
Apparent Display Resolution Enhancement for Moving Images

Piotr Didyk1 Elmar Eisemann1,2 Tobias Ritschel1 Karol Myszkowski1 Hans-Peter Seidel1

1 MPI Informatik 2 Telecom ParisTech / CNRS-LTCI / Saarland University

Frame 1 Frame 2 Frame 3 Retina Lanczos Frame 1 Frame 2 Frame 3 Retina LanczosFrame 1 Frame 2 Frame 3 Retina Lanczos

Figure 1: Depicting fine details such as hair (left), sparkling car paint (middle) or small text (right) on a typical display is challenging and
often fails if the display resolution is insufficient. In this work, we show that smooth and continuous subpixel image motion can be used to
increase the perceived resolution. By sequentially displaying varying intermediate images at the display resolution (as depicted in the bottom
insets), subpixel details can be resolved at the retina in the region of interest due to fixational eye tracking of this region.

Abstract

Limited spatial resolution of current displays makes the depiction of
very fine spatial details difficult. This work proposes a novel method
applied to moving images that takes into account the human visual
system and leads to an improved perception of such details. To this
end, we display images rapidly varying over time along a given tra-
jectory on a high refresh rate display. Due to the retinal integration
time the information is fused and yields apparent super-resolution
pixels on a conventional-resolution display. We discuss how to find
optimal temporal pixel variations based on linear eye-movement
and image content and extend our solution to arbitrary trajectories.
This step involves an efficient method to predict and successfully
treat potentially visible flickering. Finally, we evaluate the resolu-
tion enhancement in a perceptual study that shows that significant
improvements can be achieved both for computer generated images
and photographs.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
generation—display algorithms,viewing algorithms;
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1 Introduction

Due to physical limitations of existing display devices, real-world
luminance, colors, contrast, as well as spatial details cannot be di-
rectly reproduced. Even though hardware is constantly evolving

and images are skillfully tone and gamut mapped to adapt them
to the display’s capabilities, these limitations persist. In order to
surmount the physical limitations of display devices, modern algo-
rithms started to exploit characteristics of the human visual system
(HVS) such as apparent image contrast [Purves et al. 1999] based on
the Cornsweet Illusion or apparent brightness [Zavagno and Caputo
2001] due to glare. In this work we address the problem of image
resolution and extend apparent details beyond the physical pixel
resolution of display devices by exploiting the time dimension, as
well as high refresh rates.

One context in which resolution plays a crucial role is scale-
preserving rendering. In the real world, we can clearly distinguish
individual hair strands, while such details are usually rendered much
thicker, hence affecting realism. Metallic paint, as often applied
to cars, can have sub-pixel size sparkling effects where a higher
resolution increases faithfulness. Fidelity sensitive applications (e.g.,
product design, virtual hair styling, makeup design, even surgical
simulations) suffer from such shortcomings.

Further, there is a clear mismatch between available sensors ex-
ceeding 10 mega-pixel resolution and current display capabilities.
Panorama stitching or Gigapixel images [Kopf et al. 2007] can make
such a mismatch even more profound. While zooming allows to
explore details, seeing the whole image or larger parts in full detail is
often more appealing. Downsampling to the resolution of an output
device is common practice to display such mega-pixel images, but it
filters out high-frequency spatial image details.

In computer graphics, details are easily modeled, but the image-
display stage may ruin the visual effect. This is particularly striking
for the current trend of smaller devices where resolution is often
very limited. In many cases, scrolling is used to present textual
information or larger images to the user. Our work addresses the
display of such scrolled information and increases readability.

An important aspect, not only in the context of portable devices,
is energy consumption that is linked to the increase of physical
resolution, whereas producing high-refresh rates is energy-efficient.
In particular, the upcoming OLED technology will make another
step in this direction enabling refresh rates of thousands of Hz.



In this work, we are faced with several input image pixels that
map to the same display pixel. We want to present them to the
observer without applying detail-destructive resolution adjustments.
Our main idea is to transform a high-resolution input image into
N images of the target display resolution (Fig. 2), that we call
subimages. We then render the subimages sequentially on a high
refresh rate display (120 Hz) and apply a one-pixel shift at the end
of each rendering cycle. The process is then restarted from the new
position. The result gives the impression of a smooth motion.When
an observer focuses on an interesting image detail, the eye will track
the feature and a smooth pursuit eye motion (SPEM) of matching
velocity is established. This is critical in our approach because
then the subimage details are consistently projected to predictable
locations of the fovea region which features the highest density of
cone photoreceptors in the retina. By exploiting the integration in
the human eye (both temporal, via quickly displayed subimages, and
spatial, via rigid alignment of moving and retinal images), the effect
of apparent resolution enhancement is achieved.

