
An Efficient Multiscale Approach to Audio Synchronization

Meinard Müller Henning Mattes Frank Kurth
Department of Computer Science, University of Bonn

Römerstraße 164, 53117 Bonn, Germany

meinard@cs.uni-bonn.de, henning1000@gmx.de, frank@cs.uni-bonn.de

Abstract

We present an efficient and robust multiscale DTW (Ms-

DTW) approach to music synchronization for time-aligning

CD recordings of different interpretations of the same piece.

The general strategy is to recursively project an alignment

path computed at a coarse resolution level to the next higher

level and then to refine the projected path. As main contribu-

tions, we address several crucial issues including the design

and specification of robust and scalable audio features, suit-

able local cost measures, MsDTW levels, constraint regions,

as well as sampling rate adaptation and structural enhance-

ment strategies. Extensive experiments on Western classi-

cal music show that our MsDTW-based algorithm yields the

same alignment result as the classical DTW-based strategy

while significantly reducing the running time and memory

requirements. Even for pieces of a duration of 10 to 15 min-

utes, the alignment (based on previously extracted feature

sequences) can be computed in less than a second.

Keywords: audio synchronization, alignment, multiscale,

chroma feature

1. Introduction

For one and the same piece of music, there often exists a

large number of CD recordings representing different inter-

pretations by various musicians. In particular for Western

classical music, these interpretations may exhibit consider-

able deviations in tempo, note realizations, dynamics, and

instrumentation. For example, a music database may con-

tain for Beethoven’s Fifth Symphony some interpretations

by Karajan and Bernstein, some historical recordings by

Furthwängler and Toscanini, Liszt’s piano transcription of

Beethoven’s Fifth played by Sherbakov and Glenn Gould,

or some synthesized version of a corresponding MIDI file.

Then, the goal of audio synchronization is to automatically

generate alignments between corresponding note events be-

tween different interpretations. These alignments can be

used to jump freely between different audio recordings, thus

affording efficient and convenient music browsing.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

c© 2006 University of Victoria

In the last few years, several alignment strategies have

been proposed, see, e. g., [3, 4, 8, 10, 12, 13] and the refer-

ences therein. Most of these approaches rely on some vari-

ant of dynamic time warping (DTW). However, due to the

quadratic time and space complexity, DTW-based strategies

become infeasible for long pieces. To reduce the computa-

tional cost, Salvador et al. [11] propose for general time se-

ries a multiscale DTW (MsDTW) approach that recursively

projects an alignment path computed at a coarse resolution

level (using coarse features, e.g., obtained by averaging and

downsampling) to the next higher level and then refines the

projected path. One hazard with this approach is that an

incorrect alignment on a low resolution level propagates to

higher levels resulting in erroneous alignment results. This

hazard is fostered by the fact that coarsening the features

can lead to heavily deteriorated cost matrices, as is also il-

lustrated by Fig. 4 (a)-(c). Dixon et al. [3] describe a lin-

ear time DTW approach based on forward path estimation.

Further related work will be discussed in the respective sec-

tions.

In this paper, we describe an MsDTW approach to effi-

cient as well as robust audio synchronization. In Sect. 2,

the general ideas of MsDTW are summarized. In Sect. 3,

we then propose solutions to several crucial issues of Ms-

DTW including the design of robust and scalable audio fea-

tures, specification of suitable local cost measures, adapta-

tion strategies for the feature sampling rate, determination of

MsDTW resolution levels and constraint regions, as well as

enhancement strategies of DTW cost matrices. We then re-

port on our extensive experiments based on a wide range of

classical music demonstrating the practicability of our algo-

rithm. Furthermore, the synchronization results have been

integrated in our audio player [5] and sonified for evaluation,

see Sect. 4. For some audio demos we refer to www-mmdb.

iai.uni-bonn.de/projects/MsDTWsync.

2. General Multiscale Approach

In this section, we summarize the main ideas of classical

DTW and MsDTW. Let X := (x1, x2, . . . , xN) and Y :=
(y1, y2, . . . , yM) be two feature sequences with xn, ym ∈
F , n ∈ [1 : N], m ∈ [1 : M], where F denotes a suitable

feature space. Furthermore, let c : F × F → R denote

a local cost measure on F . The resulting (N × M)-cost

matrix C is defined by C(n,m) := c(xn, ym).

