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Abstract

In view of increasing collections of available 3D motion capture (mocap) data, the task of automatically annotating

large sets of unstructured motion data is gaining in importance. In this paper, we present an efficient approach

to label mocap data according to a given set of motion categories or classes, each specified by a suitable set of

positive example motions. For each class, we derive a motion template that captures the consistent and variable

aspects of a motion class in an explicit matrix representation. We then present a novel annotation procedure,

where the unknown motion data is segmented and annotated by locally comparing it with the available motion

templates. This procedure is supported by an efficient keyframe-based preprocessing step, which also significantly

improves the annotation quality by eliminating false positive matches. As a further contribution, we introduce a

genetic learning algorithm to automatically learn the necessary keyframes from the given example motions. For

evaluation, we report on various experiments conducted on two freely available sets of motion capture data (CMU

and HDM05).

Categories and Subject Descriptors (according to ACM CCS):
Information Storage and Retrieval [H.3.3]: Information Search and Retrieval—Three-Dimensional Graphics and
Realism [I.3.7]: Animation—

1. Introduction

The usage of prerecorded human 3D motion capture (mo-
cap) data to create naturally looking motion sequences
has become a standard procedure in computer animation
[PB02, AFO03, KG04, CH05, CHP07]. Current data-driven
motion controllers allow for generating a wide range of
task-specific motion sequences satisfying additional spatial
and temporal constraints. Most of the proposed controllers
are built upon carefully compiled sets of prototype motions
that cover the desired range of tasks and execution modes.
Acquisition and capturing of suitable motions for building
up such specialized data sets is a labor and cost intensive
task [CHP07]. Therefore, various strategies have been de-
scribed to reuse previously recorded motions stored in a
database. In this context, a thorough and reliable annotation
of the stored motions is of great importance. Even though
there is a rapidly growing corpus of freely available mocap
data [CMU03,MRC∗07], there is still a lack of efficient sys-
tems that automatize the annotation process without manual
intervention. Here, one main challenge is to deal with sig-

nificant spatial as well as temporal variations that may be
present in semantically related motions [KG04, Mül07]. For
a discussion of related work, we refer to Sect. 2.

In this paper, we present a system for automatically and
efficiently annotating large unstructured collections of mo-
cap data. Given an unknown mocap document, the annota-
tion task consists of segmenting the document into logical
units and then locally classifying each segment according to
a given set of motion classes. Here, note that the problem of
locally annotating unknown motion data on the subsegment
level is a much harder task than globally comparing and clas-
sifying motion data on the document level. In our annotation
scenario, we assume that each motion class is specified by a
set of semantically related example motions which reflect
the range of spatio-temporal variations appearing in valid
motion realizations. As motion class representation, we re-
vert to the concept of motion templates (MTs) as introduced
by Müller et al. [MR06]. Such templates capture common as
well as varying aspects of the underlying training motions in

c© The Eurographics Association 2009.



M. Müller, A. Baak, H.-P. Seidel / Efficient and Robust Annotation of Motion Capture Data

an explicit and semantically interpretable matrix representa-
tion.

As a first main contribution of this paper, we describe a
novel MT-based annotation procedure to segment and la-
bel an unknown motion document on the basis of a given
set of motion classes. Here, an assigned label corresponds
to the motion class that best explains the respective motion
segment. Unlike previous work, our annotation procedure
shows a high degree of robustness to large numerical differ-
ences that may exists between semantically related motions
(i. e., motions that belong to the same motion class). Fur-
thermore, we show how the annotation procedure can be as-
sisted by a keyframe-based search algorithm, which not only
efficiently narrows the set of candidate motions related to a
specific motion class but also improves the annotation qual-
ity by eliminating false positive matches. Intuitively, we first
prune the unknown motion document using a fast keyframe-
based search. Hereafter, the MT-based annotation procedure
is conducted only on a small subset of the document.

As another major contribution of this paper, we describe
a genetic algorithm that allows for learning characteristic
keyframes in a fully automatic evolutionary process using
positive and negative example motions. Finally, to demon-
strate the practicability of our overall annotation procedure,
we describe various experiments conducted on motion docu-
ments obtained from the two freely available motion capture
databases HDM05 [MRC∗07] and CMU [CMU03].

The remainder of this paper is organized as follows. We
discuss related work (Sect. 2) and review the concept of mo-
tion templates (Sect. 3). Then, in Sect. 4, we describe our
novel MT-based annotation procedure. In Sect. 5, we show
how efficiency and precision can be significantly improved
by employing a keyframe-based preselection step. Further-
more, in Sect. 6, we introduce a genetic algorithm for de-
riving the necessary keyframes from positive and negative
example motions. Finally, in Sect. 7, we report on our ex-
periments and conclude in Sect. 8 with prospects on future
work.

