
1 Introduction

Dynamically refining
animated triangle meshes
for rendering

Kolja Kähler,
Jörg Haber,
Hans-Peter Seidel

Max-Planck-Institut für Infomatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany
E-mail: {kaehler,haberj,hpseidel}@mpi-sb.mpg.de

Published online: 14 February 2003
c© Springer-Verlag 2003

We present a method to dynamically ap-
ply local refinements to an irregular triangle
mesh as it deforms in real time. The method
increases surface smoothness in regions of
high deformation by splitting triangles in
a fashion similar to one or two steps of
Loop subdivision. The refinement is com-
puted for an arbitrary triangle mesh, and the
subdivided triangles are simply passed to
the rendering engine, leaving the mesh itself
unchanged. The algorithm can thus be eas-
ily plugged into existing systems to enhance
the visual appearance of animated meshes.
The refinement step has very low computa-
tional overhead and is easy to implement.
We demonstrate the use of the algorithm in
a physics-based facial animation system.

Key words: Triangle meshes – Surface de-
formation – Adaptive refinement – Real-time
rendering

Correspondence to: K. Kähler

In real-time computer animation, polygon meshes
are a popular surface representation due to the high
throughput on current hardware. The drawback is
that a polygonal surface is piecewise planar, and we
therefore have to find a balance between high visual
quality (more polygons) and high frame rates (less
polygons).
A polygon model of a static surface can be built such
that a compromise between the represented amount
of detail and computational complexity is achieved.
However, when the surface is animated by moving
the mesh nodes, the resulting mesh doesn’t adapt
well to the deformation. Bends and folds can only ap-
pear at the edges of the mesh and are thus limited
by its initial connectivity. This leads to the unfortu-
nate situation that the model has to provide enough
polygons to accommodate all possible deformations,
even though the surface can be represented well
enough with a far lower number of polygons in its
undeformed state. A model should thus be dynami-
cally refined at run-time where required.
In this paper, we present a technique to render adap-
tively refined versions of a triangle mesh. Refine-
ments are computed only in those areas where the
mesh is deformed. Since these refinements are used
for rendering only and can be easily computed on the
fly, we do not update the original triangle mesh. This
is advantageous for two reasons: first, the application
doesn’t have to deal with dynamic mesh connectiv-
ity, making integration into existing systems a simple
plug-in operation. Second, the refined triangles are
not retained between rendered frames, so additional
memory usage is kept to a minimum.
Our method has been integrated into a framework for
the physics-based animation of polygonal models [6]
(see Fig. 1). A spring mesh is created from the initial
triangle mesh: vertices correspond to point masses,
and edges correspond to springs. The spring mesh
deforms in the simulation loop, and its nodes are
used to update the triangle mesh. During animation,
the resolution of the triangle mesh was found often to
be too coarse in highly deformed regions. Increasing
the resolution of the triangle mesh would result in an
unacceptable increase in computation time due to the
higher number of simulated springs. However, us-
ing our refinement technique, the simulation can be
decoupled from the rendering: without changing the
resolution of the spring mesh (which defines the pre-
cision of the simulation), we can render a smoother
version of the deformed triangle mesh.

The Visual Computer (2003)
Digital Object Identifier (DOI) 10.1007/s00371-002-0185-8



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

Fig. 1. Overview of our physics-based animation system. Without affecting the internal state of the simulation or the triangle mesh
itself, refinements are computed from the deformed mesh and passed to the rendering engine

2 Related work

A large number of surface representations are used
in computer animation. Among the most popular
choices are polynomial patches, polygons, and sub-
division surfaces.
Polynomial patches have long been used in model-
ing and animation [4, 15]. Surfaces built from such
patches are defined by a relatively coarse control
mesh. Animation of the surface can be achieved by
deforming this mesh. The generated surface is in-
herently smooth; but, for complex geometry built
from multiple patches, preservation of smoothness
conditions across patch boundaries becomes diffi-
cult. Patches can be refined globally via knot inser-
tion [2] or locally using hierarchical methods [5].
For real-time rendering, patches are usually tes-
sellated using uniform [11, 16] or adaptive [14]
schemes to exploit fast polygon-rendering hardware.
As the surface deforms, the vertices of the tessel-
lation have to be recomputed. For refined surfaces,
the computations become more complicated and
expensive.
Polygonal models are popular due to their sim-
plicity, flexibility, and the availability of efficient
graphics hardware. Adaptive refinement of arbi-
trary triangles meshes is a recent topic in multi-
resolution editing [9, 10]. These methods are very
powerful, but the underlying machinery is com-
plex and currently not applicable to real-time
environments.
In physics-based animation, spring meshes are
typically composed of quadrilaterals or triangles,
and the mass points of the spring mesh are iden-
tified with the vertices of the rendered surface [8,
12, 20]. Adaptive refinement of such a mass-
spring system is non-trivial [7]. Volino et al.
propose an efficient method to smoothing polyg-
onal geometry, which is applied to deformations