2.1. Classical DTW

DTW is a well-known technique to align X and Y with re-

spect to the cost measure c. Recall that a warping path is

a sequence p = (p1, . . . , pL) with pℓ = (nℓ,mℓ) ∈ [1 :
N]×[1 : M] for ℓ ∈ [1 : L] satisfying 1 = n1 ≤ n2 ≤ . . . ≤
nL = N and 1 = m1 ≤ m2 ≤ . . . ≤ mL = M (bound-

ary and monotonicity condition), as well as pℓ+1 − pℓ ∈
{(1, 0), (0, 1), (1, 1)} (step size condition). The total cost of

p is defined as
∑L

ℓ=1
c(xnℓ

, ymℓ
). Then, an optimal warping

path between X and Y is given by a warping path p∗ hav-

ing minimal total cost among all possible warping paths. To

determine such an optimal path, one recursively computes

an (N × M)-matrix D, where the matrix entry D(n,m) is

the total cost of an optimal path between (x1, . . . , xn) and

(y1, . . . , ym). In the following, we denote a matrix entry

D(n,m) as cell. Introducing an additional weight vector

(wd, wh, wv) ∈ R
3 yields the recursive definition

D(n,m) := min











D(n − 1,m − 1) + wd · c(xn, ym),

D(n − 1,m) + wh · c(xn, ym),

D(n,m − 1) + wv · c(xn, ym),

for n,m > 1. Furthermore, D(n, 1) :=
∑n

k=1
wh·c(xk, y1)

for n > 1, D(1,m) =
∑m

k=1
wv · c(x1, yk) for m > 1,

and D(1, 1) := c(x1, y1). Note that in the unweighted case

(wd, wh, wv) = (1, 1, 1) one has a preference of the diag-

onal alignment direction, since one diagonal step (cost of

one cell) corresponds to the combination of one horizontal

and one vertical step (cost of two cells). To counterbalance

this preference, we chose (wd, wh, wv) = (2, 1.5, 1.5) (still

slightly favoring the diagonal direction). Now, p∗ can be de-

rived from D in some linear fashion, see [9] for details. The

overall computational cost is proportional to the number of

cells D(n,m) to be computed during this process leading to

a time and space complexity of O(NM).

2.2. Multiscale DTW (MsDTW)

To speed up DTW computations, one common strategy is

to impose a global constraint region R ⊆ [1 : N] × [1 :
M] on the possible warping paths (e. g., Itakura parallelo-

gram, Sakoe-Chiba band), thus limiting the number of cells

needed to be computed, see [9]. However, the usage of

global constraint regions is problematic, since the optimal

warping path may leave the specified region. In other words,

let p∗
R

denote the optimal warping path with respect to R,

then p∗
R

may differ from p∗, see Fig. 1. A second strategy

is to reduce the feature sampling rate (also referred to as di-

mensionality reduction or data abstraction), thus reducing

the lengths N and M of the sequences to be synchronized.

However, the resulting optimal warping path becomes in-

creasingly inaccurate or even completely useless as the res-

olution decreases, see Fig. 4 for an illustration. MsDTW

employs these two strategies in some iterative fashion to

generate data-dependent constraint regions. We summarize

(a) (b) (c)

Figure 1. (a) Optimal warping path p∗

2 on Level 2. (b) Opti-

mal warping path p∗

R with respect to the constraint region R
obtained by projecting path p∗

2 to Level 1. (Here, p∗

R does not

coincide with the (unconstrained) optimal warping path p∗.)

(c) Optimal warping path p∗

Rδ using an increased constraint

region Rδ ⊃ R with δ = 2. Here, p∗

Rδ = p∗.

the main ideas and refer to [11] for details. For a similar

approach, applied to melody alignment we refer to [1].

