
Real-Time Rendering of Human Hair using
Programmable Graphics Hardware

Martin Koster, Jörg Haber, Hans-Peter Seidel

MPI Informatik, Saarbrücken, Germany
E-mail: {koster,haberj,hpseidel}@mpi-sb.mpg.de

Abstract

We present a hair model together with rendering algo-
rithms suitable for real-time rendering. In our approach,
we take into account the major lighting factors contribut-
ing to a realistic appearance of human hair: anisotropic
reflection and self-shadowing. To deal with the geometric
complexity of human hair, we combine single hair fibers
into hair wisps, which are represented by textured triangle
strips. Our rendering algorithms use OpenGL extensions to
achieve real-time performance on recent commodity graph-
ics boards. We demonstrate the applicability of our hair
model for a variety of different hairstyles.

Keywords: hair rendering, programmable graphics hard-
ware, anisotropic reflection, shadow maps, opacity maps

1 Introduction

Hair undoubtedly plays an important role in our society.
Psychological studies have confirmed that people pay at-
tention to the hairstyle of their counterpart right after their
face and before their clothing. This result reinforces the de-
mand for a realistic presentation of human hair in computer
graphics applications. Despite the fact that GPU’s evolved
very rapidly over the past years, it is still difficult to render
about 100 000 single hair strands in real-time. Further ren-
dering challenges arise from the specific material properties
of hair. On the one hand, hair exhibits anisotropic reflection
behavior like brushed metal or satin. This material prop-
erty, however, is not supported by standard graphics API’s
like OpenGL or DirectX. On the other hand, hair can be
seen as a dense volume that exhibits large amounts of self-
shadowing. Due to the huge number of single hair strands, it
is computationally very expensive to cast shadows on each
hair fiber. The fact that hair can be considered as a semi-
transparent material makes the problem of shadowing and
self-shadowing even harder.

In this paper, we propose a complete wisp model based
on textured triangle strips. Our hair model features the most

important lighting effects for human hair: anisotropic re-
flection behavior and self-shadowing. To achieve real-time
rendering, we present efficient implementations of these ef-
fects exploiting the capabilities of recent commodity graph-
ics boards.

Since standard OpenGL lighting is not sufficient for real-
istic display of hair, our renderer heavily employs OpenGL
extensions that give access to latest hardware features. The
rendering system itself is designed as a combination of sev-
eral plug-ins. Thus, the hair renderer does not depend on
particular graphics hardware. With this plug-in infrastruc-
ture, it is possible write different hair renderer that are opti-
mally adjusted to different hardware platforms such as, for
example, NVIDIA or ATI accelerators.

Section 2 reviews previous approaches to modeling and
rendering of hair. In Section 4, the theoretical basis of
our rendering algorithms is discussed. Efficient implemen-
tations and extensions of the presented algorithms are de-
scribed in Section 5. Section 6 shows some results achieved
with our hair model and rendering algorithms.

2 Previous Work

Rendering of human hair is a very active field of re-
search. Several different models have been proposed for
representing human hair in graphics applications. They
differ both in the internal representation of hair geometry
and in the way optical properties of hair are modeled. The
model introduced by Koh et al. [14] combines hair strands
to a single wisp, which is represented by a NURBS sur-
face. Kim and Neumann [13] presented a multiresolution
hair model built upon a hierarchy of hair clusters. The user
can edit every level of this hierarchy down to a single hair
strand, which is represented by 3D line segments. Due to
the massive amount of geometry, hairstyles itself are not
displayed in real-time. A wisp model based on trigonal
prisms has been proposed by Chen et al. [4]. Within the
prisms, hair wisps are generated with 2D hair distribution
maps. Daldegan et al. [5] present a model with physics-
based animation and collision detection. Hair strands are

described by 3D curves. The rendering is performed us-
ing a modified ray tracing approach. Anjyo et al. [1] in-
troduced a modeling method for hair based on differential
equations. Line segments describing the strands of a partic-
ular hairstyle are bent according to their mechanical proper-
ties. A model for anisotropic reflection based on the Blinn-
Phong model [3] is used to render the hairstyles in a ray
tracing approach. The model by Hadap et al. [7] focuses on
hair animation using fluid dynamics in order to treat hair-
hair and hair-air interactions. Individual hairs are modeled
using 3D lines. In summary, these models are focused on
modeling realistic looking hair, but are not designed for a
fast real-time rendering due to their large amount of geo-
metric primitives.