caused by a mass-spring simulation [21]. Their
method interpolates the interior points of arbitrary
polygons, given their vertices and vertex normals.
Using a regular subdivision of the initial geom-
etry, smooth surfaces can be generated on the
fly for rendering, similar to our approach. The
tessellation does not adapt to surface curvature,
though. In the context of facial animation, Seo
et al. describe the application of level-of-detail
techniques, generating not only coarser geometry
but also coarser animation control for far-away
viewpoints [18].
Subdivision surfaces bridge the gap between spline
patches and polygon meshes in many respects, com-
bining the easy handling of meshes with the well-
defined properties of a parametric surface [13, 17].
Defined over an initial quadrilateral or triangle con-
trol mesh, an arbitrarily close approximation to
a smooth limit surface can be generated by repeat-
edly refining the mesh using simple rules. The limit
surface can either interpolate or approximate the
control mesh nodes, depending on the subdivision
rules. Subdivision surfaces are also suitable for use
in computer animation [3]. A very regular mesh
of subdivision connectivity is required, which of-
ten makes an initial remeshing step necessary when
an irregular mesh is given. In general, the refine-
ment operator is applied uniformly to a subdivi-
sion surface. Zorin et al. describe a method (adap-
tive synthesis) that selectively computes refined tri-
angles by temporarily creating the needed parent
triangles [23].

3 Method overview

A generic adaptive refinement algorithm employing
some surface curvature criterion can be stated recur-
sively:



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

refine(regionr):
c := curvature(r)
if (c > threshold)
subdivide(r,c)
for all subregionss in r
refine(s)

else
draw(r)

Even if the tail recursion is flattened by transforma-
tion into a loop, two cost factors remain: the curva-
ture has to be evaluated multiple times on the ini-
tial region (albeit on smaller and smaller parts); and
the changes caused by a subdivision step have to be
stored in the geometry before the subregions can be
examined (or temporary storage must be allocated
per subregion on each level of recursion). In our ap-
proach, we minimize these costs by evaluating the
curvature only once: based on the outcome, we per-
form up to two refinements in one step, thus elimi-
nating the need for storing the altered geometry for
further evaluation. It is directly drawn and discarded:

refine(regionr):
c := curvature(r)
if (c > threshold)
region s = subdivide1or2(r,c)
draw(s)
else
draw(r)

In our implementation, the refinement procedure is
applied to the triangle mesh just before rendering, as
shown in Fig. 1. We make use of a number of adja-
cency relations that are defined on a triangle mesh,
such as circulating through the vertices adjacent to
a given vertex, finding the triangles sharing a given
edge, etc. To this end, we use a data structure based
on half-edges as described by Campagna et al. [1].
Each edge of the given deformed mesh is examined
to decide whether it should be split into two or more
parts, causing subdivision of the adjacent triangles.
Using the new degrees of freedom provided by the
split vertices, we compute a smoother retriangulation
approximating the input mesh. For the smoothing,
simple local rules are used that borrow from the sub-
division idea. We don’t generate any new vertices
in the interior of an original triangle, thus avoid-
ing evaluation of new interior edges and keeping the
number of possible new triangulations manageable.
The retriangulation is efficiently created by a table-
lookup operation. The resulting triangle set is then

Fig. 2. Examples of split configurations. From left to
right: one single edge split, three edges split once, and
two edges split twice

rendered instead of the original triangle; unsplit tri-
angles are rendered as usual. Figure 2 shows exam-
ples of split configurations.
The computed refinements are not reflected in the in-
put mesh, they are computed dynamically for each
frame and discarded after rendering. Thus, undoing
refinements is not necessary, and the input mesh re-
mains unaltered. We also do not retain any informa-
tion about splits between frames.