Motion is key to our approach because it ensures that the pixel grid
projects to different locations on the retina, which we exploit in our
approach. Consequently, there is a link between the motion direction
and the apparent resolution increase, e.g., horizontal / vertical motion
only enables horizontal / vertical improvements.
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Figure 2: Fixational eye tracking over an region of interest in com-
bination with a low-resolution image sequence leads to an apparent
high-resolution image via integration in the retina.

In this paper, we explore apparent resolution enhancement in various
motion scenarios. Our contributions are:

• An apparent resolution model for moving subimages

• A method to derive optimal subimages according to our model

• A perceptual experiment confirming our findings.

This paper is structured as follows: We present previous work and
related perceptual findings in Sec. 2. Sec. 3 introduces our model.
We describe our algorithm in Sec. 4 which addresses potential flick-
ering as detailed in Sec. 5. Our perceptual experiment is analyzed in
Sec. 6, before we conclude in Sec. 7 and 8.

2 Previous Work

We will first discuss the problem of spatial resolution enhancement
beyond the physical pixel resolution in image displays or projectors.
Particularly, we are interested in solutions that rely on active steering
of spatial and temporal signal integration in the retina which we
employ in our work as well.

Color Matrix Displays Subpixel rendering is used to increase
the image resolution by breaking the assumption that R, G, or B
channels are unified in a single pixel. If their arrangement is known,
one can use channels from neighboring pixels to increase spatial
resolution. Platt [2000] showed an optimal filtering for liquid crystal
displays (LCD), which was used in the ClearType font technology.

The resulting resolution enhancement is limited to the horizontal
direction only and works best for black-and-white text. Subpixel
rendering is advantageous for complex images as well, but saturated
colors or naı̈ve compensations of spatial color-plane misalignments
may lead to color fringes at sharp edges, as well as color moiré
patterns for high frequency textures [Messing and Kerofsky 2006].
This is underlined by Klompenhouwer and de Haan [2003] who
found that subpixel rendering shifts luminance aliasing caused by
frequencies over the display’s Nyquist limit into the chrominance
signal. For this reason, optimization frameworks are often used that
involve the precise physical layout of subpixels including inactive
or defective subpixels [Messing and Kerofsky 2006]. Hara and
Shiramatsu [2000] observe that a special pixel-color mosaic extends
the pass band of the image spectrum when moving an image with
a specific velocity across the display. However, they conclude that
no improvement can be achieved for the standard |RGB|RGB| . . .
arrangement, which is predominant in LCD displays, including the
ones considered in this work.

Color Sequential Displays Temporal integration in the HVS is
exploited for color fusion in digital light processing (DLP) video
projectors. While many devices rely on a spatial RGB-subpixel
integration, DLPs display the RGB color components sequentially
with a temporal frequency over the perceivable flickering limit of
the HVS. On the other hand, spatial color disintegration (“rainbow
effect”) can be observed, particularly for quickly moving objects of
high contrast. Also, eye saccades and SPEM may lead to this effect
because images representing different channels are displayed with
some delay and, thus, can appear misaligned on the retina.

Wobulation and Display Supersampling In wobulated projec-
tors, multiple unique slightly-shifted subimages are projected on the
screen using an opto-mechanical image shifter [Allen and Ulichney
2005], which is synchronized with the rapid subimage projection to
avoid flickering. The perceived image resolution and active pixel ar-
eas (otherwise limited by the door grid between physical pixels) are
enhanced. A similar effect is achieved by display supersampling us-
ing multiple carefully-aligned standard projectors [Damera-Venkata
and Chang 2009], where also an optimization for arbitrary (not raster
aligned) subpixel configurations is performed. Our work is simi-
lar to [Allen and Ulichney 2005] and [Damera-Venkata and Chang
2009] in the sense that a high-resolution image is transformed in a
set of low-resolution images, but we aim at a single desktop display
or projector with a limited resolution and fixed pixel layout. We
overcome these limitations by making use of SPEM that aligns with
a slow linear image motion.

