
Animated 3D Creatures from Single-view Video by Skeletal Sketching

Bernhard Reinert∗

MPI Informatik

Tobias Ritschel†

University College London

Hans-Peter Seidel‡

MPI Informatik

Figure 1: Our approach analyzes 2D sketches over some key frames of a 2D video to produce an animated and textured 3D mesh.

ABSTRACT

Extraction of deformable 3D geometry is not accessible to casual
users, as it either requires dedicated hardware or vast manual effort.
Inspired by the recent success of semi-automatic 3D reconstruc-
tion from a single image, we introduce a sketch-based extraction
technique that allows a fast reconstruction of a dynamic articulated
shape from a single video. We model the shape as a union of general-
ized cylinders deformed by an animation of their axes, representing
the “limbs” of the articulated shape. The axes are acquired from
strokes sketched by the user on top of a few key frames. Our method
bypasses the meticulous effort required to establish dense correspon-
dences when applying common structure from motion techniques
for shape reconstruction. Instead, we produce a plausible shape from
the fusion of silhouettes over multiple frames. Reconstruction is
performed at interactive rates, allowing interaction and refinement
until the desired quality is achieved.

Index Terms: I.4.8 [Image processing and Computer Vision]:
Scene Analysis—Tracking, I.4.6 [Image processing and Computer
Vision]: Segmentation—Pixel classification

1 INTRODUCTION

The acquisition of dynamic 3D content requires either dedicated
scanning hardware, such as range sensors [21], multi-camera setups
[30] or large amounts of manual effort [28] often not accessible
to casual users. Simpler means to convert a common monocular
video into an animated and textured 3D surface would provide new
opportunities in display, manipulation and transmission of visual
content.

Multi-view reconstruction, e. g., from a large set of general com-
munity images or videos [36], provides an accessible means for the
reconstruction of static geometry. Existing approaches reconstruct
static models [15, 35] from multiple views using Structure from
Motion (SfM) techniques. Extensions to moving or deformable
objects [2, 7, 14] were proposed, but the challenge to establish reli-
able correspondences between the different views remains difficult.

∗e-mail: breinert@mpi-inf.mpg.de
†e-mail: t.ritschel@cs.ucl.ac.uk
‡e-mail: hpseidel@mpi-inf.mpg.de

While for rigid shapes a single linear transformation suffices, non-
rigid content requires complicated space-time regularizations.

Inspired by a recent user-assisted reconstruction technique [12], in
this paper we develop a sketch-based acquisition approach for the
reconstruction of non-rigid shapes from a single view video. The
premise of our approach is that the animated 3D object can be mod-
eled as a union of deforming generalized cylinders. The approach is
guided by a user sketching a set of “limb strokes” indicating the axis
of a generalized cylinder in a couple of key frames. The core of our
method is to propagate this annotation from key frames to all video
frames. Our method bypasses the meticulous effort required for
specifying dense correspondences used in common SfM techniques.
Instead, “limb strokes” are used to fuse the silhouettes of all video
frames into a consistent, animated 3D shape. Combining different
silhouettes does not only result in animation, but also resolves shape
details that are not revealed in a single frame. The procedure can be
performed at interactive rates, allowing the user to refine the result
until the desired quality is achieved.

The main contributions of this work are therefore:

• Tracking of axis sketches through image sequences
• Consolidation of segmentations over all video frames
• Fitting of 3D generalized cylinders from tracked strokes and

segmentation masks
Our results demonstrate extraction of animated 3D shapes such as
animals in motion from video with applications including cloning,
reposing, novel view synthesis, texture transfer and 3D printing.

2 BACKGROUND

Our system extends the line of work on user-assisted acquisition of
static 3D geometry from a single view to animated 3D geometry
from multiple video frames. In this section we review previous work
on acquisition of static and dynamic geometry, in particular from a
single view as well as important user interfaces such as sketching.

3D reconstruction Reconstructing 3D shape from one or mul-
tiple images has been an important area of research in the past
decades and remains a challenging task. 3D geometry is usually
acquired using special hardware, such as depth sensors [21] or multi-
camera setups [36]. Sufficiently textured rigid scenes can reliably
be acquired using SfM and allow for impressive applications [36]
when large collections of images are available. These algorithms
however only reconstruct 3D information for a sparse set of reliably
tracked features. Using those features in combination with additional



constraints provided by the user, such as symmetry or planarity, high-
quality 3D models can be constructed [35]. If the class of object
is known a-priori, specialized template-based solutions for humans
from many 3D scans [3] or animals [11] have been proposed. All
approaches require user interaction in some way, such as defining
correspondences by clicking [3, 11]. If the video contains a human,
for which templates are available, motion can be captured [38] using
automatic or semi-automatic template fitting allowing to manipulate
images or videos [22]. Our approach goes beyond human shapes,
allowing the user to draw and refine arbitrary skeletons unknown
a-priori.

Reconstruction of animated, non-rigid 3D models without special
hardware remains a challenging problem. Non-rigid SfM is currently
addressed by either assuming that the deformation is a combination
of rigid transformations of basis shapes [7] or basis trajectories [2].
Even if correspondences are given [18] reconstruction is typically
limited to moderately deforming, sphere like objects and requires
long computation time, defying interactive use.

Multi-view 3D reconstruction For multiple views, skeletons and
template models sophisticated systems exist that estimate both skele-
tons and shape simultaneously [17]. In contrast to such approaches,
we do not rely on any a-priori known model or an explicit understand-
ing of the underlying skeletal structure of the creature. Additionally
our algorithm allows for a rich set of deformations, exceeding those
of other tracking approaches. While other tracking approaches
deform each bone by a single rigid transformation, our limbs com-
monly aggregate several biological bones allowing for piecewise
rigid but also non-rigid motions. This enables tracking of limbs
that are otherwise hard to track using a single bone, such as the tail
and body of a cheetah or the neck of a giraffe, and abstracts model
complexity away. Our system solely relies on the input video in
combination with user-defined strokes enabling 3D reconstruction
even for creatures with unknown or no skeleton at all. All video
sequences used in this paper are taken from online video platforms
and do not require any calibration steps beforehand, rendering the
system useful also for casual users within the assumptions of our
paper.