Let X1 := X and Y1 := Y be the sequences to be syn-

chronized having lengths N1 := N and M1 = M , respec-

tively. It is the objective to compute an optimal warping

path p∗ between X1 and Y1. The highest resolution level

will also referred to as Level 1. By reducing the feature

sampling rate by a factor f2 ∈ N, one obtains sequences X2

of length N2 := N1/f2 and Y2 of length M2 := M1/f2.

(Here, we assume that f2 divides N1 and M1, which can be

achieved, e. g., by suitably padding X1 and Y1.) Next, one

computes an optimal warping path p∗2 between X2 and Y2

on the resulting resolution level (Level 2). This path is pro-

jected onto Level 1 and there defines a constraint region R.

Note that R consists of L2 × f2
2 cells, where L2 denotes the

length of p∗2. Finally, an optimal alignment path p∗
R

relative

to R is computed. We say that this procedure is successful,

if p∗ = p∗
R

. The overall number of cells to be computed in

this procedure is N2M2 + L2 · f
2
2 , which is generally much

smaller than the total number N1M1 of cells on Level 1.

In an obvious fashion, this procedure can be recursively ap-

plied by introducing further levels of decreasing resolution.

For a complexity analysis, we refer to [11].

The constraint path p∗
R

may not coincide with the optimal

path p∗. To alleviate this problem, one can increase the con-

straint region R—at the expense of efficiency—by adding

δ cells to the left, right, top, and bottom of every cell in R
for some parameter δ ∈ N. The resulting region Rδ will be

referred to as δ-neighborhood of R, see Fig. 1.

3. MsDTW Audio Synchronization

The multiscale approach to DTW constitutes a general frame-

work to speed up computations. In view of robustness, ef-

ficiency, and practicability of the resulting synchronization

procedure, however, one has to specify several important pa-

rameters. In this section, we describe and discuss the design

choices for our audio synchronization algorithm and report

on our experiments. To avoid incorrect alignments even in

extreme situations we sketch a strategy for structural en-

hancement of the cost matrix, which works even at very low

resolution levels, see Sect. 3.5.

0

1

C

0

1

C
#

0

1

D

0

1

D
#

0

1

E

0

1

F

0

1

F
#

0

1

G

0

1

G
#

0

1

A

0

1

A
#

0 2 4 6 8 10 12 14 16 18 20
0

1

B

Figure 2. The first 21 seconds of Bernstein’s interpretation of

Beethoven’s Fifth Symphony. The light curves represent the lo-

cal chroma energy distributions (10 features per second). The

dark bars represent the CENS features (1 feature per second).

3.1. Audio Features

Previous studies have shown that chroma-based audio fea-

tures are well suited to characterize harmony-based music,

see [2, 4, 7]. Representing the spectral energy of each of

the 12 traditional pitch classes of the equal-tempered scale,

chroma features do not only account for the close octave re-

lationship in both melody and harmony as it is prominent in

Western music, but also introduce a high degree of robust-

ness to variations in timbre and articulation [2]. Since differ-

ent interpretations typically exhibit significant variations in

such parameters, chroma-based features are well-suited for

audio synchronization leading to robust and accurate align-

ments, see [4].

There are various ways to compute chroma features, e. g.,

by suitably pooling spectral coefficients obtained from some

short-time Fourier transform [2] or by suitably summing

up pitch subbands obtained as output after applying some

pitch-based filter bank [7]. For details, we refer to the lit-

erature. In our implementation, we convert an audio signal

into a sequence X = (x1, x2, . . . , xN) of normalized 12-

dimensional feature vectors xn ∈ [0, 1]12, 1 ≤ n ≤ N ,

which express the local energy distribution in the 12 chroma

classes. Here, we use a feature sampling rate of 10 Hz,

where each feature vector xn covers 200 ms of audio with

an overlap of 100 ms. This rate, which will constitute the

finest resolution level, turns out to be sufficient in view of

our intended applications.