Subpixel information Subpixel information acquired via subtle
camera motion has proven useful in many applications, such as
super-resolution reconstruction [Park et al. 2003] or video restora-
tion [Tekalp 1995]. In these schemes, subpixel samples from subse-
quent frames are merged into explicitly reconstructed images, which,
finally, are downsampled to match the display resolution. Note that
our problem is, in some sense, an inverse problem. We do not need to
reconstruct high frequency information because it is available in the
original content. Instead, our task is to decompose high resolution
images into low resolution subimages which are finally perceived
as a high resolution image when displayed sequentially. Our ap-
proach avoids any explicit reconstruction and relies on a perceptual
processes to ensure detail enhancement.

Krapels et al. [2005] reported better object discrimination for sub-
pixel camera panning than for corresponding static frames (inde-
pendently confirmed in [Bijl et al. 2006]). Object discrimination
improved regardless of the subpixel sensor motion rate, except for



critical velocities [Tekalp 1995, C. 13] such as a one-pixel shift.
A similar observation applies to rendering with supersampling where
several images, rendered with slightly differing camera positions,
are integrated in order to gain information. In Sec. 4 we explicitly
discuss this case and confront it with our approach, which leads to
subpixel detail visibility.

Image Resampling Displaying continuous or high resolution in-
put images on a finite, lower resolution display is a sampling prob-
lem [Mitchell and Netravali 1988]. The display image is recon-
structed by convolving the input image with a reconstruction filter
for every output pixel. Popular reconstruction filters are Lanczos
and Mitchell’s filter [Mitchell and Netravali 1988].

In our case of moving high resolution images, resampling should
first move the image and then filter, before sampling. This conforms
with previous findings from computer vision [Krapels et al. 2005].

Background on Perception

This section presents limitations of visual acuity due to the photore-
ceptor density in the retina, moving-image perception, and temporal-
flicker visibility, which are pivotal for our approach.

Spatial Visual Acuity When discussing image-details it is impor-
tant to investigate the HVS capabilities in resolving spatial detail
for existing devices [Deering 2005]. The highest anatomically de-
termined density of cones in the fovea is estimated as 28” (arc
seconds) [Curcio et al. 1990] which, according to the Nyquist’s
theorem, enables an observer to distinguish 1D sine gratings of
roughly 60 cycles/deg resolution. At the same time, the pixel size
of a typical full-HD desktop display, such as a 120 Hz Samsung
SyncMaster 2233, when observed from 50 cm distance amounts to
roughly 1.5’ (arc minutes), which means that 1 pixel covers roughly
9 cones. Further, in many situations an observer might actually be
closer to the screen, as is the case for hand-held devices. Note that
this estimate is valid for the central fovea region. The cone density
drops quickly with the eccentricity [Curcio et al. 1990]. We also
do not consider low-pass filtering, induced by the optical proper-
ties of the eye, which perfectly matches the foveal photoreceptor
density and removes frequencies that would lead to aliasing. Inter-
estingly, the HVS is still able to interpolate a feature position with
an accuracy higher than 20 % of the distance between cones in the
fovea, although this visual hyperacuity is more a localization than a
resolution task (the position of one image element must be located
relative to another, e. g., slightly shifted lines in the vernier acuity
task [Wandell 1995, p. 239]).

Perception of Linearly Moving Images The perception of mo-
tion, where information on objects moving in a 3D world is inferred
from 2D retinal images is a complex process [Wandell 1995, C. 10].
In this work, we are concerned with a simpler case of moving 2D
images that are stabilized on the retina through SPEM. As confirmed
in an eye tracking experiment [Laird et al. 2006] such a stabilization
is almost perfect for steady linear motion with velocities in the range
of 0.625–2.5 deg/s, which we consider in this work. The performance
stays very good up to 7 deg/s. SPEM initialization is a fast process
and good tracking is achieved in less than 100 ms. This is faster
than typical saccades (200 ms [Krauzlis and Lisberger 1994]), which
makes switching the tracking between moving objects with different
velocities and in different directions an easy and effortless process.
While the eye undergoes additional fixational eye movements, such
as tremors, drifts, and microsaccades, these are similar to static fixa-
tion, and it is believed that the HVS suppresses their influence on
perception [Martinez-Conde et al. 2004]. Schtz et al. [2008] reported

a 16 % increase of visual sensitivity during SPEM for foveally pre-
sented luminance stimuli of medium and high spatial frequencies
compared to the static case. This HVS mechanism serves towards
a better recognition of tracked object, which contributes to human
survival skills.

