Personalization and Evaluation of a Real-time Depth-based Full Body Tracker Supplemental Material

Thomas Helten ¹ Andreas Ba	ak ¹ Gaurav Bha	araj ² Meinard I	Müller ³ Hans-	Peter Seidel ¹	Christian	Theobalt ¹
¹ MPI Informatik		² Harvard University		³ International Audio Laboratories Erlangen		
Saarbrücken, Germany		ambridge, MA, U	SA	Erlangen, Germany		
{thelten,abaak,theobalt}@mp	i-inf.mpg.de gau	urav@seas.harvard	l.edu meinard	.mueller@audio]	labs-erlange	en.de

I. Shape Eigenmatrix

We follow the approach of Hasler *et al.* presented in [1]. Here, the authors register a template mesh with P vertices into a point cloud using global and local mesh deformations. Given S laser-scans, let $\mathcal{M}_s \in \mathbb{R}^{3P}$, $s \in [1:S]$ be the stacked vertex positions of the fitted meshes. Now, we compute the average mesh

$$\overline{\mathcal{M}} = \frac{1}{S} \sum_{s=1}^{S} \mathcal{M}_s.$$
 (1)

Note that $\overline{\mathcal{M}}$ corresponds to $\mathcal{M}_{0,\boldsymbol{\chi}_0}$ in Sect. 3.1 of the paper. Then, we compute the auto correlation matrix

$$C = \frac{1}{S} \sum_{s=1}^{S} (\mathcal{M}_s - \overline{\mathcal{M}}) (\mathcal{M}_s - \overline{\mathcal{M}})^T.$$
(2)

Let Φ_s , $s \in [1:S]$ be the eigenvectors of C, sorted from most significant to least significant. A suitable eigenvectormatrix is now defined as

$$\Phi = \left[\Phi_1 \cdots \Phi_R\right],\tag{3}$$

with $R \leq S$. The corresponding shape parameter vector is denoted as $\varphi \in \mathbb{R}^{R}$.

II. Analytic Derivatives

Let $\varphi, \chi, \mathcal{M}_{\varphi,\chi}, \mathcal{N}_{\varphi,\chi}$, and Φ be defined as described in Sect. 3.1 of the paper. Furthermore, let $\Phi_{\chi_0}(p,i) \in \mathbb{R}^{3\times 1}$ be the sub-matrix of Φ that influences the *p*-th vertex of $\mathcal{M}_{\varphi,\chi}$ and is multiplied with the *i*-th shape parameter φ_i in φ . Now, we define $\Theta_{\chi}(p)[\cdot]$ to be the linear blend skinning transformation of vertex *p*, so that

$$\mathcal{M}_{\varphi,\chi}(p) = \Theta_{\chi}(p)[\mathcal{M}_{\varphi,\chi_0}(p)], \tag{4}$$

$$\mathcal{N}_{\varphi,\chi}(p) = \Theta_{\chi}(p)[\mathcal{N}_{\varphi,\chi_0}(p)], \text{ and}$$
 (5)

$$\Phi_{\boldsymbol{\chi}}(p,i) = \Theta_{\boldsymbol{\chi}}(p)[\Phi_{\boldsymbol{\chi}_0}(p,i)], \tag{6}$$

with $p \in [1 : P]$ and $i \in [1 : |\varphi|]$. Note that $\Theta_{\chi}(p)[\cdot]$ does not apply a translational offset to directional vectors such

as $\mathcal{N}_{\varphi,\chi_0}(p)$ or displacement vectors such as $\Phi_{\chi_0}(p,i)$ but only to positional vectors such as $\mathcal{M}_{\varphi,\chi_0}(p)$.

Now, let M(p), T(q), and N(p) be defined as in Sect. 3.2 of the paper. The partial derivatives of the distance functions d_{point} and d_{normal} with respect to the *i*-th shape parameter φ_i are defined as

$$\frac{\partial d_{\text{point}}(p,q)}{\partial \boldsymbol{\varphi}_{i}} = 2\langle M(p) - T(q), \Phi_{\boldsymbol{\chi}}(p,i) \rangle, \text{ and} \quad (7)$$

$$\frac{\partial d_{\text{normal}}(p,q)}{\partial \varphi_i} = 2\langle M(p) - T(q), N(p) \rangle \tag{8}$$

$$\cdot \langle \Psi_{\boldsymbol{\chi}}(p,i), N(p) \rangle.$$

Analogously, the partial derivative with respect to χ are

$$\frac{\partial d_{\text{point}}(p,q)}{\partial \boldsymbol{\chi}} = 2\langle M(p) - T(q), \mathcal{M}'_{\boldsymbol{\varphi},\boldsymbol{\chi}}(p) \rangle, \text{ and } (9)$$

$$\frac{\partial d_{\text{normal}}(p,q)}{\partial \boldsymbol{\chi}} = 2\langle M(p) - T(q), N(p) \rangle \tag{10}$$

$$\langle \mathcal{M}'_{\varphi,\chi}(p), N(p) \rangle, \text{ with}$$
$$\mathcal{M}'_{\varphi,\chi}(p) = \Theta'_{\chi}(p) [\mathcal{M}_{\varphi,\chi_0}(p)], \text{ and}$$

$$\mathcal{A}'_{\boldsymbol{\varphi},\boldsymbol{\chi}}(p) = \Theta'_{\boldsymbol{\chi}}(p)[\mathcal{M}_{\boldsymbol{\varphi},\boldsymbol{\chi}_0}(p)], \text{ and}$$
(11)
$$\Theta'(p) = \frac{\partial \Theta_{\boldsymbol{\chi}}(p)}{\partial \boldsymbol{\chi}(p)}.$$
(12)

$$\Theta'_{\chi}(p) = \frac{\partial \nabla_{\chi}(p)}{\partial \chi}.$$
 (12)

The calculation of the partial derivative $\Theta'_{\chi}(p)$ highly depends on how $\Theta_{\chi}(p)$ is represented. A good explanation for twist-based representations of $\Theta_{\chi}(p)$ —as used in our implementation—can be found, *e. g.*, in Murray *et al.* [2], Chapter 4.

References

- N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel, "A statistical model of human pose and body shape," *CGF*, vol. 28, no. 2, 2009.
 R. M. Murray, Z. Li, and S. S. Sastry, *A Mathematical*
- [2] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.