For anisotropic reflection, several algorithms have been
introduced. Most of them are not suitable for real-time ren-
dering. Kajiya [9] bases his approach for anisotropic reflec-
tion on the general Kirchhoff solution for scattering of elec-
tromagnetic waves. Poulin et al. [20] build on the concept
of small, adjacent cylinders, which represent the scratches
that are responsible for anisotropic reflection. Both mod-
els show a good visual quality but are complex to evaluate
and are thus not suitable for real-time rendering. Marschner
et al. [18] introduce a model based on a detailed measure-
ment of scattering from hair fibers that explains the appear-
ance of multiple specular highlights. The results are quite
impressive and resemble the reflection behavior of human
hair. The shading, however, is computed using expensive
ray tracing. The approach proposed by Heidrich and Sei-
del [8] is based on the Banks model [2] and has been op-
timized for efficient OpenGL rendering. The model intro-
duced by Ward [15] is also an anisotropic reflection model
with mathematical simplicity and could be used for real-
time applications. A good overview of these and further
anisotropic models is given in [10].

Shadowing and self-shadowing of hair has also been in-
vestigated in the literature. The strand hair model pro-
posed by LeBlanc et al. [16] is based on the well-known
shadow mapping algorithm introduced by Williams [22].
Other models employing this z-buffer based approach are
the strand models by Chen et al. [4] and by Daldegan et
al. [5]. Although shadow maps are supported by recent
graphics hardware, they can not handle semi-transparent
primitives correctly. Deep Shadow Maps have been pro-
posed by Lokovic and Veach [17]. They support semi-
transparent objects and volumetric primitives, making them
well suited for fine geometry like hair and fur but also for
smoke and fog. A deep shadow map is defined as a rect-
angular array of pixels in which every pixel stores a vis-
ibility function that depends on the depth � of a fragment.
Since the computation of these visibility functions for every
pixel is very expensive, an efficient implementation using
hardware acceleration is not possible. Thus, deep shadow

Figure 1. A hair patch projected onto a cylin-
drical surface. Segments are slightly dis-
placed to achieve a curly effect.

maps are primarily used in ray tracing approaches. Opacity
Shadow Maps, as proposed by Kim and Neumann [12], are
based on deep shadow maps. The algorithm approximates
the light transmittance of a volume with a set of discrete pla-
nar maps. Every fragment of this volume contributes with
its associated alpha value to the maps. The computation of
these maps takes place in a preprocessing step. The opacity
shadow maps algorithm is used for the multiresolution hair
model by Kim and Neumann [13]. Although being much
less expensive than deep shadow maps, the original opac-
ity shadow maps algorithm is still not suitable for real-time
rendering. However, we will show in this paper that an opti-
mized version of the algorithm can be used to achieve real-
time performance with our hair model on recent commodity
graphics hardware.

3 The Hair Model

In our approach, we represent a hair wisp by a textured
triangle strip, denoted as a hair patch subsequently. This re-
duces the geometric complexity of our hair model and thus
accelerates the rendering process. Since we focus on the
rendering of hair patches in this paper, this section only re-
views the modeling process briefly.

A hair patch is a surface composed of quadrilateral seg-
ments, which are in turn decomposed into triangle strips.
The number of segments is variable and depends on the
type of the desired hairstyle. In contrast to other hair mod-
els based on surfaces (see for instance [14]), we can easily
model curly hair wisps. To this end, the vertices of the hair
patch are projected onto a cylindrical surface. This process
is depicted in Figure 1. Segments are slightly tilted to create
a curly effect.