Single-view 3D reconstruction Creating a 3D model from a
single image is an even more challenging task, often addressed using
semi-automatic approaches. Research of human perception has
found, that the occluding contour/silhouette is a strong cue for the
inference of a full shape from its 2D projection [26]. Most systems
require the user to interactively segment the object in question unless
it has been imaged in front of a simple background.

Sketching The first system to create 3D surfaces from sketches
was proposed by Zeleznik et al. [40]. Later, the “Teddy” system [20]
introduced intuitive modelling of free-form 3D surfaces from simple
sketches. The SmoothSketch system [25] allows the user to draw
the silhouette, from which a smooth surface is created similar to
the creation of silhouettes from photos [31]. As many real-world
objects can be approximated using simple geometric primitives
as proxies, like cuboids [41] or generalized cylinders [12] some
recent systems snap the user sketches directly to a reference photo
with interactive feedback. Modelling objects by sweeping a profile
along the main axis e. g., a generalized cylinder has been used as
an intuitive modelling metaphor for many objects [13]. If template
models are available contour sketches can customize a deformable
model [27]. Our approach combines skeleton and surface estimation
in a single interaction metaphor and runs at interactive rates for
natural image input of detailed natural animated surfaces.

Animation reconstruction The idea to sketch motion is inspired
by the observation, that recognizing motion of a human, an animal,

or even an unknown object by a set of moving points is an easy
task [24] for a human. Bregler et al. [8] capture key frame motion
from cartoon characters and transfer it to 3D character key frames.
Favreau et al. use segmentation on videos to extract a small set of
key frames that represent the principal components animal gait [16].
While their approach allows transferring motion to 3D models, they
do not reconstruct the 3D shape. Automatic and semi-automatic
creation of animation from examples [4] or annotations [5] has been
proposed, but requires a known geometry and skeletal animation
hierarchy. Xu et al. [39] have reconstructed animal motion from a
single or low number of images that show multiple animated poses of
a walk cycle, but their reconstructions are only two-dimensional and
require manual segmentation. Reconstructing motion from simple
sketches has received less attention than static geometry.

Our approach can in many cases reproduce the complicated gait
pattern of an entire limb in an animal walk cycle from a single
stroke, including occlusion handling. Our work builds upon user-
guided segmentation [1] of animated objects in video, but to the end
of reconstruction an animated 3D shape. Optical flow [9, 33, 37]
establishes correspondences over time and solves a task similar to
our stroke tracking automatically. We build a global motion model
from strokes on the fly allowing the user to inspect the resulting 3D
shape quality and refine the input. Our comparisons show that this
allows for better tracking than off-the-shelf optical flow methods.

3 FROM SKELETAL SKETCHES TO ANIMATED SHAPES

3.1 Overview

Input to our method is an arbitrary video sequence depicting a
moving creature and a set of strokes that the user draws on top of a
sparse set of key frames. Each stroke is drawn alongside one body
part of this creature, representing a deforming “limb” potentially
connected to other limbs. The user is free to draw as many strokes
as she wants but typically each non-branching body part can be
drawn in a single stroke. Every stroke is associated with a label
and the user is required to draw consistently labelled strokes in all
key frames. Our limb strokes are conceptual and do not necessarily
have a biological meaning: As long as a creature’s body part can be
represented by a single generalized cylinder, i. e., without a branch,
it can be drawn with a single stroke. We assume that the limbs
observed in all frames deform but exhibit the same connectivity,
although not all limb strokes are necessarily entirely observable in
all frames. We shall show this rather simple user input suffices to
enable the reconstruction of an animated mesh.

The four main components of our approach are stroke tracking,
segmentation, cylinder fitting as well as texturing (Fig. 2). A simple
user interface (Sec. 3.2) provides the necessary input.

Stroke tracking

Input video & strokes Texturing

Segmentation Cylinder �tting

Output result

Figure 2: System overview.

Stroke tracking turns the temporally sparse limb strokes defined
in a few key frames into temporally dense, coherent strokes for all
frames. refSecStrokeTracking describes tracking of strokes that



form a skeleton over a video sequence. We exploit the connectivity
and spatio-temporal structure to track complicated structures such
as limbs with occlusion and pose changes over long frame ranges,
such that for unoccluded parts often a single stroke is sufficient to
be tracked over a typical sequence.

Segmentation uses the temporally densified strokes from track-
ing and the video to consistently segment foreground from back-
ground in all video frames, described in Sec. 3.6. Again, we exploit
the space-time structure of the 2D strokes to simplify the problem
and make a consistent segmentation over many video frames from
sparse input.

Cylinder fitting uses the foreground segmentation in all video
frames to fit animated 3D cylinder geometry around each limb stroke.
Sec. 3.7 explains how to use marching in 2D masks to implement a
voting scheme to robustly find cylinder radii and 3D paths.

Texturing finally utilizes the segmentation and video frames to
assign texture colors to the animated 3D cylinders (Sec. 3.8).

3.2 User interface

The main user interface elements are the limb strokes suggesting the
2D projection of a non-branching, generalized cylinder-like shape
part. Identical limb stroke labels are identified in different frames by
the same stroke color. Not all limb strokes need to be drawn in all
key frames but the user is required to draw the full skeleton in the
first one. The results of the stroke tracking step (Sec. 3.5) are used
to complete and display the missing strokes in subsequent frames.
The user can review the tracking results at any time using a time
slider and insert a new key frame correcting only the inaccurately
tracked strokes. Once the user has drawn a stroke in one key frame,
for subsequent stroke sketches we display a circle with the maximal
limb length found (Fig. 4, limb length hint) to facilitate sketching of
consistent stroke lengths, particularly of (partially) occluded limbs.
Each limb stroke comes with a direction state that determines if the
stroke points towards or away from the viewer which can be altered
with a click and is detailed in Sec. 3.4 and Sec. 3.7.2.

Time slider

Limb selecon
Limb direcon

Frame rangeKey frame

Limb stroke
Limb length hint

Figure 4: User interface (Please see text).

3.3 Preprocessing

Initially, the video sequence is resampled to a fixed resolution of
512×512 pixels for all steps to speed up the subsequent computa-
tions and allow identical parameter settings for all video sequences.
Cylinder fitting (Sec. 3.7) operates on a filtered variant of the scaled
video to facilitate video segmentation: a five-times-repeated bilateral
filter with a spatial radius of 10 pixels and a range radius of 0.02 (cf.
Fig. 5, a).