For our multiscale approach, we need a computationally

inexpensive way to adjust the feature resolution. Instead

of simply modifying the analysis window in the chroma

computation, we introduce a second, much larger statistics

window (covering w consecutive chroma vectors) and con-

sider short-time statistics of the chroma energy distribution

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

0

0.5

1

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

1

1.5

2

Figure 3. Optimal warping path based on the cost measure cα

with α = 0 (left) and α = 1 (right).

over this window. This again results in a sequence of 12-

dimensional vectors, which is then downsampled by a fac-

tor of q and renormalized with respect to the Euclidean norm

(hence being invariant towards variations in dynamics). For

example, w = 41 and q = 10 yields a feature sampling rate

of 1 Hz, where each feature vector represents information

of the audio signal within a window of 4200 ms. The re-

sulting feature sequence will be referred to as CENS(w, q)
sequence (Chroma Energy Normalized Statistics). Simi-

lar features have been applied in the audio matching sce-

nario and are described in detail in [7]. Note that by mod-

ifying the parameters w and q, one can adjust the feature

granularity and sampling rate without repeating the cost-

intensive chroma computations. Fig. 2 shows the result-

ing chroma and CENS(41, 10) features sequences extracted

from a Bernstein interpretation of Beethoven’s Fifth.

3.2. Local Cost Measure

The normalized chroma and CENS features are elements in

F := [0, 1]12. To compare two features x, y ∈ F , we use the

cost measure cα : F×F → [0, 1]+α defined by cα(x, y) :=
1 − 〈x, y〉 + α for some offset α ∈ R≥0. (Note that 〈x, y〉
is the cosine of the angle between x and y, since x and y are

normalized.) The offset α is introduced for the following

reason. Audio recordings often contain long segments of

little variance such as pauses or sustained chords. This leads

to rectangular regions in the cost matrix, also referred to as

plateaus. If α = 0, all cells within a plateau reveal some

cost close to zero. Being close to zero, there may be large,

more or less random relative differences among the costs

of these cells (e. g., one cell has cost 0.01 and another one

0.001). As a result, one obtains an uncontrollable run of

the optimal warping path within a plateau. By increasing

α, the relative differences decrease, whereas the absolute

differences are retained unchanged (e. g., for α = 1, one cell

has cost 1.01 and another one 1.001). As a consequence,

the effect of the weight vector (wd, wh, wv) as introduced

in Sect. 2.1 becomes more dominant. For the parameters

(wd, wh, wv) = (2, 1.5, 1.5) and α = 1, which have turned

out to be suitable in our experiments, the diagonal direction

receives a slight but stable preference in plateau regions, see

Fig. 3. In the following, we set c := c1.

Table 1. Specification of the features used in our MsDTW au-

dio synchronization system.

Level Feature Resolution Factor

1 Chroma 10 Hz -
2 CENS(41, 10) 1 Hz 10
3 CENS(121, 30) 1/3 Hz 3
4 CENS(271, 90) 1/9 Hz 3

Table 2. Total running time (for 363 synchronization pairs)

against the number of levels used in the MsDTW algorithm

based on the features of Table 1.

Run time \ Levels 1 1 − 2 1 − 3 1 − 4
tCells [s] 1434.0 78.5 67.6 67.2
tCENS [s] 0.0 16.5 24.7 29.8
tMsDTW (absolute) [s] 1434.0 95.0 92.3 97.0
tMsDTW (relative) [%] 100 6.62 6.44 6.76

3.3. Resolution Levels and δ-Neighborhood

As described in Sect. 3.1, the chroma features at a time res-

olution of 10 Hz constitute the basic resolution (Level 1) of

our audio synchronization. The CENS features, which can

be efficiently derived from the chroma features, are used at

the lower resolution levels. To determine a suitable number

of levels as well as the resolutions at each level used in the

MsDTW, we conducted comprehensive experiments. We re-

port on some experiments that are based on the features in-

dicated by Table 1. For our tests, we used 363 pairs of CD

recordings, where each pair corresponds to two different in-

terpretations of the same piece. The recordings have a dura-

tion of 3 to 20 minutes and cover a wide range of classical

music, see Table 5 for examples. In a preprocessing step, we

computed and stored the chroma features of all recordings.