Also visual hyperacuity is maintained for moving targets at uniform
velocity in the range 0–4 deg/s [Fahle and Poggio 1981]. Moreover, an
illusory displacement can be observed when displaying two parts of
a line with a few milliseconds delay [Burr 1979] because for both tar-
gets the HVS assumes a smooth motion and their different perceived
locations are correlated with the delay between their exposure. Fahle
and Poggio [1981] stress the role of the constant velocity assumption
as an important constraint in the target position interpolation by the
HVS.

Temporal Flickering Our approach relies on a sequential display
of subpixel values, which potentially causes temporal flickering.
Due to the eye pursuit the resulting signal affects photoreceptors
with a frequency imposed by the display device refresh rate. Over
the critical flicker frequency (CFF) [Kalloniatis and Luu 2009],
flickering is not perceivable, the subpixel intensities are fused, and a
steady appearance is reached. Flickering perception is complex and
the CFF depends on many factors such as the adaptation luminance,
spatial extent of flickering pattern, and retinal region (the fovea
or periphery) at which this pattern is projected. The CFF rises
roughly linearly with the logarithm of time-averaged background
intensity (the Ferry-Porter law). The specific CFF values for different
adaptation luminance have been measured as the temporal contrast
sensitivity function [de Lange 1958] for stimuli of the spatial extent
of 2◦ (angular degrees). One important observation is that the CFF
is significantly reduced for smaller stimuli [McKee and Taylor 1984;
Mäkelä et al. 1994]. The CFF is the highest in the fovea, except for
bright adaptation conditions and large stimuli, when flickering is
better perceived at the periphery. In Sec. 5, we analyze the flickering
perceptibility specifically for viewing conditions that are relevant
for our technique.

3 Model

First, we will concentrate on a simple case of a single receptor
and a constant velocity. We then use this model to predict the
perceived image for arbitrary subpixel images. We then show how
an optimization process can be used to transform a high-resolution
input into an optimal sequence of subimages.

Photoreceptors The light response of the human photoreceptor
is a well-studied issue by neurobiophysicists [Van Hateren 2005]. In
this work, we need to rely mostly on psychophysical findings, which
take into account the interaction between photoreceptors as well as
higher-level vision processing.

One particular element is the CFF, introduced in Sec. 2. The eye has
a certain latency and rapidly changing information is integrated over
a small period of time which depends on the CFF. In most cases,
we used a 120 Hz screen and displayed three subimages, before
advancing by one pixel and displaying the same three subimages
again. Hence, each subimage sequence takes 1/40th of a second.
Although this frequency is generally below the CFF and a special
processing is needed (Sec. 5), 40 Hz is usually close to the CFF in
our context. Higher refresh rates would allow us to add even further
subimages. We will detail these points in Sec. 5 and assume for the
moment that the subimage sequence is integrated by the eye.



A

D

C

B E

A

Pi
xe

l 2

Pi
xe

l 1

Time

In
te

ns
ity

B C D E

=
≠≠

≠

Figure 3: Spatio-temporal signal integration. Left: Two pixels (yellow and blue square) covered by receptors (circles). Right: Intensity
response of receptors A–E over time for changing pixel intensity in three frames (dotted lines). For static receptors (A, B and E) the resolution
cannot be improved because the same signal is integrated over time. Due to motion (arrow), receptors C and D, although beginning their
integration in the same pixel, observe different signals which we exploit for resolution enhancement.

Receptor vs. Changing Image First, we investigate the retinal
response for a standard moving picture observed under smooth eye
pursuit. In contrast to the real world where, during tracking, the
signal arriving on a photoreceptor is basically constant, the situation
is different on today’s displays. A single frame is usually displayed
over an extended period of time (hold-type displays) or multiple
times (general high-refresh rate screens) instead of flashing the
information only once (CRT displays). Thus, for an insufficient
frame rate, the eye movement over the screen mixes neighboring
pixel information. As a consequence, tracking of screen elements
leads to the undesirable hold-type blur. In our case, we will make
use of this observation to increase the perceived resolution.