4 The algorithm

Our method creates subtriangles by splitting triangle
edges once into two parts or twice into four parts.
We start by iterating over all edges of the input mesh,
deciding whether to split them once or twice. Since
the splitting of each edge is carried out in one single
pass, there is no recursion involved. In a second pass,
the retriangulation of each triangle is obtained from
the split configuration along its edges.

4.1 Splitting criterion

We assume that the quality of the triangulation of the
undeformed mesh is good enough for the intended
application. Therefore, we only want to split an edge
if the curvature of the surrounding mesh region has
increased during mesh deformation. As a simple and
efficient test, we use the dot product between the ver-
tex normals at both ends of an edge. If this scalar
value drops below the value that has been precom-
puted for the undeformed geometry, there is more
“bending” and the edge is marked for splitting once
or twice, depending on the difference of the dot prod-
ucts.
This criterion only uses the vertex normals of the ex-
isting nodes in the mesh. More complex criteria can



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

be used as well, such as measuring discrete curva-
ture on the mesh [19]. The vertex normal dot product
has proven to be sensitive to the kind of deforma-
tions that occur in our application. Additionally, it
has the advantage of extremely low evaluation cost,
provided that vertex normals have been computed
before.

4.2 Vertex smoothing

After having determined the split configuration for
each triangle, the vertex positions of the resulting
subtriangles are computed. We want to make sure
that this operation has the following characteristics:

• computationally cheap;
• only changes the surface locally;
• results in a close approximation of the input

mesh; and
• handles mesh boundaries correctly.

Our approach to selective refinement is inspired by
Loop subdivision [13] in the variant proposed by
Warren [22]. The Loop subdivision scheme also ap-
plies mid-edge splitting, and computing the refined
surface only requires quick averaging of old and new
vertices with their immediate neighbors. We’d like
to point out that our method doesn’t produce sur-
faces with any particular degree of continuity, but
just a smoother-looking approximation of the origi-
nal.
Vertex positions corresponding to the first (i.e. mid-
edge) split of the triangle edges are calculated sim-
ilarly to the Loop scheme by weighted averaging.
Figure 3 shows the vertices that take part in these
computations and the associated weights. Since
we don’t want to change the input mesh, the new
positions for the original vertices are temporarily
buffered.
For triangle edges that have been split twice, the ver-
tex positions corresponding to the second-level splits
are obtained in a similar fashion (see Fig. 4). Here,
we have to use the previously computed positions of
the first-level split vertices. Since generally not all
edges of a triangle are split, some of these vertices
may not have been computed before. In this case, we
simply take the mid-point of the respective original
edge.
Furthermore, the original mesh vertices are not
smoothed again for second-level splits, contrary to
the proper Loop subdivision scheme. In this way, we

3

4

Fig. 3. Left: computing the position of a first-level split
vertex (�). Right: displacing a vertex in the input mesh
(•). The top row shows the weights for an interior ver-
tex; the bottom row shows the boundary case
Fig. 4. Left: computing the position of a second-level split
vertex (�) from original mesh vertices (©) and first-level
split vertices (�). Right: displacing a first-level split ver-
tex (�). Non-existent first-level vertices (stippled �) are
approximated by linear interpolation

avoid complicated updates involving adjacent trian-
gles and keep these vertices closer to their original
locations.

4.3 Generating subtriangles

Once the new vertex positions have been computed,
subtriangles are created by connecting these points
and then passed to the rendering engine. To speed
up the retriangulation step, we use a lookup table
that has one entry per split configuration. Each entry
contains a sequence of vertex indices, which rep-



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

1+3+9=13�⇒
...

13 (0,2,10) (2,4,6) (6,8,10) (2,6,10)
...