The design of a hairstyle is done in a hair editing
tool [21]. To create a hair patch on the human scalp, the
designer defines its location and its parameters such as size,
stiffness, texture, number & radius of curls, number of seg-
ments, and hair form. The actual patch creation is per-
formed automatically in three steps: creating a planar sur-
face composed of quadrilateral segments, curling the pla-
nar surface, and bending the surface to avoid hair/hair and

Figure 2. Normal (blue), tangent (red) and
binormal (green) are computed per vertex.
Thus, every vertex of a hair patch defines its
own tangent space.

hair/head collisions. After creating a hair patch, its normal,
tangent and binormal are computed automatically per ver-
tex (cf. Figure 2). These local coordinate frames are needed
during rendering for the evaluation of our anisotropic re-
flection model and to apply bump maps for a more realistic
appearance of the hair.

4 Rendering Algorithms

This section reviews algorithms for anisotropic reflection
and shadowing that have been modified and extended for
use with our hair model.

4.1 Anisotropic Reflection

Anisotropic reflection is probably the most characteristic
optical property of illuminated hair. In general, the cause
of anisotropy is a micro-structure with long, thin features
that are aligned in one predominant direction. Anisotropic
reflection occurs because the distribution of the surface nor-
mals along the features (scratches, fibers) is different from
the distribution across them. A distant observer only sees
the lighting result, but not the micro-structure.

Several algorithms for computing anisotropic reflection
have been discussed in Section 2. We decided to built our
algorithm upon the anisotropic reflection model proposed
by Heidrich et al. [8] due to its simplicity and its capabil-
ity of exploiting graphics hardware. A further advantage of
this model is the possibility of combining it with dot3 bump
mapping.

For the classical Phong illumination model [19], we need
to evaluate the well-known equation:

�out � �ambient � �diffuse � �specular

� ���� � ����� ��� � ���� ������ ���

where � is the direction towards the light source, � is the
surface normal, � is the direction towards the viewer, and�

is the reflected light direction. For the the extended Blinn-
Phong model [3], we have a slightly different specular term:

�out � ���� � ����� ��� � ���� ������ ���

where � is the half-vector between � and � .
These equations are hard to evaluate when we want to

represent anisotropic material. Thin hair, for instance, has
no “traditional” surface normal. Instead of one single nor-
mal, each point of the one-dimensional fiber exhibits an infi-
nite number of normals, which are orthogonal to the fiber’s
tangent. The correct approach would be to integrate over
all these normals, which is obviously too hard to compute.
Therefore, the most significant normal � � that maximizes
the dot product � � � is chosen from this circle. This nor-
mal � � is co-planar with � and � . The new problem that
arises is the computation of the normal � �. Fortunately,
there is no need to explicitly compute � �. Instead, the dot
products � � � � and � � � can be expressed by the vectors
�, � , and the tangent vector � :

� �� � �
�
�� �� � � ��

� �� �
�
��� �� � � ��� ��� �� � � ��� �

�� � � � �� � � �

For the Blinn-Phong model, the representation of the spec-
ular term is even more compact:

� �� � �
�
�� �� � � ��

Using these substitutions, we can efficiently evaluate the
Phong and the Blinn-Phong model for any point in space,
The computations only depend on the dot products � � �
and � � � (Phong) or � � � (Blinn-Phong).

Yet, this model does not take into account self-
shadowing. Since we combine this technique with a shadow
algorithm, we may neglect self-shadowing at this stage. The
shadow algorithm presented in the next section cancels out
undesired specular highlights that are in shadow.

4.2 Shadows

For the shadowing of hair, we have developed a modified
version of the opacity shadow maps algorithm proposed by
Kim and Neumann [12]. The original algorithm works as
follows: a hair volume is subdivided into several parallel
slices perpendicular to the light direction. Figure 3 illus-
trates this subdivision. Each of these slices is rendered to
the alpha buffer one after another. Thus, each fragment con-
tributes with its associated alpha value to a map denoted as
an opacity map. Each time a map is rendered, a fixed set
of sample points that lie between two maps is shadowed.
A detailed description of the shadowing of a fragment is

Figure 3. The hair volume is sliced into a set
of planar maps storing alpha values.

given later in this section. Maps that are not needed any-
more are dropped to reduce the amount of memory needed.
In our patch-based hair model, evaluating and precomputing
shadows for a fixed set of sampling points (such as vertices)
would not only lead to disturbing visual artifacts, but in ad-
dition it would be impossible to cast realistic shadows onto
the head.