3.4 Stroke processing

Strokes are sequences of vertices defined at 2D image locations.
Each stroke of label l ∈ N+ drawn by the user in frame f ∈ N+

initially may consist of a varying number of vertices, defined by a
set X̂ l, f = {x̂l, f

1 , x̂l, f
2 , . . .} with x̂l, f

i ∈ R2. As our subsequent steps
require consistent vertex counts in all key frames, the strokes need
to be resampled with an approximately equal inter-vertex distance
along the original stroke. To this end we employ a linear resampling
per label l with a vertex count nl ∈ N+ depending on the maximum
stroke length in all frames. A vertex sequence is resampled to a set
X l, f = {xl, f

1 ,xl, f
2 , . . . ,xl, f

nl ∈ R2} such that dX̂ l, f (xi,xi+1) ≈ c,∀i ∈
[1,nl −1] with dX̂ l, f as the length along stroke X̂ l, f . Stroke tracking
(Sec. 3.5) uses an approximate inter-vertex distance of c = 10 pixels
while segmentation (Sec. 3.6) and cylinder fitting (Sec. 3.7) operate
on vertices of approximately c = 1 pixel distance. Ideally stroke
resampling should take texture features into account; due to limb
deformations and occlusions matching those features however is not
feasible in this step.

As we require all limb strokes to be connected to other limb strokes,
they share common start- and/or end vertices, resulting in a connec-
tion graph of strokes. We arbitrarily define the first vertex of the first
limb stroke to be the root vertex, turning the connection graph into a
connection tree.

We use a simple, heuristic symmetry detection on the strokes drawn
by the user to bootstrap some of the subsequent steps. Two limb
strokes drawn in the same key frame that share a connecting stroke
vertex are defined to be symmetric if their stroke lengths differ by
less than 10% and if the y-coordinates of their outer stroke vertex
differ by less than 30 pixels. The limb associated with the stroke of
higher label number is heuristically chosen to be the outside limb,
further away from the viewer than the inside one. This decision can
be flipped for both limbs using the limb direction buttons of the user
interface.

3.5 Stroke tracking

Input are temporally sparse 2D strokes in some key frames. Output
are dense “space-time strokes”, i. e., 2D image locations for every
limb stroke vertex in every frame. Space-time strokes are tracked
on the range between key frames forward and backward indepen-
dently (cf. Fig. 4). This potentially contradicting information of two
overlapping ranges for each point in time is combined in a blending
step.

Without loss of generality, we will next describe the forward track-
ing of all stroke vertices for one range. Starting from a key frame
k (Fig. 3, a) every frame in the range is tracked sequentially. The
current frame is denoted by f whereas the previous frame in forward
or backward tracking direction is indexed by f ±1. For every frame
f , new candidate positions x f ,l for every vertex of every stroke l are
generated and combined into stroke candidates X f ,l . For each of the
stroke candidates we compute a unary cost u(x) : R2 → R encod-
ing appearance constancy and a binary cost b(x,y) : R2×R2→ R
encoding kinematic constraints between neighboring vertices of a
stroke. Hence we can compute the cost of a candidate stroke X l, f

as

c(X l, f
) =

nl

∑
i=1

u(xl, f
i )+λ

nl−1

∑
i=1

b(xl, f
i ,xl, f

i+1) (1)

where λ ∈ R constitutes a relative weight between unary and binary
terms. Finally the best sequence of candidates that globally mini-
mizes Eq. 1 is selected. We will detail every step in the following.



St
ro

ke
s 

fr
am

e 
t

Ca
nd

id
at

es
 t±

1

St
ro

ke
s 

fr
am

e 
t±

1

U
na

ry
 a

nd
 b

in
ar

y 
co

st
s 

t±
1

Cu
t ±

1

a) b) c) d) e)

N
on

-o
cc

lu
de

d 
ca

nd
id

at
e

O
cc

lu
de

d 
ca

nd
id

at
e

Figure 3: Stroke tracking of a stroke from frame t to t ±1: The solution of frame t initializes candidates for frame t ±1 (a and b). Non-occluded (circles) and
occluded (squares) candidates are generated for frame t ±1 (b and c). Costs are visualized as grey values on candidates and on edges for an abstract stroke
domain (b - d). The path with lowest cumulative cost is found (d) and yields the solution for frame t ±1 (e). Note that, although being unoccluded, the green
marker is chosen from the set of occluded candidates as all non-occluded candidates lead to higher costs.

Candidate generation Candidate vertex positions xl, f for the
current frame are generated in a small window around the vertex
position xl, f±1 of the previous frame (Fig. 3, b). Two types of
candidates are produced: Occluded and non-occluded ones. Non-
occluded candidates are placed for every pixel in a search window
of 64×64 pixels around the vertex position of the previous frame.
Additionally, 100 occluded candidate vertex position are placed on
a regular grid in the identical search window, allowing occluded
and non-occluded candidates to potentially use the same position.
Non-occluded candidates that fall outside of the image are removed,
whereas occluded candidates are allowed to fall outside the image,
enabling tracking of strokes partially outside of the image. Each
candidate stores its occlusion type for later stages.

Unary cost The unary cost (cf. Eq. 1) models appearance con-
sistency between frames (filled circles and squares in Fig. 3). To
this end, we compare a neighborhood patch N of size 32×32 pixels
around each non-occluded candidate position to a patch of the same
size around the vertex position in previous frames using a sum of
squared pixel color distances (SSD), i. e.,

u(x) = min
T∈T×i∈[1,3]

∑
o∈N

‖a f±i(T (x+o))−a f (x+o)‖2
2,

where a f (x) gives the pixel values at position x in frame f , T ∈ T is
single transformation of a set of transformations T and i is a frame
distance detailed below. SSD is used instead of normalized cross
correlation (NCC) as the differences in appearance are small between
frames and mainly due to deformations rather than illumination
changes. Further SSD can be trivially parallelized whereas NCC
requires additional computations.

In particular, we consider variants in template and orientation when
taking this difference, defined as a set of rigid transformations T.
First, the difference to the patch around the three last non-occluded
vertex positions is enumerated. Second, we allow for a 10 degrees
positive or negative rotation in seven steps. The unary cost of the
candidate is then the minimal difference over all 21 possible vari-
ants. These rigid transformations are applied per vertex and their
combination allows for a wide variety of non-linear deformations.