�⇒

5

6 7

Fig. 5. A triangle is split and retriangulated using
a lookup table

Fig. 6. Numbering of original (©) and split vertices
(�,�), starting at the first vertex of edge 0 in a triangle

Fig. 7. Adjacent triangles are split consistently to avoid
T-junctions

resents a valid tessellation of the original triangle.
The points in each triangle are indexed according to
Fig. 6. If si ∈ {0, 1, 2} denotes the number of splits
that have been applied to edge i ∈ {0, 1, 2} of the cur-
rent triangle, the index into the table is computed
from the ternary digits si as s0 + 3s1 + 9s2, yield-
ing 27 possible combinations. Figure 5 illustrates the
table-lookup mechanism.
Each input triangle can be split into a maximum of
ten subtriangles. No cracks appear in the generated
mesh, since adjacent triangles have a common edge
and thus share the split configuration along this edge
(see Fig. 7).

4.4 Time-coherent splitting

For proper shading and texturing, the vertex normal
and texture coordinates of a new vertex are inter-
polated linearly from the neighboring vertices along
the edge. The neighboring vertices are either origi-
nal mesh vertices or previously created split vertices.
Due to the nature of intensity-value interpolation in
Gouraud shading, the retriangulation pattern in the
lookup table does not affect the rendered output. For
flat shading, however, triangle normals have to be
computed for the generated subtriangles. If the trian-
gulation is chosen only on the basis of the triangle’s
current split configuration, shading artifacts may ap-
pear: a split that is introduced from one frame to the
next may lead to a completely different triangula-
tion, causing abrupt changes in the surface normals
of the subtriangles. This can be alleviated by taking

the history of refinements on a triangle into account.
If an edge is split further than in the previous frame,
a retriangulation is generated that is equivalent to re-
fining that previous triangulation pattern.
Though we can’t avoid maintaining some sort of
history, we still don’t have to store split triangles
between frames: it is feasible to enumerate all se-
quences of splits that can be applied to a triangle,
from the zero-length sequence containing no splits
at all to the sequences of length six containing two
splits on each edge in every possible order. We can
construct a table of 271 entries, where each line cor-
responds to one of these sequences. Each table en-
try is automatically constructed by an algorithm that
splits and subdivides a triangle following the corre-
sponding sequence.
In this way, if the history of applied splits is stored
along with the mesh, one can generate time-coherent
retriangulations. However, splits can only be taken
back in reverse order, otherwise artifacts may again
appear. Additional overhead is induced by the more
complicated maintainance of data structures and the
bigger lookup table (deteriorated data locality). In
practice, we usually avoid the overhead of time-
coherent splitting, since flat shading is rarely used in
our applications.

5 Results

In our main application, the animation system, there
was no noticeable difference in frame rate when run-



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

8

9

Fig. 8. Thin triangles that are generated during adaptive refinement are aligned to the direction of minimum curvature
Fig. 9. A triangulated plane, undergoing a strong sine-shaped deformation. First and third row: mesh rendered as-is; second
and fourth row: dynamically refined mesh. Ridges are smoothed out in the curved areas of the refined mesh. The Gouraud-
shaded model also exhibits less shading artifacts and crisper highlights

ning with or without dynamic refinement. This was
to be expected in a simulation context, where the
computational load is mainly caused by the evalu-
ation of the physics model and not by the render-
ing stage. Figure 10 shows a detail of the deformed
mouth region during animation. The rendered mesh
is visibly smoothed, reducing shading artifacts and
improving the silhouette of the opened mouth. The
achieved frame rate of 60 fps does not differ notica-
bly between static and refined rendering. Obviously,
the increased rendering time per triangle will lead

to a significant drop in the frame rate for applica-
tions where rendering makes up the largest part of
the overall computation time, such as the artificial
example shown in Fig. 9. In our animation system,
increased visual quality can be gained at nearly no
cost.
In Table 1, static and dynamic mesh rendering are
compared for the two test cases depicted in Figs. 9
and 10. The first column lists the number of tri-
angles of the static mesh; in the second column,
the maximum number of triangles generated by



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

Table 1. Comparison of triangle rendering performance with
and without dynamic refinement. See text for detailed explana-
tion