We first consider a static photoreceptor with an integration time of
T that observes a pixel position p of an image I . If I changes over
time and is thus a function of time and space, the response is given
by
∫ T

0
I(p, t) dt. If the receptor moves over the image during this

duration T on a path p(t), the integrated result is:∫ T

0

I(p(t), t) dt. (1)

Retina In order to predict a perceived image, we need to make
simplifying assumptions about the layout of photoreceptors on the
retina. While the real arrangement is complex and non-uniform
[Curcio et al. 1990, Fig. 2], we assume a uniform grid-aligned posi-
tioning with a higher density than the image resolution. The latter
assumption reflects that in the dense region of the fovea several
receptors observe a pixel (Sec. 2).

4 Resolution Enhancement

Our goal is to use the temporal domain to increase spatial informa-
tion and, hence, to enhance the apparent resolution. Unfortunately,
as indicated by Eq. 1, it is not possible to increase the resolution of
a static image without eye movement. In such a case, neighboring
receptors that observe the same display pixel also share the same
integrated information (Fig. 3, cases A,B).

Precisely, this observation implies that for a given time t0, I(p(t), t0)
is constant for all p(t) in the same pixel and I(p(t0), t) is constant
during the time that we display the same pixel intensities. Therefore
Eq. 1 becomes a weighted finite sum of pixel values:

T∑
t=0

wtI(p(t), t). (2)

This equation reveals two crucial elements. First, the simulation can
be achieved via a simple summation which will allow us to apply
a discrete optimization strategy. Second, for differing paths p(t)
(even if only the starting points differ) the outcome of the integra-
tion generally differs. This will be key in increasing the apparent

resolution. Due to the changing correspondence between pixels and
receptors during SPEM, as well as the temporally varying pixel in-
formation, differing receptors usually receive differing information
(Fig. 3, cases C,D). Consequently, we can control smaller regions in
the retina than the projection of a single pixel.

Simple Case Before generalizing our approach, we will first il-
lustrate the simple case of a static high-resolution 1D image IH . For
each high-resolution pixel we assume a single receptor ri, while
our 1D display can only render a low-resolution image IL. Let’s
assume for now that the resolution of IH is twice as high as the
resolution of IL and that the image is moved with a velocity of half
a display pixel per frame. In theory, we could change the value of
each display pixel on a per-frame basis. Nevertheless, we assumed
that all receptors track the high-resolution image perfectly. Hence,
after two frames, all receptors have moved exactly one screen pixel.
We find ourselves again in the initial configuration and the same
two-frame subimage sequence can be repeated.

For this particular case, each receptor will, while tracking the image,
either see the color of exactly one pixel during the duration of two
frames or of two consecutive pixels. More precisely, following Eq. 2,
receptor i captures:

ri =

{
(IL(i, 0) + IL(i, 1))/2 : i%2 == 0
(IL(i, 0) + IL(i+ 1, 1))/2 : i%2 == 1

(3)

In order to make the retinal response best match IH , ri should be
close to IH(i). This can be formulated as a linear system:

W

(
I1L
I2L

)
= IH , (4)

where ItL is the subimage displayed at time t and W a matrix that
encodes the transfer on the receptors according to Eq. 2. In the
scenarios we considered, the matrix W is overdetermined, meaning
that there are more independent equations in our system than vari-
ables (unknown pixels in subimages). We usually assume that there
are fewer pixels displayed over time than the total resolution of the
original image and the resolution of the retina is considered to be at
least as high as the resolution of the original image. We find the final
solution using a constrained quadratic solver [Coleman and Li 1996].
While a standard solver would also provide us with a solution that is
coherent with respect to our model, a constrained solver respects the
physical display limitations with respect to brightness. Therefore,
this approach guarantees that the final subimages can be displayed
within the range of zero (black) to one (white). Our problem is
convex and so convergence can be guaranteed.

It is natural that subimages contain aliasing. The receptors
will integrate the image along the motion path and therefore
filter the values. On the other hand, our optimization min-
imizes the residual of the perceived final image with respect



to the original high resolution version. Therefore, as long as the
original frame does not exhibit aliasing problems, the optimiza-
tion should avoid aliasing in the perceived image as well. Although
it is difficult to formally prove this cancelation, no aliasing problems
were observed during our experiments.
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Figure 4: Our method vs. Lanczos. Our method uses image motion
to improve the perceived resolution along this movement direction
by showing 3 subimages on a rapid display. While we rely on a
frame optimization, moving Lanczos resampling derives subimages
by filtering the translated original image. The eye integration is
computed by blending the subimages, assuming perfect tracking.