For each test series, we performed an audio synchronization

for all 363 pairs. The algorithms have been implemented in

C/C++ and tests were run on an Intel Pentium M, 1.7 GHz,

1 GByte RAM, under Windows XP.

In one test series, we used classical DTW on Level 1

and MsDTW based on the first two, three, and four lev-

els. In all these cases we used δ = 30, see the discus-

sion below. The resulting running times are shown in Ta-

ble 2. The DTW-based strategy required 1434.0 seconds to

synchronize all of the 363 pairs. In contrast, the two-level

MsDTW-based strategy required tCENS = 16.5 seconds to

compute the CENS(41, 10)-features used for Level 2, and

tCells = 78.5 seconds to compute all required cells on the

two levels, amounting to a total running time of tMsDTW =
95.0 seconds—only 6.62% of the running time of classical

DTW. Similarly, it took 92.3 and 97.0 seconds when us-

ing the three-level and four-level MsDTW-based strategy,

respectively. In particular, we obtained the lowest total run-

ning time for three levels. Using a fourth level indeed fur-

ther decreased the total number of cells to be evaluated,

but the computational overhead due to the additional CENS

Table 3. Running time, absolute and relative error against the

size of the δ-neighborhood and adaptive neighborhood based

on a three-level MsDTW.

Run time \ δ 0 10 20 30

tCells [s] 29.3 41.6 54.6 67.6

tCENS [s] 25.0 24.7 24.6 24.7

tMsDTW (absolute) [s] 54.3 66.3 79.2 92.3

tMsDTW (relative) [%] 3.79 4.62 5.52 6.44

Error (absolute) 92 27 6 0

Error (relative) [%] 25.34 7.44 1.65 0

features needed at Level 4 deteriorated the overall result.

Also introducing additional intermediate levels had only a

marginal effect on the overall running time. We therefore

use three multiscale levels as default setting in our audio

synchronization system.

For our evaluation, we use the DTW-alignment (uncon-

strained warping path) as ground truth and check whether

the MsDTW-alignment (constrained warping path) entirely

coincides with the DTW-alignment (then MsDTW is called

successful, see Sect. 2.2) or not (then MsDTW produces

an error). In another test series, we evaluated different δ-

neighborhoods for a three-level MsDTW. Table 3 shows the

performance for δ = 0, 10, 20, 30. For δ = 0, in 92 of

the 363 cases the MsDTW-based strategy was not success-

ful (corresponding to an error rate of 25.34%). Increasing

δ leads to an increase of the running time and a decrease of

the error rate. For δ = 30, all 363 pairs have been success-

fully aligned by the MsDTW strategy. The running time to

evaluate the cells has increased from tCells = 29.3 seconds

(δ = 0) to tCells = 67.6 seconds (δ = 30)— a moderate

increase with regard to the total running time. For our audio

synchronization system, we therefore use δ = 30 as default.

3.4. Experimental Results

In this section, we discuss some representative experimen-

tal results based on the three-level MsDTW with δ = 30.

For these parameters, as was reported above, the audio syn-

chronization has been successful for all of the 363 pairs

of audio recordings. Table 5 shows a selection of these

recordings including complex orchestral pieces having a du-

ration of 3 to 20 minutes. Some of the interpretations sig-

nificantly differ in tempo, instrumentation, and articulation.

For example, Sacchi’s interpretation of Schubert’s Unfin-

ished is much faster (817 seconds) than Solti’s interpreta-

tion (951 seconds). Or, there is an orchestral as well as

a piano version (piano transcription) of Beethoven’s Fifth

and Wagner’s Prelude, respectively. Furthermore, the Mae

interpretation of Vivaldi’s spring includes many additional

ornamentations, which can not be found in the Zukerman

interpretation. In view of such significant variations, the

CENS(41, 10) features as used on Level 2 constitute a good

Table 4. Performance of the implementation of our MsDTW-based audio synchronization algorithm for a representative selection

of recordings using three-levels and δ = 30. For each level, the total number of cells (DTW) as well as the number of cells to be

evaluated by MsDTW are indicated. The last three columns show a comparison of the DTW and MsDTW running times.