#tri max. #tri t static t dyn. crt
static dyn. (ms) (ms)

face 2030 3120 1.3 3.5 1.75
plane 154 1328 0.09 2.0 2.58

the dynamic refinement during animation is shown.
Columns three and four compare the time spent in
the rendering code, with and without refinement of
the triangles to the given maximum. The last col-
umn shows the factor crt by which the rendering
time per triangle increases with dynamic refinement
switched on. All timings have been measured on
a 1.7 GHz Pentium 4 PC with a GeForce3 graphics
board.
We found that the explicit implementation of one
to two refinement levels paid off, because there is
no overhead for recursion and maintaining dynamic
data structures. This will of course only hold un-
der the assumption of a sufficiently tessellated unde-
formed mesh. Though the method could be extended
to more than two splits per edge, our experiments
have shown that this level of refinement is sufficient
for the moderate deformations our initial model ex-
periences.
When looking at the refined triangle meshes as
shown in Fig. 10, one clearly notices many long
and thin triangles. Usually, this is an indication of
a badly generated triangle mesh. Here, however, the
thin triangles are exactly what we want. Figure 8
shows that the automatically generated subtrian-
gles are aligned to the direction of minimum curva-
ture, thus mimicking the alignment of folds on real
skin.

6 Future work

We would like to extend our method in several ways.
Visual quality can be further improved by refining
the mesh along silhouette edges. To achieve this,
appropriate splitting criteria have to be developed.
Also, it would be interesting to investigate the ef-
fects of other smoothing schemes, since we cur-
rently don’t interpolate, but only approximate, the
input surface. If the input geometry has been pro-
duced from a finer mesh, one could do even better

Fig. 10. Snapshots from animation of a face mesh. Left: static
mesh (2030 triangles). Right: dynamically refined mesh. The
animation runs at approximately 60 fps on an 1.7 GHz PC in
both cases

than smoothing: detail information can be stored lo-
cally and used to place generated split vertices on
the surface, as has been exercised in multiresolution
editing.
Finally, the rendering performance can be improved
by generating retriangulations that can be encoded as
triangle strips and/or triangle fans.



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

References

1. Campagna S, Kobbelt L, Seidel H-P (1998) Directed edges:
a scalable representation for triangle meshes. J Graph Tools
3(4):1–11

2. de Boor C (1978) A practical guide to splines. Springer,
Berlin Heidelberg New York

3. DeRose T, Kass M, Truong T (1998) Subdivision surfaces
in character animation. In: Proceedings of the 25th an-
nual conference on computer graphics and interactive tech-
niques. ACM Press, New York

4. Farin G (1993) Curves and surfaces for computer aided ge-
ometric design. Academic Press, San Diego, Calif.

5. Forsey DR, Bartels RH Hierarchical B-spline refinement.
In: Proceedings of the 15th annual conference on computer
graphics and interactive techniques. ACM Press, New York

6. Haber J, Kähler K, Albrecht I, Yamauchi H, Seidel H-P
(2001) Face to face: from real humans to realistic facial
animation. In: Proceedings of 3rd Israel–Korea binational
conference on geometrical modeling and computer graph-
ics, Seoul, Korea, 11–12 October 2001

7. Hutchinson D, Preston M, Hewitt T (1996) Adaptive re-
finement for mass-spring simulation. In: Boulic R, Hegron
G (eds) Seventh international workshop on animation and
simulation. Springer, Berlin Heidelberg New York

8. Kähler K, Haber J, Seidel H-P (2001) Geometry-based
muscle modeling for facial animation. In: Proceedings,
graphics interface. National Research Council of Canada,
Ottawa

9. Kobbelt L, Bareuther T, Seidel H-P (2000) Multiresolution
shape deformations for meshes with dynamic vertex con-
nectivity. Comput Graph Forum 19(3):249–260

10. Kobbelt L, Campagna S, Vorsatz J, Seidel H-P (1998) In-
teractive multi-resolution modeling on arbitrary meshes. In:
Proceedings of the 25th annual conference on computer
graphics and interactive techniques. ACM Press, New York

11. Kumar S, Manocha D, Lastra A (1995) Interactive display
of large-scale NURBS models. In: 1995 Symposium on in-
teractive 3D graphics 1995, Monterey, Calif., 9–12 April
1995. ACM Press, New York

12. Lee Y, Terzopoulos D, Waters K (1995) Realistic mod-
eling for facial animations. In: Proceedings of the 22nd
annual conference on computer graphics and interactive
techniques. ACM Press, New York

13. Loop CT (1987) Smooth subdivision surfaces based on tri-
angles. Master’s thesis, University of Utah, Department of
Mathematics