Occluded candidates do not have an apparent unary cost as the ap-
pearance constancy for occlusions cannot be evaluated directly from
the video frames. In order to select an occluded candidate the unary
cost should reflect a certain occlusion penalty cost that allows these
candidates to be chosen over non-occluded ones that match poorly.
To this end we assign a unary cost of 150% of the previous best
non-occluded matching cost to each occluded candidate. Combining
occlusion states with template comparison makes the system robust
against occlusions, that occur frequently e. g., on legs, and offers a
solution to the well-known “template update”-problem [29].

Binary cost The binary cost (cf. Eq. 1) consists of two compo-
nents: distance and direction preservation (lines in Fig. 3, b – d),
defined as

b(x,y) = φ(x,y)+θ(x,y).

Distance preservation measures the change in length for each can-
didate pair relative to the original distance in the key frame as
φ(x,y) =

∣∣‖x−y‖2 −‖xk −yk‖2
∣∣ with xk,yk as the respective ver-

tex position in key frame k. It encodes topology and isometry
knowledge put into the system through user interaction and adds
user-given semantics not available, e. g., to optical flow. Orienta-
tion preservation measures the change in orientation and distance
of each candidate pair from the current to the previous frame as
θ(x,y) =

∥∥(x−y)− (x f±1 −y f±1)
∥∥

2 where x f±1,y f±1 are the re-
spective vertex positions of the previous frame. It encodes velocity
constraints and enforces smooth movements but also penalizes large
distance changes between frames.

Candidate selection Candidate selection chooses one candidate
out of the occluded and non-occluded candidates for every stroke
vertex that globally minimizes the cumulative unary and binary costs
of Eq. 1, i. e., it computes Xl, f = argmin

Xl, f ∈C
c(Xl, f

) where C is
the set of all possible stroke candidates. Ideally all combinations
of all candidate positions should be evaluated but the sheer amount
of candidates makes the optimization prohibitively expensive as the
complexity is quadratic in the number of candidates. To enable an
efficient optimization we prune the non-occluded candidates down
to a count of five constituting the dominant minima of the unary
costs. We found that although being an approximation this pruning
strategy does not noticeably degrade our result. As distance and
direction preservation pose important constraints on our optimization
we weight them with a factor of 10 relative to the unary and binary
distance cost, i. e., λ = 10. The optimized result for each frame
becomes the initial result governing the candidate generation of
the next frame (Fig. 3, d). Globally optimizing a one-dimensional
sequence of labels with unary and binary costs can efficiently be
solved using dynamic programming as done e. g., by Buchanan et al.
[10]. In contrast to their approach that regularizes feature tracks over
time, we employ dynamic programming to regularize in space, i. e.,
along our strokes.

In general we do not only want to select candidates for a single
stroke but for all strokes of the connection tree in a single frame
at once. Without loss of generality we can employ the connection
tree to run a global candidate selection on all strokes simultaneously
starting from the tree’s leaf vertices up to the root vertex to get the
globally optimal candidate choice.

We apply special treatment to those vertices that are likely to be
occluded by other parts. Symmetric limbs flagged to be further away
from the viewer (Sec. 3.4) are presumably (partially) occluded by



their symmetric counterpart in many frames. Hence our optimiza-
tion is allowed to only choose from occluded candidates for stroke
vertices of these strokes that are closer than 20 pixels away from any
other stroke vertex. In some cases these limbs can however be fully
occluded in all frames and for such we add the vertex position offsets
of the symmetric inward facing limb also to the vertex positions of
the outward limb.

The spatial connections of the stroke vertices form a Markov chain.
Including temporal connections to other frames could allow for
global optimization in both spatial and temporal direction resulting
in a Markov random field model. As stroke tracking is based on a
cost depending not only on the last but all previous frames up to
the last key frame candidate selection would become prohibitively
expensive. Taking into account all previous frames leads to an
excessive number of temporal connections between frames making
an optimization of our non-submodular costs too expensive to be
optimized with interactive performance.

Blending After all ranges have been tracked, they need to be
combined into one consistent sequence. This happens for all forward-
backward pairs of ranges between two key frames in isolation. Input
to this step are two ranges that overlap in some frames, one from
the forward and one backward in time. Output is a single, consis-
tent track. To preserve motion and intrinsic distances, we blend
the orientations of each limb stroke segment relative to its parent
using spherical linear interpolation (SLERP) [34] with a linear in-
terpolation of the root vertex position. The weight given to a range
at each vertex at each point in time decreases with distance to the
respective key frame. An alternative way of blending between the
two frame ranges could incorporate texture information, i. e., using
the unary costs of Eq. 1. However, the resulting weights would not
necessarily be smooth over time and could lead to noticeable jumps
in the motion. Computing matching-based weights in a temporally
smooth way remains future work.

3.6 Segmentation

As now all strokes are known in all frames, we next segment the
foreground of the filtered input video and, in a second step, label the
foreground such that every pixel belongs to exactly one stroke.

Foreground segmentation We employ cost-volume filtering [32]
using the previously generated space-time strokes as input. To this
end we build two (soft) foreground RGB histogram with 503 bins
(Fig. 5, b): one of all pixel colors of the stroke vertices in all frames
of the filtered video (colored strokes in Fig. 5, a) and one build
from a set of background vertices in all frames (white stroke in
Fig. 5, a). The background stroke is found as vertices of a slightly
offset bounding box of the limb strokes. Softness is achieved using
a Gaussian blur with a σ of 2. The cost volume is blurred (we
typically use 2× 2 pixels for our resampled video) in space and
a binary foreground mask (Fig. 5, c) is extracted with a threshold
at 0.75. We use this slightly higher threshold to allow for larger
segmentations that can later be consolidated by the cylinder fitting
step. To improve segmentation stability for tracking errors, the last
20 % of the stroke vertices on each terminal limb stroke are skipped.
A terminal limb stroke is a stroke with no further child strokes in
the connection tree. This helps, as such strokes are susceptible to be
drawn too long or are occluded near the ground, e. g., by the grass in
Fig. 1 or can be difficult to segment due to contact shadows. As the
user is required to draw the full skeleton in the first key frame the
initial histograms resemble a valid color distribution of the object.
Additional segmentation results can be found in the supplemental
material.