Fig. 4 shows an example of a horizontal movement. The resulting
spatial apparent resolution is much higher horizontally (blue) than
for a standard bandwidth-filtered image, while vertical resolution
(red) is similar to the case of a moving Lanczos resampling.

General Case An important property is that an integer movement
allows us to reuse the subimage sequence after a few iterations. This
is interesting for static images where one can choose a displace-
ment direction and enhance resolution using only a small amount of
texture memory.

It is possible to treat more general movements by adapting the in-
tegration weights wt from Eq. 2. Basically, the weights should be
proportional to the time, that a pixel’s color is seen by a photorecep-
tor. To formally compute these weights, we introduce one weight
wx,y,t for each pixel value Itx,y where x, y is a discrete pixel posi-
tion and t the discrete time interval during which the pixel’s color is
constant, such that:

∫ T

0
I(p(t), t) dt =

∑
wx,y,t I

t
x,y . It follows:

wx,y,t :=

∫
χ(i,j)(p(t)) χk(t) dt, (5)

where χ describes a characteristic function. Precisely, χ(i,j)(p(t))
equals one if p(t) lies in pixel (i, j), else it is zero, χk(t) is a similar
function to test the time intervals. One underlying assumption is that
the receptor reaction is immediate with respect to a changing signal.
Consequently, temporal integration corresponds to a box filter in the
temporal domain.

5 Flicker Reduction

The previous result respects the limits of the display device, but
it does not necessarily respect the limits of the HVS. We made
the crucial assumption that the HVS integrates a fixed number of
subimages and our method only works if their pixel information
is fused without producing objectional flickering. To arrive at
a flicker-free solution, we proceed as follows: First, a perceptual
flicker model computes the amount of flicker for every pixel in the
optimized sequence (the reduction map). Second, we use this map to
define a pixel-wise blending between our potentially flickering, but
optimized sequence and a never-flickering, non-optimized standard
filtering sequence (Fig. 5).

Original image

Lanczos

Our
before

Our

Figure 5: Flickering reduction. Left: Original high resolution
image. Center: Reduction map. Right: Outcome of Lanczos filtering,
as well as our approach before and after flickering reduction for the
marked regions. Note that in the regions of strong temporal contrast
reduction an improvement over Lanczos filtering is visible. Similar
to Fig. 4, images for our approach are simulations of perceived
images assuming motion and perfect eye tracking.

Flicker Detection Model The flicker detection model, used in
our solution, is multi-scale, conforming to the scale-dependence
of the CFF. It derives per-scale reductions that are pushed to the
pixel level where the final contrast reduction happens. In detail, we
first compute the maximal intensity fluctuation in each pixel of our
subimages. Because flickering is strongly scale-dependent [Mäkelä
et al. 1994], we cannot just rely on these values. We use a gaussian
pyramid to add a scale component. For each level, this results in a
fluctuation measure of the corresponding area in the original image.
We can then rely on the perceptual findings in [Mäkelä et al. 1994,
Fig. 1], to predict the maximally-allowed temporal variation that will
not lead to perceived flickering for such an area (measured as an
angular extent). If we find that these thresholds are exceeded, we
compute by how much the temporal fluctuation needs to be reduced.
We then propagate these values to the lowest-pixel level by taking
the maximum reduction that was attributed to it on any of the higher
levels (refer to the flickering map in Fig. 5). The maximum ensures
that the final flickering will be imperceptible on all scales.

Flicker Sensitivity vs. Pattern Spatial Extent Related experi-
ments with flickering visibility of thin line stimuli (with the angular
length up to 2◦) indicate a low flickering sensitivity, both in the
fovea and periphery [McKee and Taylor 1984, Fig. 5]. Further ev-
idence exists that the sensitivity generally drops rapidly for small
patterns [Mäkelä et al. 1994]. This is of advantage to our method as
it hints at flickering being mostly visible in large uniform regions.
As these uniform regions are those lacking detail and, consequently,
our subimages will strongly resemble the original input, any value
fluctuation is eliminated.