2. Related Work

In the last years, various retrieval and classification algo-
rithms have been proposed to automate the annotation pro-
cess, see, e. g., [WCYL03,KPZ∗04,KG04,LZWM05,FF05,
MRC05, MR06]. Here, the main difficulty arises from the
fact that semantically similar motions may reveal signif-
icant numerical differences [KG04, Mül07]. Most of the
above cited procedures use motion representations that are
semantically close to the raw data. Here, problems oc-
cur when one has to cope with strong pose deformations
within a class of logically related motions. Approaches such
as [LZWM05, MRC05] absorb spatial and temporal varia-
tions already on the feature level, which then allows for a
more robust and efficient motion comparison. In our anno-
tation procedure, we use the concept of motion templates

as introduced by Müller et al. [MR06], which allows for
grasping the essence of an entire class of motions within an
explicit matrix representation. Several approaches to clas-
sification and recognition of motion patterns are based on
HMMs, which are also a flexible tool to capture spatio-
temporal variations, see, e. g., [BH00]. Temporal segmenta-
tion of motion data can be viewed as another form of anno-
tation, where consecutive, logically related frames are orga-
nized into groups, see, e. g., [BSP∗04].

The use of prerecorded motion capture data to create new
realistic motions has become a standard technique in data-
driven computer animation, see, e. g., [PB02,AFO03,KG04,
CH05, CHP07]. In view of motion synthesis applications,
one needs specialized and controlled data sets which are
often obtained from manually annotated material. For ex-
ample, Rose et al. [RCB98] group similar example motions
into “verb” classes to synthesize new, user-controlled mo-
tions by suitable interpolation techniques. For synthesizing
new motions from motion graphs, Kovar et al. [KGP02] al-
low the use of annotation constraints. Arikan et al. [AFO03]
propose a semi-automatic annotation procedure, where a
user is required to annotate only a small portion of the
database. The user annotations are then generalized to the
entire database in a framewise fashion using SVM classi-
fiers. Our annotation approach differs from their approach
in various ways. First, our annotation strategy is segment-
based instead of frame-based, thus resulting in semantically
more meaningful units. Second, using concepts such as re-
lational features and dynamic time warping, our approach is
more robust to spatial and temporal variations than the one
by Arikan et al. [AFO03], where normalized joint positions
and fixed temporal windows are used. Finally, our strategy
is to learn the necessary class representations (motion tem-
plates, keyframes) only once prior to the actual annotation
step. Based on these representations, the annotation can then
be performed very efficiently on large and arbitrary sets of
mocap documents.

3. Motion Templates

We now review the concept of motion templates, as in-
troduced by Müller et al. [MR06]. As underlying feature
representation, relational features are employed to capture
semantically meaningful boolean relations between speci-
fied points of the kinematic chain underlying the mocap
data [MRC05]. The main point is that even though relational
features discard a lot of detail contained in the raw motion
data, important information regarding the overall configura-
tion of a pose is retained. In the following, we use a set of
f = 40 relational features, where the first 39 features are de-
fined as in [MR06] and the last feature expresses whether the
angular velocity of the root orientation is high or not.

Now, given a class C consisting of γ ∈ N example mo-
tions, such as the four motions from the class ‘sitDownFloor’
shown in Fig. 1 (a), the goal is to automatically learn a mo-
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Figure 1: (a) Selected frames from four different motions of the class ‘sitDownFloor’. (b) Resulting boolean feature matrices

for selected relational features (numbered in accordance with the features defined in [MR06]). The columns represent time in

frames (using 30 fps), whereas the rows correspond to boolean features encoded as black (0) and white (1). (c) Class MT for

‘sitDownFloor’ based on the γ = 4 training motions shown in (a). (d) Corresponding quantized class MT.

tion class representation that grasps the essence of the class.
One starts by computing the relational feature vectors for
each of the γ motions. Denoting the length of a given mo-
tion by K, the resulting sequence of feature vectors can be
thought of as a feature matrix X ∈ {0,1} f×K as shown in
Fig. 1 (b), where, for the sake of clarity, we display a subset
comprising only eleven of the f = 40 features.

Next, a semantically meaningful average over the γ fea-
ture matrices is computed. To cope with temporal variations
in the example motions, an iterative warping and averaging
algorithm is employed, which converges to an output matrix
XC referred to as a motion template (MT) for the class C. The
matrix XC has real-valued entries between zero and one and
has a length (number of columns) corresponding to the av-
erage length of the training motions. Fig. 1 (c) shows a mo-
tion template obtained from γ = 4 motions of the class ‘sit-
DownFloor’. The important observation is that black/white
regions in a class MT indicate periods in time (horizontal
axis) where certain features (vertical axis) consistently as-
sume the same values zero/one in all training motions, re-
spectively. By contrast, colored regions indicate inconsisten-
cies mainly resulting from variations in the training motions.
In other words, the black/white regions encode characteristic
aspects that are shared by all motions, whereas the colored
regions represent the class variations coming from different
realizations. Finally, one obtains a quantized MT by replac-
ing each entry of XC that is below a quantization threshold
δ by zero, each entry that is above 1 − δ by one, and all
remaining entries by a wildcard character ∗ indicating that
the corresponding value is left unspecified, see Fig. 1 (d).
In our annotation experiments (Sect. 7), we use the thresh-
old δ = 0.05, which has turned out to yield a good trade-
off between robustness to motion variations and discrimina-
tive power. Only in the keyframe-based learning procedure,
where quantized MTs are employed to initialize a learning
procedure to derive hard keyframe constraints, we use the
strict quantization threshold δ = 0, see Sect. 6.