Stroke segmentation Each pixel of the foreground segmentation
does not belong to all limbs and drawing radius samples from this
segmentation directly prevalently leads to overestimation. Hence in a
second step the foreground is partitioned such that every foreground
pixel belongs to exactly one stroke. This second segmentation step is
done independently in all frames. For every stroke vertex we march
the image orthogonal to the stroke until we leave the foreground
mask or the image. For every pixel visited during the walk we
keep a reference to the closest stroke and draw a line from the
stroke to the radius sample with a depth value corresponding to
this distance (Fig. 5, d). This can be done efficiently on a GPU
using splatting of sufficiently thickened stroke IDs and z-buffering
of distances. Note that this is slightly different from a generalized
Voronoi decomposition of the skeleton in terms of Voronoi sites, as
distances are computed strictly orthogonal to the limb strokes, the
marching direction of the cylinders.

Soften

Soften

Foreground histogram

Co
st

 V
ol

um
e 

Fi
lte

rin
g

Background histogram

a)

d) c)

b)

Figure 5: Segmentation(Please see text).

3.7 Cylinder fitting

Cylinder fitting takes as input the dense 2D space-time strokes as
well as the stroke segmentation. Output is one deforming general-
ized 3D cylinder for each limb stroke represented as a 1D table of 3D
positions (the path function), as well as a 2D table of radii for every
direction at all stroke positions (the radius function). The radius
function (Sec. 3.7.1) and 3D direction (Sec. 3.7.2) are found indepen-
dently (Fig. 6). Finding the correct radius in a single frame can fail
due to self-occlusions, especially in the vicinity of limb joints, and
segmentation errors. Hence, consolidation of segmentation results
of all frames is used to compute consistent radii.

Time

St
ro

ke
 v

er
tic

es

Radius Cum. radius probability

Radii

a) b) c)

Figure 6: Cylinder fitting: For every stroke vertex (circle) in each frame or-
thogonal marching finds the closest background pixel which is then counted
as a vote for a radius (blue line). Each frame produces a different radius vote
over time, here shown as a radius function of each stroke vertex. Taking a
robust minimum finds the effective radius for every stroke vertex, producing
a radius function along the stroke (thick blue vertical line). In practice, two
radius functions are computed for each vertex (only shown for one vertex).

3.7.1 Radius fitting

To account for uncarefully drawn terminal limbs of creatures, such
as legs or heads, we initially extend every stroke along its start



and end direction in 2D by an additional 10 % before all further
processing. This approach potentially creates samples outside of
the segmentation, but the final validation step eliminates invalid
samples.

Next, the radius function at every vertex is found independently
(Fig. 6, a and b) before combining them into consistent radius sam-
ples along the stroke (Fig. 6, c). We will now describe this procedure
for a single vertex. In the work of Chen et al. [12] the user has to
specify the radii explicitly; in contrast our method automatically
combines segmentation results of all video frames to fit consoli-
dated radii. While our approach could benefit from explicitly drawn
radii it would make the interface more complicated and especially
at limb joints specifying the correct radius is fairly difficult and re-
quires careful drawing. Hence, correcting false radii using additional
strokes remains future work.

Marching The full radius function is computed from a radius
sample pair: One radius in the normal direction of the limb stroke
and one in the opposite one. In a second step, these many sample
pairs are converted into a full 360-degree radius function. We will
describe this procedure for the radius samples drawn from the normal
direction without loss of generality, both are performed equally.

Starting from a stroke vertex position we march orthogonal to the
stroke direction [12] until we reach a pixel not belonging to the
foreground. Each such walk results in a vote for a radius. If on the
way we encounter a part belonging to a different stroke we reject this
sample. Additionally radius samples at image boundaries or smaller
than a threshold of 3 pixels are rejected. Drawing radii in all frames
results in a distribution of different 2D radii votes: one, potentially
rejected, vote per frame. To obtain a robust radius estimation for
every vertex from this distribution, we use the robust 25 %-percentile
of the accepted radius samples for the vertex itself, its four neighbor
vertices along the stroke and vertices of the symmetric limb, if
applicable. Percentiles help to resolve false radius samples due to
overlapping limbs or erroneous segmentation. If too many radius
samples are rejected per vertex (more than 90%), we flag the radius
as being invalid. This happens if a limb stroke is stuck inside the
body of a creature or if segmentation permanently fails. Assigning a
radius for these vertices is left to filtering and in-painting along the
stroke.

Robust radius over time Radius blurred along stroke Validation

a) b) c)

Figure 7: Estimating the radius pair at every stroke vertex can be noisy
and has errors such as at the ends, which are not part of the limb strokes,
but added automatically (white part). Smoothing is used to reduce noise.
Outliers are detected and in-painted along the stroke. Finally, the radius
function is fit to the mask in one reference frame to refine the shape, in
particular at the end.

Filtering and in-painting Next, invalid radius samples are in-
painted from nearby valid ones. Also, the radius function is slightly
blurred with a σ of 10 % of the total stroke length accounting for
the noisy percentile segmentation along the stroke (Fig. 7, middle).

Capping All cylinder ends that are connections between limbs
are capped, i. e., the radii at the start and end are blended to 0 in an
interval of 20 samples around the ends.

Validation In-painting, blurring and capping modifies the radius
samples, resulting in cylinders that potentially fall outside of the
segmentation. Also the robust percentile is prone to a slight overesti-
mation of the correct radius. However, we can be more sure about
radii in the key frames. Therefore, we iterate over all key frame
foreground masks, and make sure no vertex falls outside this mask
in any key frame (Fig. 7, right).

3
26

9

66
4

a) b) c) d)

6

Figure 8: Ellipse fitting.

Densification Finally, the radius
pair is converted into a dense radius
sample function for all directions at
every stroke vertex by fitting an el-
lipse (Fig. 8, a). Simply using the
average of the normal and counter-
normal radii (pink and blue) for both,
major and minor ellipse radius (green
and red), yields a circular cross-section (Fig. 8, b). For many shapes
such as an animal torso, where the spine is located rather at border
of the cylinders, a compressed ellipse provides a better shape ap-
proximation. Thus, we multiply the minor ellipse radius with the
ratio of the smaller of the two normal radii divided by the larger one
(Fig. 8, c). As this leads to flat cross sections in case of close to zero
minimum normal radii, we average both strategies to obtain our final
minor ellipse radius: half the average and half the ratio (Fig. 8, d).