In contrast to the original algorithm, the goal of our mod-
ified opacity maps version is to compute shadows on a per-
pixel basis, allowing us also to cast shadows of the hair
patches onto the head. To this end, the shadowing process
is divided into two steps:

1. Compute all opacity maps, if an update is necessary.

2. Compute shadow of fragments by back-projecting
them into the maps.

Parts of this algorithm can be efficiently implemented
in hardware. The pseudo code of the modified algorithm
shown below uses the following notation: 	 is the number
of maps,
� denotes the the depth of the �th map from the
light source, BoundingBox is the set of vertices defin-
ing the bounding box of the hair model, depth(� �) re-
trieves the depth of the vertex �� from the light source,
and maps is the set of opacity maps. The function inter-
polate(� �� �) linearly interpolates between and � as fol-
lows: � � ������. The transmittance function is denoted
as � , � is the proposed value of 5.56, and � is the com-
puted shadow of a fragment. In the pseudo code, a differ-
ence is made between vertices �� in the geometry stage and
fragments �� in the rasterizer stage. The procedure apply-
InverseLightTransform() sets modeling and projection pa-
rameters for rendering the scene from the light source, and
applyInverseCameraTransform() restores the original cam-
era parameters.

In createMaps(), the scene is rendered to the alpha buffer
	 times from the position of the light source, clipped by
the depth of each map (lines 10 and 14). To determine the
depth of each map, we have to find the nearest and farest
point from the light source. Instead of searching through all

Pseudo code:

1. maps[1..n];
2.
3. procedure createMaps()
4. begin
5. applyInverseLightTransform();
6. for all �� in BoundingBox :
7.
� � ����depth�����;
8.
� � �	
�depth�����;
9. clearPBuffer();
10. renderSceneBetween(nearPlane,
�);
11. readAlphaBufferTo(maps[1]);
12. for � � �� � � � � 	 :
13.
� = interpolate(
�,
�, ��� ����	� ��);
14. renderSceneBetween(
���,
�);
15. readAlphaBufferTo(maps[�]);
16. end;
17.
18. procedure computeShadow()
19. begin
20. applyInverseCameraTransform();
21. for each fragment �� :
22. ��� = scale * project(��, maps);
23. if (linearShadowing)
24. ����� � ������ ;
25. else
26. ����� � �
���� �����;
27. ����� � ��� �����;
28. end;

the vertices, we only check the corner vertices defining the
bounding box of the hair model (line 6). This step is there-
fore independent from the used hairstyle. Each pixel in the
map stores an alpha value � that approximates the opac-
ity relative to the light at the position of the pixel. Values
between these maps are computed by linear interpolating
the alpha values of two neighboring maps depending on the
depth � of the fragment. For a fragment � � with depth ��, its
opacity value ����� is computed as:

����� � �� �curr � ��� ��� �prev �

�� � ��� �
prev���
curr �
prev� �

where �curr and �prev are the opacity values sampled from
the two neighboring maps and
curr and
prev are the depths
of these two maps. This step is performed by the project()
function in line 22. scale is a floating point factor that
scales the intensity of the shadow to allow for shadows
that are not too dark. Similar to OpenGL’s fog mode, we
have implemented two shadowing modes: linear shadow-
ing and exponential shadowing, which differ in the com-
putation of the transmittance function. After the retrieval

of a fragment’s opacity, the transmittance for the fragment
in linear shadowing mode is simply computed as: ��� �� �
� � �����. In exponential shadowing mode, we compute:
����� � �
����������. Finally, the shadow ����� of a
fragment �� is computed as ����� � ��� �����. We found
that the optimal shadowing mode depends on the hairstyle:
for smooth, flat patches, the linear mode usually works bet-
ter, while for voluminous, curly hair, the exponential mode
is suited better.