4. Annotation Procedure

As basis for our annotation procedure, we introduce a dis-
tance function that reveals all motion subsegments of an un-
known mocap document D associated with a given motion
class C. Let X ∈ {0,1,∗} f×K be the quantized class MT of
C of length K and Y ∈ {0,1} f×L the feature matrix of D of
length L. We first define a cost measure cQ, which allows for
comparing the kth column X(k) of X and the ℓth column Y (ℓ)
of Y , k ∈ [1 : K], ℓ ∈ [1 : L]. Let I(k) := {i ∈ [1 : f ] | X(k)i 6=
∗}, where X(k)i denotes the ith entry of the kth column of X .
Then, if |I(k)| > 0, we set

c
Q(k, ℓ) =

1

|I(k)| ∑
i∈I(k)

|X(k)i −Y (ℓ)i|, (1)

otherwise we set cQ(k, ℓ) = 0. In other words, cQ(k, ℓ) only
accounts for the consistent entries of X with X(k)i ∈ {0,1}
and leaves the other entries unconsidered. Based on this cost
measure, we define a distance function ∆ : [1 : L]→R∪{∞}
between X and Y using dynamic time warping (DTW):

∆(ℓ) :=
1

K
min

a∈[1:ℓ]

(

DTW
(

X , Y (a : ℓ)
)

)

, (2)

where Y (a : ℓ) denotes the subsequence of Y starting at index
a and ending at index ℓ∈ [1 : L]. Furthermore, DTW(X ,Y (a :
ℓ)) denotes the DTW distance between X and Y (a : ℓ) with
respect to the cost measure cQ. To avoid degenerations in
the DTW alignment, we use the modified step size condition
with step sizes (2,1), (1,2), and (1,1) (instead of the classi-
cal step sizes (1,0), (0,1), and (1,1)). Note that the distance
function ∆ can be computed efficiently using dynamic pro-
gramming. For details on DTW and the distance function,
we refer to [Mül07]. The interpretation of ∆ is as follows: a
small value ∆(ℓ) for some ℓ∈ [1 : L] indicates that the subse-
quence of Y starting at frame aℓ (with aℓ ∈ [1 : ℓ] denoting the
minimizing index in Eq. (2)) and ending at frame ℓ is sim-
ilar to the class MT X . In other words, looking for all local
minima in ∆ below a suitable quality threshold τ > 0 one can
identify all subsegments of D closely correlating to the class
C. As example, Fig. 2 (a) shows a distance function based
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Figure 2: (a) Distance functions ∆ based on the quantized

class MT ‘sitDownFloor’ (b) Corresponding modified dis-

tance function ∆̄τ for τ = 0.13.

on the quantized MT for the class ‘sitDownFloor’. Note that
there are two local minima having a value close to zero that
reveal the two ‘sitDownFloor’ subsegments contained in the
mocap document.

Recall that a local minimum ∆(ℓ) close to zero only indi-
cates the end frame of a subsegment of D corresponding to
the class C. We now modify the distance function in such a
way that all frames k ∈ [aℓ : ℓ] of the subsegment are distin-
guished by assigning to them the same distance value ∆(ℓ).
Furthermore, only those frames should be considered that
closely correlate to C. To this end, we introduce a quality
threshold τ > 0 and iteratively define a modified distance
function ∆̄τ : [1 : L]→ R∪{∞}. First, we set ∆̄τ(k) =∞ for
all k ∈ [1 : L]. Then, iterating over all local minima ℓ∈ [1 : L]
of ∆ below τ, we define ∆̄τ(k) for k ∈ [aℓ : ℓ] to be the
minimum of the hitherto defined value ∆̄τ(k) and ∆(ℓ), see
Fig. 2 (b).

The basic idea of our annotation procedure is to locally
compare a mocap document with the various class motion
templates and then to annotate all frames within a suitable
motion segment with the label of the motion class that best
explains the segment. Let D be an unkown mocap document
of length L and let C1, . . .CP be the motion classes used for
the annotation, where p ∈ [1 : P] denotes the label of class
Cp. In our procedure, we compute a modified distance func-
tion ∆̄τ

p for each class Cp as described above. We then min-
imize the resulting functions over all class labels p ∈ [1 : P]
to obtain a single function ∆min : [1 : L] → R∪{∞}:

∆min(ℓ) := min
p∈[1:P]

∆̄τ
p(ℓ), (3)

ℓ ∈ [1 : L]. Furthermore, we store for each frame the mini-
mizing index p ∈ [1 : P] yielding a function ∆arg : [1 : L] →
[0 : P] defined by:

∆arg(ℓ) := argmin
p∈[1:P]

∆̄τ
p(ℓ), (4)

where ∆arg(ℓ) is set to 0 in case ∆min(ℓ) = ∞ (and to the
minimal class label number to break a tie). In principle, the
function ∆arg yields the annotation of the mocap document
D by means of the class labels p ∈ [1 : P]. Here, a value 0
means that the corresponding frame is left unannotated.