3.7.2 Path fitting

Frame 1

Frame

Screen plane

Screen plane

G
eo

de
si

c 
le

ng
th

2 3 41
2D

3D

Frame 2 Frame 3 Frame 4

Figure 9: The length of each stroke in image space varies, for strokes that
change 3D direction such as the tail. To the right we plot the geodesic length
for all four frames. We use this information to add 3D out-of-plane rotation
of strokes to the 2D shape (Bottom).

The x- and y-coordinate of the generalized cylinder path function
result from the stroke tracking step (Sec. 3.5). Assuming approx-
imately constant object-to-camera distance throughout the entire
video sequence these coordinates immediately constitute the x- and
y-coordinates for each stroke vertex. The missing z-component
is found using the kinematic information as follows (cf. Fig. 9):
We detect limb strokes that leave the image plane with the aid of
their projected lengths. A limb stroke with a substantially shorter
projected length (50 % of its maximum length) likely has rotated
outwards of the image plane. For such frames we use inverse per-
spective of known 3D length to compute its out-of-plane rotation.
To obtain the final z-values we use a polynomial of degree two that
interpolates the start position as well as its gradient and exhibits
the correct 3D length. To determine if we have an increasing or
decreasing z-component we use the user-defined limb direction flag.
A temporal smoothness assumption allows propagating this flag
from the sparse set of key frames to all frames: When a limb moves
smoothly from an in-plane direction to an out-of plane direction
facing the viewer, it is assumed to continue facing the viewer. Fi-
nally limbs that are found to be symmetric get a z-offset depending
on their thickness. For this we calculate the average thickness of
the lower 50 % of the limbs and use this offset with a factor of 4 to
move the limbs in positive resp. negative z-direction. The previously
mentioned limb direction decides on the sign of this offset. This
reliably offsets the limbs of animals at hip- or shoulder-type joints
and appears a suitable heuristic for the animals used in this paper.



3.8 Texturing

Texturing uses the generalized cylinders as well the video sequence.
It outputs a cylindrical texture for each limb cylinder. Blending
textures from different frames has shown to be counter-productive
due to slight but apparent shading and deformation changes. Hence,
we chose a single frame of the video to obtain the texture for all
limbs. We heuristically always pick the first key frame as it contains
all limbs by construction. To obtain the texture for each cylinder we
project the cylinders vertices into the video frame and calculate a
binary reliability. Unreliable pixels are those that fall outside of the
foreground segmentation, pixels at grazing angles of the cylinders,
and pixels marked as being occluded. These unreliable pixels are
filled with the closest reliable pixels using push-pull in-painting
[19]. To allow for wrap-around of the in-painting it is performed
on an unwrapped cylinder that respects a toroidal parametrization.
Occluded limbs use the texture of their symmetric, non-occluded
counterpart for texturing. Texturing uses frames from the original
video in full resolution to produce textures with maximum detail.

3.9 Implementation

To ensure interactive performance, most steps are implemented
using parallel graphics hardware. Candidate selection of the stroke
tracking governs the complexity of our algorithm with a running
time of 20 to 400 ms per frame depending on the skeleton complexity.
All other steps can be parallelized over all stroke vertices and strokes
in all frames resulting in a running time of less than 5 ms. The initial
tracking of a typical skeleton in a video sequence of 64 frames can
be processed in 20 30 seconds, whereas the number of frames to
be tracked decreases for subsequent key frames. Each video was
processed in under 5 minutes. The resulting mesh can be rendered
and animated at several hundred frames per second.

4 RESULTS

We report qualitative results in form of 3D mesh animations from
videos that allow for certain applications as well as quantitative
results in terms of a user study, measurement of reconstruction error
for synthetic scenes and a comparison to previous work. On average
4.39% of all strokes in all frames were drawn to reconstruct the
sequences; further stroke statistics can be found in the supplemental
material.

Figure 10: Cloning of creatures (Fig. 1, Fig. 14) in new views and new
poses.

a) b) c) d)

Figure 11: Transfer of a texture from frame a) to frame b). Please note the
occlusion handling. c,d) Transfers of entirely different textures.

Qualitative results Our primary results are 3D mesh animations
from skeleton sketches (Fig. 14). This allows for typical applications
such as cloning (Fig. 10), texture transfer (Fig. 11) and re-posing
(Fig. 12). Our output meshes allow to be fed directly to 3D printers
such as the MakerBot Replicator 2 (Fig. 13). While the quality of
our animated meshes does not meet high-quality production needs,

a) b) c) d)

Figure 12: a) Original frame. b,c,d) Posed results using the shown colored
strokes. Please not the Kangaroo’s tail in c) leaving the image plane as it
was drawn shorter.

Figure 13: 3D printing results for the models of Fig. 1 and Fig. 15.

we think that they suffice for most casual applications. To obtain
high-quality meshes our results can be used as an initial solution for
further automatic and manual mesh processing, offering a valuable
source for which the vast efforts of tracking as well as shape fitting
have already been carried out and only small corrections and shape
details need to be added. The mesthod of Ji et al. [23] or Borosan et
al. [6]. Our parametrization is flexible enough to propagate changes
on the mesh in one frame to all other frames immediately.

Reconstruction error We rendered animated 3D meshes of a
camel and a horse into a video (Fig. 15), painted strokes on it, let
the system reconstruct the 3D mesh animation and compared the
result to the input in terms of time-averaged intersection-over-union
(IoU) in 2D with a resolution of 1150× 1000 and in 3D using a
voxelization of size 643. The 2D-IoU and 3D-IoU are 63.53% and
85.85% for the horse as well as 58.31% and 83.95% for the camel,
respectively. Additionally we visualized the accumulated error for
every vertex of the reconstructed mesh by averaging the distance
transform of the rasterization for the 2D and the voxelization for the
3D case. It can be seen that the 2D error is relatively low except for
one part of the camel where the radius was wrongly estimated due
to consistent segmentation errors and at the occluded limbs due to
imperfect tracking. The 3D error at all limbs is relatively high due to
our limb z-offset-heuristic. We found the resulting 3D object to be
very similar to the input mesh, even in new views. Some geometric
details such as the ears of the camel or the animals’ feet details could
not be reproduced, as they constitute geometry outside the scope of
generalized cylinders.