5 Implementation

The algorithms presented in Section 4 are implemented
in two hair rendering plug-ins using OpenGL. Since there
were no graphics cards with support for fragment pro-
grams available when we started our project, one plug-in
is targeted for GeForce3 class graphics cards using vertex
programs, texture shaders and register combiner. A sec-
ond plug-in using vertex and fragment programs was im-
plemented, when the NVIDIA GeForce FX and the ATI
Radeon 9500 were introduced. The enhanced features of
these cards are supported through OpenGL extensions.

Anisotropic lighting is combined with dot3 bump map-
ping to create the illusion of a fine hair structure on the flat
patches. A good overview of bump mapping and similar
techniques is given in [11]. All computations are performed
in local tangent space. Thus, all vectors are transformed
using the following matrix:

� �

�
���

�� �� �	
�� �� �	
�� �� �	
 �

�
���

where � � ���� ��� �	� denotes the tangent vector, � �
���� ��� �	� the binormal and � � ���� ��� �	� the nor-
mal vector. A look-up texture is precomputed and the vec-
tors � � � and � � � serve as texture coordinates to look
up the diffuse and specular components as defined in Sec-
tion 4.1. The dot product is computed per-pixel either in
the texture shader stage on the GeForce3 or in the fragment
program on the GeForce FX / Radeon 9500.

The Opacity Maps are created during the initialization of
the hair model and are only updated if the relative position
of the head to the light source changes. In contrast to the
original opacity shadow maps algorithm, we store all maps
in video memory at the same time. This consumes a certain
amount of memory, but it allows to compute shadows on a
per-fragment basis rather than on a per-vertex basis as done
in [12]. The maps itself are stored in a 3D texture of size
��� �	, where��� is the resolution and 	 the number
of maps. We typically use a resolution of 512x512 pixels
and 	 � �� maps. Such 3D textures are hardware acceler-
ated on graphics boards with GeForce3 and higher GPU’s.

Texture Unit 0 Texture Unit 1 Texture Unit 2

texture 2d() texture 3d() dependent ar(tex1)

(R�, G�, B�, A�) (0, 0, 0, A�)

hair texture opacity map
texture

transmittance function
look-up texture

Figure 4. Using the dependent ar() texture
shader in texture unit 2, the transmittance
function is evaluated depending on the result
of the retrieved alpha value in texture unit 1.
Texture unit 2 contains either a linear or an
exponential look-up table.

The advantage of 3D textures is the ability to automatically
generate mip-maps using the SGIS generate mipmap
extension. By using the GL LINEAR texture filter, linear
interpolation between two neighboring maps is achieved at
no extra costs. Memory allocation for all necessary tex-
tures is done in a preprocessing step. To speed up the
map creation, only the necessary OpenGL states are en-
abled. Both time-consuming lighting and writing to the
color channels of the frame buffer are disabled. Textur-
ing is necessary, because the alpha values are stored to-
gether with the RGB values in the hair texture. The blend-
ing equation set to glBlendFunc(GL ONE, GL ONE)
and depth testing is disabled, thus the sorting order of the
patches is unimportant. Maps are rendered	 times to an off-
screen pixel buffer, clipped by the depth of the actual map.
The alpha buffer then is copied to to its corresponding layer
of the 3D texture by a fast glCopyTexSubImage. To
soften the shadow edges and to avoid artifacts, the user may
enable a separable averaging kernel of any size, see Fig-
ure 12. The necessary functions for convolution are defined
in the ARB imaging extension. Thus, the alpha buffer gets
blurred, while transferring its contents to the 3D texture.
After the creation of the maps, the scene is rendered from
the view of the camera. Every fragment to be shadowed is
now transformed into the 3D texture using projective textur-
ing [6], which is performed in a vertex program. This part
of the implementation is the same for all architectures sup-
porting vertex programs. In the fragment stage, however,
we use different plug-ins handling the hardware features of
the given graphics card.

5.1 Rendering using Register Combiner

The plug-in for GeForce3 class graphics cards uses ver-
tex programs, texture shaders, and register combiners. In
the texture shader stage, a transmittance value is looked up,
depending on what shadowing method is used. The opacity

Figure 5. The result of the anisotropic light-
ing pass (left) is combined with the result of
the shadowing pass (middle) via multiplica-
tive blending.

value of the fragment is used as the texture coordinate for
the look-up texture that stores either the linear or the expo-
nential transmittance function as described in Section 4.2.
Figure 4 illustrates the configuration of the different texture
stages.