For a first illustrative example, we use the P = 15 classes
indicated by Table 1. Fig. 3 (a) shows the resulting 15 mod-
ified distance functions ∆̄τ

p with τ = 0.13 in a color-coded

 

 

500 1000 1500 2000 2500

neutral
tpose
move

turn
sitLieDown

standUp
hopOneLeg

jump
kick

punch
rotateArms

throwR
grabDepR
cartwheel

exercise
0

0.02

0.04

0.06

0.08

0.1

0.12

500 1000 1500 2000 2500

exercise
cartwheel
grabDepR

throwR
rotateArms

punch
kick

jump
hopOneLeg

standUp
sitLieDown

turn
move
tpose

neutral

500 1000 1500 2000 2500

exercise
cartwheel
grabDepR

throwR
rotateArms

punch
kick

jump
hopOneLeg

standUp
sitLieDown

turn
move
tpose

neutral

 

 

500 1000 1500 2000 2500

neutral
tpose
move

turn
sitLieDown

standUp
hopOneLeg

jump
kick

punch
rotateArms

throwR
grabDepR
cartwheel

exercise
0

0.02

0.04

0.06

0.08

0.1

0.12

500 1000 1500 2000 2500

exercise
cartwheel
grabDepR

throwR
rotateArms

punch
kick

jump
hopOneLeg

standUp
sitLieDown

turn
move
tpose

neutral

(a)

(b)

(c)

(d)

(e)

Figure 3: (a) Modified distance functions (color coded) for

each class. White regions indicate distance values larger

than τ = 0.13 (b) Red blocks: Resulting annotations induced

by ∆arg. Black blocks: Ground truth annotations. (c) Result

after extending (b). (d) Modified distance functions using

keyframes as preprocessing step. (e) Annotation result using

keyframes.

form for a given mocap document D of length L = 2800
frames (≈ 93 seconds). The resulting annotations are shown
in Fig. 3 (b), where the color red corresponds to the automat-
ically generated annotations induced by ∆arg and the color
black corresponds to manually generated ground-truth an-
notations. See Sect. 7 for a further discussion and evaluation
of our annotation results.

In the following, a maximal run of consecutive frames an-
notated by the same label is referred to as segment. Note
that our procedure cuts the document D into disjoint seg-
ments, where some of these may be very short. For example,
the ‘standUp’ annotation segment around frame 1500 com-
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prises only 13 frames (≈ 1/3 sec). This is due to the fact that
the beginning of the actual ‘standUp’-motion (actor is sit-
ting) is annotated as ‘sitLieDown’. This makes sense since
the beginning of the ‘standUp’ motion semantically overlaps
with the end of the previous ‘sitLieDown’-motion, where
the actor is sitting down. To allow for overlapping annota-
tions and semantically meaningful segments (i.e., segments
that represent a complete motion of the corresponding class),
we further extend the annotated segments as follows: Sup-
pose that the frames with indices [s : t], s, t ∈ [1 : L], s ≤ t,
have been annotated with the class label p ∈ [1 : P], i. e.,
∀ℓ ∈ [s : t] : ∆arg(ℓ) = p. Then, let r ≤ s be the minimal in-
dex such that ∆̄p is monotonously increasing (or constant)
on the interval [r : s]. Similarly, let u ≥ t be the maximal in-
dex such that ∆̄p is monotonously decreasing (or constant)
on the interval [t : u]. Then all frames with indices in the
interval [r : u] will also be annotated with p, see Fig. 3 (c).

5. Keyframe-based Preselection

As indicated by Fig. 3 (c), our annotation procedure may
yield a number of false positive annotations. For example,
the motion class ‘grabDepR’, which consists of right hand
grabbing and depositing motions, causes a number of con-
fusions with other classes. The reason is that grabbing and
depositing motions are short motions and possess only few
characteristic aspects—basically, the right hand is moving
and nothing else happens in a consistent way. This leads to a
rather unspecific class MT, which reveals small distances to
many motion fragments that are actually part of other motion
classes. To cope with this problem, we introduce an addi-
tional keyframe-based preprocessing step. For example, for
the class ‘grabDepR’ one may use a few keyframes enforc-
ing that both feet do not move while the right hand moves
to the front (before grabbing) and is then pulled back (af-
ter grabbing). Using such additional keyframe constraints
allows for eliminating a large number of false positive an-
notations and, additionally, for significantly speeding up the
annotation procedure.

In the following, a keyframe query (V,d) of length N con-
sists of a sequence V = (V1, . . . ,VN) of keyframes and a
sequence d = ((dmin

1 ,dmax
1 ), . . . ,(dmin

N−1,d
max
N−1)) of distance

parameters. Here, a keyframe is specified by a vector Vn ∈
{0,1,∗} f , n ∈ [1 : N], which describes characteristic rela-
tions of a specific pose. Such a keyframe can be thought of as
a column of a quantized motion template, see Fig. 4. Further-
more, the tuple (dmin

n ,dmax
n ) ∈ N0 ×N0 with dmin

n ≤ dmax
n ,

n ∈ [1 : N −1], specifies the admissible distance (in frames)
of the neighboring keyframes Vn and Vn+1. We say that a
motion segment is relevant with respect to a keyframe query
(V,d) if it exhibits feature vectors matching the keyframe
vectors given by V in the correct order within the distance
bounds specified by d.

Now, let us return to our annotation procedure where the
objective is to annotate an unknown mocap document D
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Figure 4: (a): Three characteristic key poses in a skier exer-

cise motion. (b): Motion template of the skier class. Columns

that directly correspond to the key poses are marked green.