Reconst. 3D Error 2D Error3D

0 5 0 20

83.95%58.31%

85.85%63.53%

voxel pixel

Figure 15: We rendered an animated 3D mesh of a horse (top) and a camel
(bottom) to a video, reconstructed the 3D mesh with our system (middle)
and compared the outcome to the input using different metrics (right).

User study To evaluate the usefulness of our system we asked
nine novice users with previous experience in computer graphics and
media production on different levels to use our system and reproduce
the results of the first sequence in Fig. 14. After a short introduction
to the system using the sequence in Fig. 1 the users had at most five



Figure 14: Results for different video sequences (rows) and their key frame strokes (colored strokes). We always show the animated 3D surface at the frame of
the video from one view that is similar to the video and from a different one. Note, how the video footage has compression artifacts and low resolution as it is
downloaded from community video collections. The total sketching time for such input is below 5 minutes.

minutes to reconstruct the sequence, but most users were satisfied
before (3:43 minutes on average). The users used on average 9.5
strokes to reconstruct the sequence which is in agreement to the
stroke count used by the authors. We would argue it does not need a
formal control group to see that without substantial training users
are not capable to produce models of this quality using any available
modelling and animation software such as Blender. Users were able
to produce animations of a quality similar to the animation produced
by the authors, indicating the system can be used by non-experts.

Comparison Our stroke tracking approach relies on appearance
and regularization terms commonly used in extensively-investigated
optical flow methods. An interesting question could be if methods
designed to solve a much more general problem already suffice to
solve the tracking problem at hand. To this end, we compared our
limb stroke tracking method on a running cheetah sequence of 20
frames to state-of-the-art optical flow methods: SimpleFlow [37],
Brox et al. [9], TVL1 [33] and a ground truth for which all strokes
were painted manually for all frames. While the construction of a
self-made reference could be considered unfair the supplemental
video shows that it likely matches what is expected to happen in this
scene. We optimized the parameters for each method by hand and
only report the best results obtained. The strokes are tracked back
and forth starting from the same single key frame for all methods.
We use the optical flow offset vectors to track the strokes by accu-
mulating them for every vertex position in every frame. As optical
flow does not produce offset vectors for occlusions, only strokes that
were completely visible in all frames are used for tracking. An error
measure is computed as the sum of absolute distances to the ground
truth vertex positions. The accumulated error over all frames is 77.5
for Tao et al., 21.4 for Brox et al.,12.6 for Sanchez Perez et al., and
0.189 for our approach. Optical flow works well for many vertices
in many frames, but the sheer number of vertices and frames will
quickly result in a disintegrating skeleton. We believe that the main

reason for the limited performance of the investigated optical flow
methods is the accumulation of small matching errors. As these
methods only compute optical flow between neighboring frames this
error accumulates rapidly over longer frame ranges. One way to
overcome this issue could be to compute optical flow not only be-
tween neighboring frames but over longer frame ranges. In practice
however it is unclear how to choose these ranges to stabilize the
tracking on the one hand and allow for limb deformations on the
other hand. Optical flow could be used as a prior in our stroke track-
ing algorithm but would require additional, expensive preprocessing
steps and hence remains future work. We conclude that optical flow,
which successfully performs a much more general task, might not
be the best tool for solving the skeletal correspondence challenge
we addressed using our user interface. Additionally our algorithm
allows for interactive performance while the optical flow methods
employed use up seconds to minutes to finish per frame.

a) User input b) Ground truth c) Our

d) SimpleFlow e) Brox f) TVL1

0.1890

77.555 21.453 12.651

Figure 16: Stroke tracking using different approaches.

5 LIMITATIONS AND CONCLUSION

Our system is putting the user in the loop to solve an otherwise heav-
ily under-constrained and hard vision problem. We apply several
assumptions that might not hold for certain inputs. Stroke tracking



fails if there are not enough features to be tracked on the object or in
the presence of severe occlusions. Occluded parts can be mistaken
to be non-occluded, in which case tracking starts using erroneous
templates for matching. The regularization terms in Eq. 1 however
lead to graceful failures that can be resolved by additional user
interaction. Next, segmentation fails if the fore- and background his-
tograms are too similar and salient edges separating the object from
its background are missing. Our method is particularly designed
to allow tracking of creatures with arbitrary skeletons for which
template models might not be available. While our method might
also be applicable to humans, the large body of research on this
specific topic led to results that likely outperform our method. Our
model allows to track limbs of arbitrary complexity and abstracts
model knowledge, but a more rigid model could be beneficial and
allow for more realistic motion extraction. We have demonstrated
reproduction of sequences where the creature as a whole exhibits
approximately image-plane-parallel motion. While our approach
is capable of handling out-of-plane motion for isolated limbs, such
as tails or trunks, as well as limited camera motion and zooming,
support for arbitrary camera motion is missing and constitutes the
strongest limitation of our algorithm. Surprisingly however, many
videos found in online video platforms depicting animal locomotion
satisfied our assumptions, enabling the reconstruction of a wide vari-
ety of creatures. Handling arbitrary camera motion would not only
enable support for a larger variety of videos but the extra views add
additional knowledge about the true 3D shape of the object to the
system. Exploiting these cases in our algorithms remains the most
promising direction for future work. Shape reconstruction using
generalized cylinders is a valid assumption in many cases, but fails
in case of certain cylindrical cross sections, such as for bodies and
fins of fish, or complicated branching structures. Again in these
cases, multiple views can help to find the true shape of the limbs.
Nevertheless, many creatures look plausible in views substantially
different from the side view (Fig. 10). Videos courtesy of National
Geographic and BBC Worldwide.

REFERENCES

[1] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz. Keyframe-
based tracking for rotoscoping and animation. ACM Trans. Graph.,
23(3):584–91, 2004.

[2] I. Akhter, Y. Sheikh, S. Khan, and T. Kanade. Nonrigid structure from
motion in trajectory space. In Proc. NIPS, pages 41–48, 2008.

[3] B. Allen, B. Curless, and Z. Popović. The space of human body shapes:
reconstruction and parameterization from range scans. ACM Trans.
Graph. (TOG), 22(3):587–94, 2003.