Because of limitations in the fragment stage, rendering
on the GeForce3 is done in two passes. First, the anisotropic
lighting is computed and then shadowing is applied. The
shadowing pass outputs a grey-scale texture that is com-
bined with the result of the anisotropic lighting pass via
multiplicative blending, see Figure 5.

5.2 Rendering using Fragment Programs

On graphics boards with support for fragment programs,
anisotropic lighting and shadowing is performed in a sin-
gle rendering pass. Instead of looking up the value of the
transmittance function in a precomputed texture, it is calcu-
lated on-the-fly for every pixel. This is possible due to the
extended arithmetic instruction set allowing to evaluate the
exponential function for every pixel. The fragment program
was written in Cg from NVIDIA, see Table 1. The result-
ing assembler code, however, has been optimized manually,
thus reducing the code from 31 to 19 assembler instructions.

5.3 Self-Shadowing Artifacts and Offsetting

Since we use alpha maps with relatively large alpha val-
ues, some self-shadowing artifacts possibly appear at the
border of a map. For a better explanation of this phe-
nomenon, we consider a fragment directly illuminated by
the light source, see Figure 6. This fragment lies exactly in
the middle of two opacity maps. The map closer to the light
source contains the alpha value 0, because the fragment lies
on the upper surface of a hair patch. The other map contains
an alpha value of 1. Linear interpolation results in a alpha
value of 0.5. Therefore a shadow of 0.5 is computed for this
fragment (in linear shadowing mode), although it is directly
exposed to the light source.

struct fpInput {
float2 decalTexCoord : TEXCOORD0;
float2 tgtTexCoord : TEXCOORD1;
float3 opacTexCoord : TEXCOORD3;
float3 L : TEXCOORD5;
float3 H : TEXCOORD6;

};

float4 main (fpInput IN,
uniform sampler2D decalTex,
uniform sampler2D tgtTex,
uniform sampler2D lookupTex,
uniform sampler3D opacTex,
uniform float3 specCol,
uniform float3 diffCol,
uniform float scale,
uniform float linear) : COLOR

{
float4 decalCol, lookupCol, fragmentCol;
float3 T; // tangent vector
float2 lookupTexCoord; // L.T and H.T
float omg; // omega

// color from hair texture
decalCol = tex2D(decalTex, IN.decalTexCoord);

// expand tangent vector to [-1,1]
T = 2*(tex2D(tgtTex, IN.tgtTexCoord).rgb - 0.5);

// dependent texture lookup (anisotropic illum.)
lookupTexCoord.x = dot(IN.L, T);
lookupTexCoord.y = dot(IN.H, T);
lookupCol = tex2D(lookupTex, lookupTexCoord);

// calculate unshadowed fragment color
fragmentCol.rgb =
lookupCol.rgb * decalCol.rgb * diffCol +
float3(lookupCol.a,lookupCol.a,lookupCol.a) *
specCol;

fragmentCol.a = decalCol.a;

// compute light transmittance in hair volume
omg = scale * tex3D(opacTex, IN.opacTexCoord).a;

// linear/exponential shadowing?
if (linear > 0)
fragmentCol.rgb *= 1.0 - omg;

else
fragmentCol.rgb *= exp(-5.56 * omg);

return fragmentCol;
}

Table 1. Fragment program written in Cg for
anisotropic reflection and shadowing.

To handle this problem, the maps are shifted along the
light direction by adding a small offset to the �-texture co-
ordinate that defines the depth within the opacity texture,
see Figures 7 and 13.

The maps are stored in the video memory of the graph-
ics board and the computation of the transmittance function
and the shadow of the fragment is done on the GPU using
fragment programs and register combiners, respectively. No

Figure 6. Fragment with a wrongly interpo-
lated alpha value. The result is a shadowed
fragment, although it should be fully illumi-
nated.