(c): Keyframe query.

with respect to given motion classes Cp, p ∈ [1 : P]. For
the moment, we assume that a characteristic keyframe query
(Vp,dp) is available for each class Cp. (In Sect. 6, we show
how such keyframe queries can be learned automatically
from example motions.) In a preprocessing step, we extract
all motion segments from D that are relevant with respect
to (Vp,dp). This is done by employing the keyframe-based
search algorithm as introduced by Baak et al. [BMS08],
which allows for explicitly controlling the degree of admis-
sible deformations between the queried keyframes, while
being efficient using an inverted file index. Then, the dis-
tance function ∆p is computed on the relevant segments only
(setting the value to ∞ for the irrelevant frames). The re-
sulting reduction is illustrated by comparing (d) with (a)
of Fig. 3: the additional white regions in (d) correspond to
irrelevant information masked out by the keyframe search.
The annotations obtained from (d) are shown in Fig. 3 (e).
Note that the keyframe-based preselection has several ben-
efits. First, using additional constraints allows for eliminat-
ing many false positive annotations. Furthermore, the index-
based retrieval step is ideally suited to cut down the search
space to relevant subsegments, thus significantly speeding
up and drastically reducing memory requirements in the sub-
sequent steps. For details on the keyframe search algorithm
we refer to [BMS08]. The effect of the keyframe-based pre-
processing step on the annotation quality and performance is
discussed in Sect. 7.

6. Keyframe Learning Algorithm

To improve and accelerate the overall annotation procedure,
one has to carefully select and design the keyframe queries.
On the one hand, since the keyframes are used as hard con-
straints in a query, the keyframes should generalize well to
avoid a large number of false negatives in the preprocess-
ing step. On the other hand, the keyframes must have a
high discriminatory power to yield the desired pruning and
data reduction capability. In this section, we describe how
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characteristic keyframe queries can be learned automatically
from positive and negative example motions using a ran-
domized genetic algorithm. Generally, such algorithms are
population-based optimization techniques to find approxi-
mate solutions to optimization problems [Poh99].

As in the case of motion templates, we assume a set of
positive example motions T + representing a motion class C.
Additionally, we assume a set of negative example motions
T − that discriminate the class C to other motion classes.
Then, the goal is to generate a keyframe query (V,d) yield-
ing characteristic constraints shared by all motions belong-
ing to C but not by motions from other classes. In other
words, a keyframe search with (V,d) conducted on the set
T = T + ∪T − should return exactly T +.

Our keyframe learning algorithm following the general
paradigm of evolutionary algorithms [Poh99] is described
in the following. A population consists of a set of indi-

viduals that represent candidate solutions for the optimiza-
tion problem. In our scenario, an individual is a keyframe
query Ind = (V,d). We measure the quality or the fitness

of an individual in terms of precision and recall evaluating
the individual on the example motions. More precisely, let
H(Ind) ⊆ T denote the mocap documents retrieved by the
keyframe query Ind. The precision P(Ind) and recall R(Ind)
are defined as follows:

P(Ind) :=
|H(Ind)∩T +|

|H(Ind)|
, R(Ind) :=

|H(Ind)∩T +|

|T +|
.

Then, the fitness Fitβ(Ind) with respect to a weighting pa-
rameter β is defined by the weighted F-measure

Fitβ(Ind) :=
(1+β2) · (P(Ind) ·R(Ind))

(β2 ·P(Ind)+R(Ind))
.

In view of our annotation application, we want to avoid false
negatives in the preprocessing step possibly at the cost of
precision. We therefore stress the recall value by setting
β = 2. Here, note that even in case of a low precision in
the keyframe-based preprocessing step, the subsequent MT-
based annotation step may eliminate most of the false posi-
tives.

For the start of the optimization, we generate an initial
population Π0 consisting of M of individuals. To this end, we
first compute a quantized motion template X ∈ {0,1,∗} f×K

from T + for a motion class C using a strict quantization
threshold δ = 0, see Sect. 3. Recall that X reveals the consis-
tent aspects of the example motions and expresses character-
istic properties of the class C. However, using the columns
of X directly as keyframes does not account for the negative
training examples in T −. Our idea is to use the motion tem-
plate only for the initialization and then successively refine
the keyframes. To this end, for each of the M initial indi-
viduals we first choose a number N of keyframes using a
normally distributed random number generator with a mean
of 3. Then, to define a keyframe query (V,d), we randomly
pick N columns of X to define the keyframes V1, . . . ,VN . The

distance parameters are initialized based on the distances of
the chosen keyframes admitting some randomly chosen tol-
erance.

After the initialization, the three genetic operations re-
ferred to as selection, recombination, and mutation are used
to iteratively breed a new population from a given popula-
tion. Let Πg, g ∈ N0, denote the current population. Then,
using the concept of universial stochastic sampling, we se-
lect r individual from Πg, which are referred to as parents.
In the recombination step, the keyframes of any two of these
parents are combined to derive new individuals, referred to
as offsprings. To this end, we randomly chose a number
of keyframes of each of the two parents and merge these
keyframes to from a single keyframe sequence. The novel
distance parameters are determined similarly to the initial-
ization step. To avoid an early convergence of the optimiza-
tion procedure towards a poor local optimum, one additional
modifies the offsprings by suitable random operations re-
ferred to as mutations. In our case, an offspring is mutated
by randomly choosing and applying one of the following op-
erations:

• Add or remove a randomly chosen keyframe.
• Specialize (i.e., change ∗ to 0 or 1) or generalize (i.e.,

change a value 0 or 1 to ∗) a randomly chosen keyframe.
• Randomly increase and decrease the values in d.