[4] O. Arikan and D. A. Forsyth. Interactive motion generation from
examples. In ACM Trans. Graph., volume 21, pages 483–490, 2002.

[5] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthesis from
annotations. ACM Trans. Graph., 22(3):402–8, 2003.

[6] P. Borosán, M. Jin, D. DeCarlo, Y. Gingold, and A. Nealen. Rigmesh:
Automatic rigging for part-based shape modeling and deformation.
ACM Trans. Graph., 31(6):198:1–198:9, Nov. 2012.

[7] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D
shape from image streams. In Proc. CVPR, volume 2, 2000.

[8] C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turning to the
masters: motion capturing cartoons. ACM Trans. Graph., 2002.

[9] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy
optical flow estimation based on a theory for warping. In ECCV. 2004.

[10] A. Buchanan and A. W. Fitzgibbon. Interactive feature tracking using
k-d trees and dynamic programming. In Proc. CVPR, 2006.

[11] T. Cashman and A. Fitzgibbon. What shape are dolphins? Building 3D
morphable models from 2D images. IEEE PAMI, 35(1):232–44, 2013.

[12] T. Chen, Z. Zhu, A. Shamir, S.-M. Hu, and D. Cohen-Or. 3Sweep:
Extracting editable objects from a single photo. ACM Trans. Graph.,
32(6):195:1–195:10, 2013.

[13] B. Choi and C. Lee. Sweep surfaces modelling via coordinate transfor-
mation and blending. CAD, 22(2):87–96, 1990.

[14] T. F. Cootes, D. H. Cooper, C. J. Taylor, and J. Graham. Train-
able method of parametric shape description. Image Vision Comput.,
10(5):289–94, 1992.

[15] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based
approach. In Proc. SIGGRAPH, pages 11–20, 1996.

[16] L. Favreau, L. Reveret, C. Depraz, and M.-P. Cani. Animal gaits from
video. In R. Boulic and D. K. Pai, editors, Symposium on Computer
Animation. The Eurographics Association, 2004.

[17] J. Gall, C. Stoll, E. De Aguiar, C. Theobalt, B. Rosenhahn, and H.-
P. Seidel. Motion capture using joint skeleton tracking and surface
estimation. In CVPR 2009, pages 1746–1753, June 2009.

[18] R. Garg, A. Roussos, and L. Agapito. Dense variational reconstruction
of non-rigid surfaces from monocular video. In Proc. CVPR, pages
1272–9, 2013.

[19] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The
lumigraph. Proc. SIGGRAPH, pages 43–54, 1996.

[20] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3D freeform design. In Proc. SIGGRAPH, pages 409–16, 1999.

[21] S. Izadi et al. KinectFusion: real-time 3D reconstruction and interaction
using a moving depth camera. In Proc. UIST, pages 559–568, 2011.

[22] A. Jain, T. Thormählen, H.-P. Seidel, and C. Theobalt. Moviereshape:
Tracking and reshaping of humans in videos. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 29(6):148, 2010.

[23] Z. Ji, L. Liu, and Y. Wang. B-mesh: A modeling system for base
meshes of 3d articulated shapes. Computer Graphics Forum, 2010.

[24] G. Johansson. Visual perception of biological motion and a model for
its analysis. Perception & psychophysics, 14(2):201–11, 1973.

[25] O. A. Karpenko and J. F. Hughes. SmoothSketch: 3D free-form shapes
from complex sketches. In ACM Trans. Graph. (Proc. SIGGRAPH),
volume 25, pages 589–98, 2006.

[26] J. J. Koenderink. What does the occluding contour tell us about solid
shape. Perception, 13(3):321–30, 1984.

[27] V. Kraevoy, A. Sheffer, and M. van de Panne. Modeling from contour
drawings. In Proceedings of the 6th Eurographics Symposium on
Sketch-Based Interfaces and Modeling, SBIM ’09, pages 37–44, New
York, NY, USA, 2009. ACM.

[28] G. Maestri. Digital character animation 3. New Riders, 2006.
[29] I. Matthews, T. Ishikawa, and S. Baker. The template update problem.

IEEE PAMI, 26(6):810–5, 2004.
[30] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan.

Image-based visual hulls. In Proc. SIGGRAPH, pages 369–374, 2000.
[31] M. Prasad and A. Fitzgibbon. Single view reconstruction of curved

surfaces. In Proc. CVPR, volume 2, pages 1345–54, 2006.
[32] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast

cost-volume filtering for visual correspondence and beyond. In Proc.
CVPR, pages 3017–24, 2011.

[33] J. Sanchez Perez, E. Meinhardt-Llopis, and G. Facciolo. TV-L1 Optical
Flow Estimation. Image Processing On Line, 3:137–150, 2013.

[34] K. Shoemake. Animating rotation with quaternion curves. In ACM
SIGGRAPH Computer Graphics, volume 19, pages 245–54, 1985.

[35] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys.
Interactive 3D architectural modeling from unordered photo collections.
ACM Trans. Graph., 27(5):159, 2008.

[36] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism: Exploring
photo collections in 3D. ACM Trans. Graph., 25(3):835–846, 2006.

[37] M. Tao, J. Bai, P. Kohli, and S. Paris. SimpleFlow: A non-iterative,
sublinear optical flow algorithm. In Comp. Graph. Forum (Proc. EG),
volume 31, pages 345–53, 2012.

[38] X. Wei and J. Chai. VideoMocap: Modeling physically realistic human
motion from monocular video sequences. ACM Trans. Graph. (Proc.
SIGGRAPH), 29(4):42:1–42:10, 2010.

[39] X. Xu, L. Wan, X. Liu, T.-T. Wong, L. Wang, and C.-S. Leung. Animat-
ing animal motion from still. ACM Trans. Graph. (Proc. SIGGRAPH
Asia), 27(5):117:1–117:8, 2008.

[40] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. SKETCH: an interface
for sketching 3D scenes. In Proc. SIGGRAPH, pages 163–170, 1996.

[41] Y. Zheng, X. Chen, M.-M. Cheng, K. Zhou, S.-M. Hu, and N. J. Mitra.
Interactive images: Cuboid proxies for smart image manipulation.
ACM Trans. Graph. (Proc. SIGGRAPH), 31(4):99, 2012.