14. Peterson JW (1994) Tessellation of NURB surfaces. In:
Heckbert P (ed) Graphics gems IV. Academic Press, Boston

15. Piegl L, Tiller W (1997) The NURBS book, 2nd edn.
Springer, Berlin Heidelberg New York

16. Rockwood A, Heaton K, Davis T (1989) Real-time ren-
dering of trimmed surfaces. In: Proceedings of the 16th
annual conference on computer graphics and interactive
techniques. ACM Press, New York

17. Schweitzer JE (1996) Analysis and application of subdivi-
sion surfaces. PhD thesis, University of Washington

18. Seo H, Magnenat-Thalmann N (2000) LoD management on
animating face models. In: Feiner S, Thalmann D (eds) Pro-
ceedings IEEE virtual reality 2000, New Brunswick, N.J.,
18–22 March 2000. IEEE Computer Society, Los Alamitos,
Calif.

19. Taubin G (1995) Estimating the tensor of curvature of a sur-
face from a polyhedral. In: Proceedings international con-
ference on computer vision. IEEE Computer Society, Los
Alamitos, Calif.

20. Van Gelder A (1998) Approximate simulation of elastic
membranes by triangulated spring meshes. J Graph Tools
3(2):21–41

21. Volino P, Magnenat-Thalmann N (1998) The SPHERIGON:
a simple polygon patch for smoothing quickly your polygo-
nal meshes. In: Proceedings of the 25th annual conference
on computer graphics and interactive techniques. ACM
Press, New York

22. Warren J (2001) Subdivision methods for geometric design.
Morgan Kaufmann Publishers. Preprint available at
http://www.cs.rice.edu/∼jwarren/papers/book.ps.gz.

23. Zorin D, Schröder P, Sweldens W (1997) Interactive mul-
tiresolution mesh editing. In: Proceedings of the 24th an-
nual conference on computer graphics and interactive tech-
niques. ACM Press, New York

Photographs of the authors and their biographies are given on
the next page.



K. Kähler et al.: Dynamically refining animated triangle meshes for rendering

KOLJA KÄHLER graduated
in 1996 with a master’s in com-
puter science from the Techni-
sche Universität Berlin, Ger-
many. He has then been em-
ployed in the computer graphics
industry, working on virtual real-
ity applications, and also gained
hands-on experience in the im-
plementation of real-time char-
acter animation in a game de-
velopment context. In 1999, he
joined the graphics group at the
Max-Planck-Institut für Infor-
matik in Saarbrücken, Germany,

where he is currently pursuing his PhD. His research interests
focus on the generation of animated face models from scan
data, head growth simulation using anthropometric information,
modeling facial muscles, and physics-based simulation of skin
deformations.

JÖRG HABER is a senior
researcher at the Max-Planck-
Institut für Informatik in Saar-
brücken, Germany. He received
his master’s (1994) and PhD
(1999) degrees in mathematics
from the Technische Universität
München, Germany. During the
last seven years, he did research
in various fields of computer
graphics and image processing,
including global illumination
and real-time rendering tech-
niques, scattered data approxi-
mation, and lossy image com-

pression. For the last two years, his major research interests
concentrate on modeling, animation, and rendering of human
faces.

HANS-PETER SEIDEL is
the scientific director and chair
of the computer graphics group
at the Max-Planck-Institut für
Informatik and a professor of
computer science at Saarland
University, Saarbrücken, Ger-
many. He is an adjunct professor
of computer science at the Uni-
versity of Erlangen, Germany,
and at the University of Water-
loo, Canada.
Seidel’s current research inter-
ests include computer graphics,
geometric modeling, freeform

curves and surfaces, surface reconstruction, efficient polygo-
nal meshes, mesh reduction, multiresolution modeling, image
synthesis, global illumination computations, image-based and
hardware-accelerated rendering, facial simulation and anima-
tion, visualization of complex medical and engineering data, 3D
image analysis and synthesis, and foundations of virtual reality.
He has published some 150 technical papers in the field and has
lectured widely on these topics. He has regularly served on var-
ious editorial boards and on the technical program committees
of some of the leading computer graphics conferences such as
ACM SIGGRAPH, Eurographics, Graphics Interface, and Pa-
cific Graphics. He has received various grants from the German
National Science Foundation (DFG), the German Federal Gov-
ernment (BMBF), the European Community (EU), NATO, and
the German–Israel Foundation (GIF), among others.