After the recombination and mutation step, we obtain r(r−1)
2

offsprings. We arrange the M individuals of Πg and the
r(r−1)

2 offsprings in a sorted list with decreasing fitness. Fi-

nally, the new population Πg+1 is obtained by picking the
M fittest individuals from this list. This entire procedure is
iterated for g = 1, . . . ,G, where G denotes a fixed number of
generations. The fittest individual of ΠG is the solution of
the optimization procedure.

In our implementation the population size is set to M =
50, the number of parents to r = 5, and the number of
generations to G = 100. The exact values of these param-
eters, which have been determined experimentally, are not
of crucial importance for the final result. However, as typ-
ical for evolutionary algorithms, different runs of the over-
all procedure may result in significant differences between
the keyframes of the various solutions. Therefore, for each
motion class, we run the overall genetic algorithm several
times (in our experiments 100-500 times) and then pick an
individual with keyframes that most frequently occur in the
solutions. Further implementation details and running times
of the genetic algorithm are discussed in Sect. 7.

7. Experiments

We implemented the learning and annotation algorithms in
Matlab while passing time critical parts to subroutines im-
plemented in C/C++. The computations were performed on
an AMD Athlon X2 5000+ with 3.5 GB of RAM. For our
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Class ID class description

C1 neutral stand in a neutral position, hands lowered

C2 tpose stand in t-pose, hands horizontally extended

C3 move 2 steps (starting left or right, walk, jog, run, . . .)

C4 turn turn around left or right

C5 sitLieDown sit down on chair or floor, kneel, lie down on floor

C6 standUp stand up from chair or floor

C7 hopOneLeg jump with left or right leg

C8 jump jump with both feet, jumping jack

C9 kick kick to front or side with left or right leg

C10 punch punch to front or side with left or right hand

C11 rotateArms rotate both or single arms front or back

C12 throwR throw an item with right hand, sitting or standing

C13 grabDepR grab or deposit with right arm high, middle, low

C14 cartwheeel cartwheel with left or right hand starting

C15 exercise elbow to knee, skier, squat

Table 1: The 15 motion classes used in our experiments.

experiments, we assembled an evaluation dataset consist-
ing of 109 mocap documents having an average length of
40 seconds each. The total length amounts to roughly 74
minutes (133019 frames at 30 Hz). To illustrate the scal-
ability of our annotation procedure, we used mocap data
from two different sources: 60 minutes where drawn from
the HDM05 database [MRC∗07] and 14 minutes from the
CMU database [CMU03]. We manually annotated all 109
documents on the subsegment level according to the 15
classes described in Table 1. These classes were assembled
with respect to the actions performed in the HDM05 mo-
tion database. To illustrate the practicability of our annota-
tion procedure, we used various kinds of classes including
rather general motion classes such as ‘move’, more special-
ized classes such as ‘cartwheel’, and rather uncharacteristic
classes such as ‘grabDepR’. Here, the more general classes
are assembled from various subclasses. For instance, four
different subclasses (sit down on chair or floor, kneel, lie
down on floor) contribute to the class ‘sitLieDown’. To ob-
tain the annotations on the class level, one can simply com-
bine the annotations on the subclass level. At this point, we
emphasize that the particular choice of the motion classes
is not of crucial importance. The choice was driven by the
availability of the mocap data and by our motivation to give
a comprehensive demonstration of the algorithms’ perfor-
mance (even in the presence of more critical classes such
as ‘grabDepR’). The concepts presented in this paper are
generic in the sense that the underlying set of motion classes
may easily be extended or modified to satisfy a user’s spe-
cific needs.

Prior to the actual annotation step, we need to learn
the motion templates and keyframe queries for each of the
classes Cp, p ∈ [1 : P]. To this end, we assembled a training
database of 24 minutes total length (42586 frames), which
consists of nine example motions for each class, serving as
T +

p , respectively. These example motions were manually cut
out from additional HDM05 documents that are disjoint to
all evaluation documents. In a first step, the relational fea-
tures, which are needed for learning the motion templates as

20 40 60 80 100
0

0.2
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0.8

1

Number of iterations

Figure 5: Average precision (black), recall (red), and fitness

(green) of the learnt keyframe queries evaluated on the train-

ing data as a function of the number of iterations used in the

genetic algorithm.

well as the keyframe queries, are computed and stored for
the entire training examples (taking 137 seconds for the 24
minutes of data). From the features, we computed the quan-
tized class motion templates using an iterative warping and
averaging algorithm (see Sect. 3), which took roughly 3 sec-
onds on average for each MT. To learn the keyframe queries,
we also need negative example motions for each class. Here,
we simply define T −

p to be the union of all example motions

that do not belong to the class Cp: T −
p =

⋃

q∈[1:P]\p T
+

q .
Applying the genetic operations in an iterative fashion leads
to significant improvements of the keyframes. As illustra-
tion we refer to Fig. 5, which shows the discriminative of
the learnt keyframes over the iterations in terms of average
precision, recall, and fitness (using Fit2) on the training data.
Here, averages are taken over the individuals of a popula-
tion and over all motion classes. Remember that for the ini-
tialization of the keyframe queries, we pick columns from a
quantized MT. Using a quantization threshold δ = 0 (being
very strict to variations in the training data), this quantized
MT typically contains many wildcard characters. On the one
hand, the so-chosen queries have a recall close to one on
the training data, but on the other hand, the discriminative
power against other classes is low, yielding a small precision
value. We chose this strategy to steer the generated keyframe
queries to a high recall with the goal to avoid false negative
annotations in the preprocessing step. During the iterations,
keyframe queries are refined and tuned towards a higher fit-
ness. As seen in Fig. 5, a strong increase in the precision
leads to the improvement in the fitness of the queries, at cost
of a small decrease in recall.