Synchronization Number of cells to be evaluated by DTW and MsDTW in each level Total run time[s]

Recording 1 Recording 2 Level 1 Level 2 Level 3 Levels 1-3

Id 1 Length [s] Id 2 Length [s] DTW MsDTW [%] DTW MsDTW [%] DTW DTW MsDTW [%]

Beet9Bern 1144.9 Beet9Kar 1054.8 120808050 2117929 1.75 1209030 17657 1.46 134464 31.18 1.08 3.46

RavBolAbb 862.5 RavBolOza 901.0 77737897 1694610 2.18 778426 14121 1.81 86688 20.04 0.80 3.99

Schub8Sac 817.3 Schub8Sol 950.8 77736075 1704150 2.19 777918 14322 1.84 86541 20.01 0.80 3.99

Dvo9Maaz 704.2 Dvo9Franc 710.7 50068752 1356308 2.71 501255 11295 2.25 55695 12.85 0.60 4.67

WagPreArm 595.0 WagPreGould 576.9 34337270 1124029 3.27 343892 9387 2.73 38407 8.85 0.48 5.42

Beet5Bern 519.0 BeLi5Sher 444.1 23068056 923444 4.00 231400 7721 3.34 25926 5.84 0.37 6.34

Beet5Bern 519.0 Beet5Kar 443.9 23052480 923028 4.00 230880 7716 3.34 25752 5.87 0.38 6.47

SchosJazzCha 223.6 SchosJazzYab 193.6 4335306 394259 9.09 43456 3291 7.57 4875 1.11 0.15 13.51

VivSpringMae 192.5 VivSpringZuk 218.9 4217940 389034 9.22 42267 3261 7.72 4745 1.07 0.13 12.15

ElgEnigDel 91.8 ElgEnigSino 93.1 856508 167699 19.58 8648 1404 16.23 992 0.22 0.06 27.27

Table 5. Some audio recordings (with identifier) contained in

our test database comprising 33 hours of audio.

Composer / piece / interpreter Identifier
Beethoven / Symph. 5, Op. 67, 1st mov. / Bernstein Beet5Bern
Beethoven / Symph. 5, Op. 67, 1st mov. / Karajan Beet5Kar
Beeth. (Liszt) / Symph. 5, Op. 67, 1st mov. (piano) / Sherbakov BeLi5Sher
Beethoven / Symph. 9, Op. 125, 4th mov. / Bernstein Beet9Bern
Beethoven / Symph. 9, Op. 125, 4th mov. / Karajan Beet9Kar
Dvorak / Symph. 9, Op. 95, 1st mov. / Francis Dvo9Franc
Dvorak / Symph. 9, Op. 95, 1st mov. / Maazel Dvo9Maaz
Elgar / Op. 36, Andante (Enigma) / Del Mar ElgEnigDel
Elgar / Op. 36, Andante (Enigma) / Sinopoli ElgEnigSino
Ravel / Bolero / Abbado RavBolAbb
Ravel / Bolero / Ozawa RavBolOza
Schubert / Symph. 8, D759, 1st mov. (Unfinished) / Sacchi Schub8Sac
Schubert / Symph. 8, D759, 1st mov. (Unfinished)/ Solti Schub8Sol
Shostakovich / Jazz Suite No. 2, 6th mov. (Waltz) / Chailly SchosJazzCha
Shostakovich / Jazz Suite No. 2, 6th mov. (Waltz) / Yablonsky SchosJazzYab
Vivaldi / RV 269 (Spring), 1st mov. / Mae VivSpringMae
Vivaldi / RV 269 (Spring), 1st mov. / Zukerman VivSpringZuk
Wagner / Meistersinger Prelude / Armstrong WagPreArm
Wagner / Meistersinger Prelude (piano) / Gould WagPreGould

compromise between reasonable feature resolution, compu-

tational efficiency and robustness of the alignment result.

(Actually, in situations where one has significant differences

in note realizations—e. g., one interpreter plays a sustained

chord whereas another interpreter plays an ornamentation—

the alignment on a finer resolution level may not even be

semantically meaningful.)