Figure 7. To avoid self-shadowing artifacts,
opacity maps are sightly shifted along the
light direction by a small offset.

data transfer between video and main memory is needed.
We found that 16 maps are typically sufficient for shadow
approximation for most hairstyles (see also Figure 13).

6 Results

Rendering our hair model with the real-time algorithms
presented in Sections 4 and 5 yields a realistic appearance
of human hair for a variety of hairstyles, see Figures 8–10.
A comparison of different rendering techniques is depicted
in Figure 11.

We have tested our hair rendering algorithms on sev-
eral different graphics boards: an ATI FireGL X1 and
NVIDIA’s GeForce3 and GeForce FX 5800 Ultra. For
constant lighting conditions (i.e. light position and/or di-
rection do not change), the complete head model is dis-
played with a frame rate of about 120 fps on the ATI FireGL
and the GeForce FX and about 70 fps on the GeForce3 .
These high frame rates are mainly due to the fact that the
opacity maps are cached in the 3D texture. For varying
lighting conditions or animated hair geometry, the opac-
ity maps have to be updated during rendering. In this

Figure 8. A short hairstyle with strong
anisotropic reflection.

Figure 9. A long hairstyle with anisotropic re-
flection casts a shadow on the head. Self-
shadowing of the head is also achieved with
opacity shadow maps.

Figure 10. A complex curly hairstyle. In par-
ticular, such voluminous hairstyles exhibit
self-shadowing of hair wisps.

case, hairstyles such as the ones shown in Figures 8 and
9 achieve frame rates of about 35 fps on the ATI FireGL.
The GeForce FX unfortunately drops down to about 11 fps
for varying lighting conditions. According to recent dis-
cussions in the OpenGL forum (http://www.opengl.
org/discussion_boards/), the ATI card seems to be
much faster in performing the glCopyTexSubImage()
call than the GeForce FX. This observation is confirmed by
our simulations. The rendering plug-in using the register
combiner on the GeForce3 yields about 5 fps for moving
light sources.

7 Conclusion

We have presented a hair model and rendering algo-
rithms that handle the most important lighting factors for
a realistic appearance of human hair: anisotropic reflection
and self-shadowing. Our algorithms are designed for real-
time rendering on recent commodity graphics boards. We
achieve frame rates of up to 120 fps for constant lighting
conditions, and up to 35 fps for moving light sources.

The bottleneck of the computations for variable lighting
conditions is the update of the opacity shadow maps: for 	
maps, the scene has to be rendered 	 times from the posi-
tion of the light source. Higher frame rates will probably be
achieved by optimizing this step, for instance by rendering
only those hair patches that lie between the two maps that
are considered during each rendering pass. This, however,
requires additional computations for the intersection tests
that have to be performed when the scene is changed. We
are currently investigating the applicability of space parti-
tioning data structures (octrees, BSP trees) to speed up these
intersection tests.

References

[1] K.-i. Anjyo, Y. Usami, and T. Kurihara. A Simple Method
for Extracting the Natural Beauty of Hair. In Computer
Graphics (SIGGRAPH ’92 Conf. Proc.), volume 26, pages
111–120, July 1992.

[2] D. C. Banks. Illumination in diverse codimensions. Techni-
cal Report TR-94-6, Institute for Computer Applications in
Science and Engineering, Jan. 1994.

[3] J. F. Blinn. Models of Light Reflection for Computer Syn-
thesized Pictures. In Computer Graphics (SIGGRAPH ’77
Conf. Proc.), volume 11, pages 192–198, July 1977.

[4] L.-H. Chen, S. Saeyor, H. Dohi, and M. Ishizuka. A System
of 3D Hair Style Synthesis based on the Wisp Model. The
Visual Computer, 15(4):159–170, 1999.

[5] A. Daldegan, N. M. Thalmann, T. Kurihara, and D. Thal-
mann. An Integrated System for Modeling, Animating and
Rendering Hair. In Computer Graphics Forum (Proc. Euro-
graphics ’93), volume 12, pages 211–221, Sept. 1993.