Using the genetic algorithm with the parameters as speci-
fied in Sect. 6, it took roughly 10 seconds on average to learn
a keyframe query for a given motion class. Since we run
the overall genetic algorithm several times (100-500 times)
to derive more characteristic keyframes, running time in-
creases by a corresponding factor. Recall that for computing
the fitness of an individual, one needs to perform a keyframe-
based retrieval on the 24-minute training database. On aver-
age, the retrieval time was roughly 3 milliseconds. This op-
eration has to be performed several thousand times for each
run of the genetic algorithm. After computing the motion
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templates and keyframe queries, these class representations
are stored on hard disc for later usage.

Having completed the preprocessing step, our annota-
tion procedure allows for efficiently annotating arbitrary and
large sets of unknown mocap documents according to the
given set of motion classes (or subsets thereof). To automati-
cally annotate our evaluation database (109 documents, total
length of 74 minutes), we proceed as follows. First, we ex-
tract the relational features and index the mocap documents
using a standard inverted file index [MRC05]. In our imple-
mentation, the feature extraction takes roughly 250 seconds,
whereas the indexing takes 4 seconds. Using the purely MT-
based annotation procedure as described in Sect. 4, it takes
305 seconds to annotate the 109 documents (here, the index
structure is not needed). Applying the keyframe-based pres-
election (Sect. 5), the running time of the overall annotation
procedure decreases to 20 seconds, amounting to a speedup
factor of more than 15. Here, processing a single keyframe
query on the 74-minute evaluation database takes on aver-
age only 4 milliseconds (using the index structure), which is
negligible compared to the MT-based annotation step.

The keyframe-based preselection step not only yields a
significant speedup of the overall annotation procedure, but
also has a considerable impact on the final annotation qual-
ity. This is affirmed by our experiments, where we quali-
tatively evaluated various variants of our annotation proce-
dure. To this end, we compared the automatically generated
annotations with manually generated ground truth annota-
tions by means of two different performance measures. As
first measure, we consider precision and recall values on the
frame level. More precisely, for a given mocap document D

of length L we define the sets

M(D) := {(ℓ, p)| frame ℓ manually annotated by p} and (5)

A(D) := {(ℓ, p)| frame ℓ automatically annotated by p}, (6)

where (ℓ, p) ∈ [1 : L]× [1 : P]. In other words, the set M(D)
describes the manually generated or relevant annotations,
whereas the set A(D) describes the automatically generated
or retrieved annotations produced by our procedure. Then,
precision and recall of our annotation procedure are ex-
pressed by

P1(D) := |M(D)∩A(D)|
|A(D)|

and R1(D) := |M(D)∩A(D)|
|M(D)|

. (7)

Furthermore, let

F1(D) := 2P1(D)R1(D)
P1(D)+R1(D)

(8)

be the resulting F-measure. Note that P1(D) = 1 in case of all
retrieved annotations being among the relevant annotations
(no “false positive”), whereas R1(D) = 1 in case of all rel-
evant annotations being retrieved. The frame-based perfor-
mance measure F1 may be problematic, since the beginning
and ending of a motion of a specific class is often ambigu-
ous. For example, consider a mocap document showing a
person who sits down on a chair and remains seated for a

P1 R1 F1 P2 R2 F2

total
without keyframes 0.48 0.78 0.60 0.57 0.91 0.70
with keyframes 0.69 0.79 0.74 0.78 0.88 0.82

HDM
without keyframes 0.49 0.80 0.61 0.61 0.91 0.73
with keyframes 0.70 0.80 0.75 0.80 0.88 0.83

CMU
without keyframes 0.41 0.75 0.53 0.39 0.90 0.54
with keyframes 0.66 0.74 0.70 0.65 0.91 0.76

Table 2: Various performance measures for our MT-based

annotation procedure without and with keyframe-based pre-

selection.

long time. Then, it is not clear where exactly to set the end
frame when manually annotating the document with respect
to the class ‘sitDownChair’. Also certain motion transitions
from one class to another (e.g., from ‘move’ to ‘turn’) can of-
ten not be exactly specified. To account for such ambiguities,
we use a second performance measure by considering preci-
sion and recall on the segment level. Here, we only check
for overlaps of a manually annotated motion segment and
an automatically generated segment both bearing the same
class label p. We then define the segment-based precision
P2(D), recall R2(D), and F-measure F2(D) analogously to
the frame-based case. Note that the segment-based measures
are more tolerant to smaller deviations in the annotations
than the relatively strict frame-base measures. Therefore, the
actual annotation quality is described well by the range de-
fined by the values F1(D) and F2(D).