The increase in performance of our MsDTW-based audio

synchronization in comparison to a classical DTW-based

approach is illustrated by Table 4. For example, to synchro-

nize ‘Beet9Bern’ and ‘Beet9Kar’ only 1.75% of the cells

on Level 1 have to be evaluated by MsDTW, decreasing the

memory requirements roughly by a factor of 57. Here, note

that the overall memory requirement is proportional to the

maximal number of cells needed to be evaluated at some

level. The number of additional cells needed to be com-

puted at Levels 2 and 3 is comparatively small. The overall

running time (including the CENS feature computation) to

synchronize the two recordings (each version having a dura-

tion of almost 20 minutes) was 1.08 seconds—nearly thirty

times faster than classical DTW. Obviously, the relative sav-

ings increase with the lengths of the pieces.

3.5. Enhancing Cost Matrices

We have also conducted experiments with manually distorted

and highly repetitive audio material, which constitutes an

extreme scenario for MsDTW. As one example, we used

the first 22 seconds of an Cabrera interpretation of Bach’s

Toccata BWV 565, where the theme is repeated three times

at three different octaves. We generated an audio file, re-

ferred to as ‘Bach12’, by concatenating four copies of this

segment, resulting in 12 repetitions of the theme. We then

generated a time-warped version of ‘Bach12’, referred to

as ‘Bach12Warp’, by locally increasing and decreasing the

tempo up to 50 percent. The cost matrix using CENS(41, 10)
and the resulting optimal warping between ‘Bach12’ and

‘Bach12Warp’ is shown in Fig. 4 (a). Now, reducing the

feature sampling rate leads to a heavily deteriorated cost

matrix, where the repetitions cannot be resolved any longer.

This, in turn, results in absurd optimal warping paths on the

lower resolution levels, see Fig. 4 (b) and (c).

To alleviate this problem, we improve the structural prop-

erties of the cost matrix by incorporating contextual infor-

mation into the local cost measure, see [6]. Intuitively, the

idea is to enhance the diagonal path structure of the 2D cost

matrix by applying a local 1D low-pass filter along the di-

agonals (having gradient (1, 1)). Note that this process only

works if corresponding segments of the two audio record-

ings reveal the same tempo progression. To account for

tempo differences in the two interpretations, the idea is to

simultaneously filter along different directions (in our im-

plementation we used eight different gradients in a neigh-

borhood of (1, 1), which cover tempo variations of roughly

−30 to +40 percent) and then to take the minimum over

the filter outputs. The technical details of this approach are

described in [6]. The effect of this enhancement strategy,

which allows to reduce the feature sampling rate without

completely destroying the structural properties of the cost

20 40 60

90

80

70

60

50

40

30

20

10

10 20 30

45

40

35

30

25

20

15

10

5

5 10 15

22

20

18

16

14

12

10

8

6

4

2

20 40 60

90

80

70

60

50

40

30

20

10

10 20 30

45

40

35

30

25

20

15

10

5

5 10 15

22

20

18

16

14

12

10

8

6

4

2

(a) (b) (c)

(d) (e) (f)

Figure 4. Optimal warping path between ‘Bach12’ and

‘Bach12Warp’ using CENS(41, 10) (a), CENS(81, 20) (b), and

CENS(161, 40) (c). The paths are semantically incorrect for

the two lower resolution levels. Locally filtering the cost matrix

based on CENS(41, 10) (using eight different gradients) and

downsampling by a factor 1 (d), 2 (e), and 4 (f) leads to correct

optimal warping paths even on the lower resolution levels.

matrix, is illustrated by Fig. 4 (d)-(f). Even at the lowest res-

olution level (obtained by filtering with an averaging filter

of length 8 and downsampling by a factor of 4), the optimal

warping path leads to the ‘correct’ alignment. In practice,

one has to assess the trade-off between increased computa-

tional complexity caused by the additional filtering step and

the boost of robustness and confidence due to the structural

enhancement.

4. Conclusions and Future Work

In this paper, we presented an efficient MsDTW-based ap-

proach to audio synchronization yielding stable alignments

even in the presence of significant variations. One main ap-

plication of audio synchronization is to allow for efficient

music browsing. To this end, we integrated the alignment

results into the SyncPlayer framwork [5] (an audio player

with additional retrieval and browsing functionality). Dur-

ing playback of a CD recording, SyncPlayer allows the user

to directly jump to the corresponding position of any other

interpretation of the same piece. In view of this application,

an alignment at a resolution of 10 Hz is more than sufficient.

