface scattering is fast in screen space [Jimenez et al.
2009], but does not reproduce light that is not present in the framebuffer. Our solution is slower, but similar to a reference, computed using 2 M
irradiance samples by the method of Jensen and Buhler [2002], as rendering the scene using path tracing is prohibitive.