To compute the performance measures on the entire eval-
uation database, we simply concatenated the 109 documents
to form a single document and applied the above calculation
steps, where we performed our annotation procedure with-
out as well as with the keyframe-based preselection step.
The results are shown in Table 2. For example, the preci-
sion P1 without using keyframes is 0.48 and increases sig-
nificantly to 0.69 when using our automatically computed
keyframe queries. At the same time, the recall R1 slightly
increases from 0.78 to 0.79. While the increase in precision
is expected when using keyframes, the increase in recall is
somewhat surprising at first sight. Here, one reason is that
by eliminating false positives, some of the relevant annota-
tions that have previously been “overlayed” by false positive
annotations emerge when using our minimization strategy,
see Eq. (3). This again demonstrates that the keyframe-based
preselection step eliminates a large number of false positive
annotations while not loosing (or even yielding) relevant an-
notations. Fig. 6 shows some representative examples For
example, note that the false positive annotations from the
rather unspecific class ‘grabDepR’ could be eliminated using
the keyframes. Next, consider the segment between frames
50 and 150 in Fig. 6 (b). Here, the actor shouts out having
both hands raised in front of the mouth. As this motion is
not related to any of the employed 15 classes, no manual
annotation has been generated for these frames. Without us-
ing keyframes, our automatic procedure considers them most
similar to either a ‘throwR’ or a ‘grabDepR’ motion. Us-
ing keyframes as hard constraints, these false positives are
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Figure 6: Influence of the use of keyframes on the over-

all annotation result. Upper row: annotation result without

keyframes. Lower row: annotation result with keyframes.

eliminated. As a consequence, the precision values receive
a significant boost. In the accompanied video, we show ani-
mated videos of the presented annotation results along with
the performed actions.

As expected, the segment-based precision and recall val-
ues are higher than the frame-based values, see Table 2. For
example, using keyframes, one has P2 = 0.78 (opposed to
P1 = 0.69). In other words, only 22% of the retrieved an-
notated segments are false positives. For the segment-based
recall, one obtains R2 = 0.88 (opposed to R1 = 0.79). Here,
only 12% of the relevant annotations are missing. Note that
the frame-based performance measures are generally too
strict whereas the segment-based ones are generally too tol-
erant. So, in summary, the actual performance of our over-
all annotation procedure can be described by the two F-
measures F1 = 0.74 (being pessimistic) and F2 = 0.82 (being
optimistic).

As was mentioned above, the HDM05 mocap data used
for training is not contained in the evaluation data. How-
ever, the various motions corresponding to a specific class,
even though performed by various actors executed with sig-
nificant variations, are still somewhat controlled by general
performance specifications. We therefore also evaluated our
procedure on CMU documents containing at least some sub-
segments corresponding to our 15 classes. Table 2 shows the
various performance measures separately for the HDM05
and CMU documents. Due to significant motion variations
in the CMU data, some of which are not well reflected by the
HDM05 training material, one has a decline in performance.
For example, the F-measures of our overall procedure for the
CMU data (F1 = 0.70, F2 = 0.76) are a bit lower than for the
HDM05 data (F1 = 0.75, F2 = 0.83.

Fig. 7 depicts representative annotation results for both
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Figure 7: Representative annotation results for two HDM05

((a),(b)) and two CMU ((c),(d)) documents.
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Figure 8: Impact of the quality threshold τ on the frame-

based (left) and segment-based (right) performance mea-

sures (using the annotation procedure with keyframe-based

preselection). Black: precision. Red: recall. Green: F-

measure.

HDM05 and CMU documents. The annotation of a more
problematic CMU document is shown in Fig. 7 (d). Here,
the motion segment around frame 1000 erroneously received
the annotation ‘rotateArms’. A manual inspection shows
that this segment actually consists of several arm swings—
a motion type that is not reflected in the 15 motion class-
ges used for the annotation. Furthermore, an exercise mo-
tion (around frame 400) was not annotated. Here, it turned
out that the motion did not satisfy the keyframe constraints
learned from HDM05 data. The performed actions can be
reviewed in the accompanied video. On our project home-
page http://www.mpi-inf.mpg.de/resources/MocapAnnotation we
show videos along with the manual and automatic annota-
tions of all 109 evaluation documents.

In all of the above experiments, we used the quality
threshold τ = 0.13. Actually, the choice of τ influences the
quality of the overall annotation result. Note that a small
value of τ poses a stronger condition on what to consider
similar, thus leading to higher precision and lower recall,
while a large value of τ has the opposite effect. To find a
good trade-off of having high precision as well as high recall,
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we computed the various performance measures for different
values of τ, see Fig. 8. Our final choice of τ = 0.13 is moti-
vated by the request of having high recall values possibly at
the expense of some additional false positive annotations.

8. Conclusions

In this paper, we presented a robust and efficient procedure
for annotating large collections of unknown motion capture
material. Using motion templates, we are able to identify
logically related motions even in the presence of signifi-
cant numerical differences. Using keyframe queries, we are
able to efficiently prune the search space and to eliminate
false positives. As a further contribution, we showed how
characteristic keyframes can be learned from positive and
negative training motions using a genetic algorithm. We re-
ported on various experiments to demonstrate the practica-
bility of our annotation procedure. Our concept is generic
in the sense that it allows a user to easily adapt and modify
the annotation types simply by exchanging the underlying
motion classes. Because of their explicit semantic interpre-
tation, even a manual design or tuning of motion templates
and keyframes is feasible in case no suitable example mo-
tions are available. For the future, we plan to apply our anno-
tation procedure to efficiently generate suitable prior knowl-
edge as needed to stabilize and support human motion track-
ing [BRCS06]. Another application we have in mind is to
apply our concept for automatically annotating various types
of gesture as needed for generating gesture animations for
novel text [NKAS08].
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