[6] C. Everitt. Projective Texture Mapping. Available
from http://developer.nvidia.com/object/
Projective_Texture_Mapping.html, 2001.

[7] S. Hadap and N. Magnenat-Thalmann. Modeling Dynamic
Hair as a Continuum. In Computer Graphics Forum (Proc.
Eurographics 2001), volume 20, pages C329–C338, Sept.
2001.

[8] W. Heidrich and H.-P. Seidel. Efficient rendering of
anisotropic surfaces using computer graphics hardware. In
Image and Multi-dimensional Digital Signal Processing
Workshop (IMDSP) ’98, pages 315–318, July 1998.

[9] J. T. Kajiya. Anisotropic Reflection Models. In Computer
Graphics (SIGGRAPH ’85 Conf. Proc.), volume 19, pages
15–21, July 1985.

[10] J. Kautz and H.-P. Seidel. Towards Interactive Bump Map-
ping with Anisotropic Shift-Variant BRDFs. In Proc. of
the 2000 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 51–58, Aug. 21–22 2000.

[11] M. J. Kilgard. A Practical and Robust Bump-
mapping Technique for Today’s GPUs. Available
from http://developer.nvidia.com/object/
Practical_Bumpmapping_Tech.html, 2002.

[12] T. Kim and U. Neumann. Opacity Shadow Maps. In Proc.
Eurographics Rendering Workshop 2001, pages 177–182,
2001.

[13] T.-Y. Kim and U. Neumann. Interactive multiresolution
hair modeling and editing. ACM Transactions on Graphics,
21(3):620–629, July 2002.

[14] C. K. Koh and Z. Huang. A Simple Physics Model to
Animate Human Hair Modeled in 2D Strips in Real Time.
In Proc. Computer Animation and Simulation (CAS 2001),
pages 127–138, Sept. 2001.

[15] G. J. W. Larson. Measuring and Modeling Anisotropic
Reflection. In Computer Graphics (SIGGRAPH ’92 Conf.
Proc.), volume 26, pages 265–272, July 1992.

[16] A. M. LeBlanc, R. Turner, and D. Thalmann. Rendering
Hair using Pixel Blending and Shadow Buffers. Journal of
Visualization and Computer Animation, 2(3):92–97, July–
Sept. 1991.

[17] T. Lokovic and E. Veach. Deep Shadow Maps. In Computer
Graphics (SIGGRAPH 2000 Conf. Proc.), pages 385–392,
2000.

[18] S. R. Marschner, H. W. Jensen, M. Cammarano, S. Worley,
and P. Hanrahan. Light scattering from human hair fibers.
ACM Transactions on Graphics, 22(3):780–791, July 2003.

[19] B.-T. Phong. Illumination for Computer Generated Pictures.
Commun. ACM, 18(6):311–317, June 1975.

[20] P. Poulin and A. Fournier. A Model for Anisotropic Reflec-
tion. In Computer Graphics (SIGGRAPH ’90 Conf. Proc.),
volume 24, pages 273–282, Aug. 1990.

[21] C. Schmitt, M. Koster, J. Haber, and H.-P. Seidel. Model-
ing Hair using a Wisp Hair Model. Research Report MPI-
I-2004-4-001, MPI Informatik, Saarbrücken, Germany, Jan.
2004.

[22] L. Williams. Casting Curved Shadows on Curved Surfaces.
In Computer Graphics (SIGGRAPH ’78 Conf. Proc.), vol-
ume 12, pages 270–274, Aug. 1978.

Figure 11. A cluster of hair rendered with different techniques. Left to right: untextured Gouraud
shading, textured Gouraud shading (textures with alpha channel), anisotropic shading with per-pixel
bump-mapping, anisotropic shading combined with self-shadowing.

Figure 12. Using an averaging kernel blurs the opacity textures and creates diffuse soft shadows.
The maps have a resolution of 512x512 pixels.

maps = 16 maps = 32 maps = 128

offset = 0

offset = 10

offset = 25

Figure 13. Cluster of hair rendered with 16, 32 and 128 opacity maps and with a different offset.
Images without this offset seem too dark. An offset of 25 has shown good results.