To evaluate the absolute alignment quality achieved by our

system, we conducted the following experiment. Based on

the alignment result of two recordings, we time-warped the

second recording to run synchronously to the first record-

ing. For the warping, we used an overlap-add technique

based on waveform similarity (WSOLA) as described in

[14]. We then produced a stereo audio file containing the

mono version of the original first recordings in one channel

and a mono version of the time-warped second recording

in the other channel. Listening to this stereo audio file ex-

hibits even small temporal deviations of less than 100 ms be-

tween corresponding note events. Some representative au-

dio examples can be found at www-mmdb.iai.uni-bonn.

de/projects/MsDTWsync. Based on the synchronization

result, it is possible to continuously blend from one inter-

pretation to another one. It would be an interesting task to

employ synchronization techniques for mixing and morph-

ing different interpretations. As another task, based on our

chroma-based alignment, one can apply more refined tech-

niques and features to further enhance the alignment. Fi-

nally, we plan to develop strategies to automatically detect

critical audio segments (e. g., segments leading to plateaus),

where one can then locally switch between various synchro-

nization strategies (e. g., locally activating and deactivating

the enhancement strategy).

References

[1] N. ADAMS, D. MARQUEZ, AND G. H. WAKEFIELD, Iter-

ative deepening for melody alignment and retrieval, in Proc.

ISMIR, London, GB, 2005.

[2] M. A. BARTSCH AND G. H. WAKEFIELD, Audio thumb-

nailing of popular music using chroma-based representa-

tions, IEEE Trans. on Multimedia, 7 (2005), pp. 96–104.

[3] S. DIXON AND G. WIDMER, Match: A music alignment

tool chest, in Proc. ISMIR, London, GB, 2005.

[4] N. HU, R. DANNENBERG, AND G. TZANETAKIS, Poly-

phonic audio matching and alignment for music retrieval,

in Proc. IEEE WASPAA, New Paltz, NY, October 2003.

[5] F. KURTH, M. MÜLLER, D. DAMM, C. FREMEREY,

A. RIBBROCK, AND M. CLAUSEN, Syncplayer - an ad-

vanced system for content-based audio access, in Proc. IS-

MIR, London, GB, 2005.

[6] M. MÜLLER AND F. KURTH, Enhancing similarity matrices

for music audio analysis, in Proc. ICASSP, 2006.

[7] M. MÜLLER, F. KURTH, AND M. CLAUSEN, Audio Match-

ing via Chroma-based Statistical Features, in Proc. ISMIR,

London, GB, 2005.

[8] M. MÜLLER, F. KURTH, AND T. RÖDER, Towards an ef-

ficient algorithm for automatic score-to-audio synchroniza-

tion, in Proc. ISMIR, Barcelona, Spain, 2004.

[9] L. RABINER AND B.-H. JUANG, Fundamentals Of Speech

Recognition, Prentice Hall, 1993.

[10] C. RAPHAEL, A hybrid graphical model for aligning

polyphonic audio with musical scores, in Proc. ISMIR,

Barcelona, Spain, 2004.

[11] S. SALVADOR AND P. CHAN, FastDTW: Toward accurate

dynamic time warping in linear time and space, in Proc.

KDD Workshop on Mining Temporal and Sequential Data,

2004.

[12] F. SOULEZ, X. RODET, AND D. SCHWARZ, Improving

polyphonic and poly-instrumental music to score alignment,

in Proc. ISMIR, Baltimore, USA, 2003.

[13] R. J. TURETSKY AND D. P. ELLIS, Force-Aligning MIDI

Syntheses for Polyphonic Music Transcription Generation,

in Proc. ISMIR, Baltimore, USA, 2003.

[14] W. VERHELST AND M. ROELANDS, An overlap-add tech-

nique based on waveform similarity (WSOLA) for high qual-

ity time-scale modification of speech, in Proc. ICASSP, 1993.