Hecht and Smith [Kalloniatis and Luu 2009, Fig. 10] found that for
a stimuli of 0.3◦ angular extent and adaptation luminance below
1000 cd/m2, the CFF does not exceed 40 Hz. Similar observations
can be made in the Ferry-Porter law that indicates a roughly linear
CFF increase with respect to the logarithm of time-averaged back-
ground intensity up to 40 Hz where the CFF starts to stagnate and
the law no longer holds. This seems to indicate that the choice of
three intermediate images for a 120 Hz display is very appropriate.
In practice, we encountered very few flickering artifacts when dis-
playing a three-subimage solution unprocessed. Consequently, our
postprocess leaves most of the original solution unaltered. Never-
theless, when longer integration times are needed, either because
more subimages are added or the display’s refresh rate is reduced,
the processing improves the result significantly. On a 120 Hz display,
four subimages became possible without visible flickering. Such a
case is illustrated in Fig. 5. Four subimages lead to more details than
the three subframe solution and we can work with lower velocities.



Discussion Our approach keeps the highest amount of detail pos-
sible while ensuring that the outcome does not result in a perceiv-
able flickering as detected by our flickering model. The blur in
Fig. 5 (bottom-right) is a natural consequence of this trade-off be-
tween detail/flickering and low-resolution/no-flickering. Since our
optimization guarantees that the resulting image fits to the display
range, which is also the case for energy-preserving Lanczos filter,
any interpolation between such a pair of images cannot cause in-
tensity clipping. Artifacts, e.g., ringing cannot occur, because the
reduction map, used for blending, needs only to be a conservative
bound in order to detect perceived flickering. Hence, it is possible
to find a conservative band-limited image (in practice, a dilation
followed by smoothing).

One alternative flicker suppression would be to incorporate the con-
strains on the maximal temporal fluctuations of signal into the opti-
mization, but this has disadvantages. The process would no longer
be quadratic, endangering convergence. It would increase computa-
tion times and put pressure on the hard constraints needed to match
the display’s dynamic range.

A second alternative would be to suppress flickering via temporal
smoothing, but such attempts prove inadequate. Temporal smoothing
combines information that should be kept separate to achieve the
resolution enhancement according to our model. To illustrate this,
consider the receptor C in Fig. 3 moving from one pixel to the next
at time t. Filtering over time, would introduce information in the
first pixel that occurs after time t, this information was not supposed
to be seen by C which at time t is already in the second pixel. We
exploit this combination of time and space in our model.

Our flicker reduction, is general and is executed in milliseconds on
the GPU. It could be used in other contexts, e. g., to detect and then
remedy temporal aliasing for real-time rendering.

6 Experiments

To illustrate the versatility of our approach, we present several appli-
cation scenarios and tested them in a user study in order to illustrate
their effectiveness. We used a 22 inch (diagonal) 120 Hz Samsung
SyncMaster 2233 display at its native resolution 1680× 1050. We
investigated also lower resolutions to address the fact that displays
constantly grow, often already exceeding 100 inches, but keeping
their resolution on the level of full HD. On a 100-inch screen, pixels
would approximately be four times bigger than in our experiments.
The monitor was viewed by the subjects orthogonally at a distance
of 50–70 cm. Because some experiments required that two images
are simultaneously shown next to each other in a horizontal arrange-
ment, the video sequences and images of resolution 600× 600 have
been used in all studies. We considered a 120 Hz refresh rate, de-
composing the original images into three subimages to illustrate that
the details are also visible for the faster-moving variant (compared
to four subimages).

14 participants with normal or corrected-to-normal vision took part
in the main part of experiments. In an additional 3D rendering part
five participants were considered. Subjects were naı̈ve regarding the
goal of the experiment and inexperienced in the field of computer
graphics. The participants were seated in front of a monitor running
the experimental software in a room with controlled artificial light-
ing. They received standardized written instructions regarding the
procedure of the experiment. In all experiments the time for each
trial has been unlimited.

High-resolution Images In our study we considered five stimuli,
including detailed rendering and text (Fig. 1) as well as natural im-
ages (photographs of a cat and a car included in the accompanying

video). The hair and car images have been rendered with a high
level of detail and include subpixel information from elongated hair
strands and tiny sparkles in the metallic paint. Text was used to eval-
uate readability as an indicator of detail visibility. Finally, we used
photographs to check the performance of our method for real images,
which often exhibit slightly blurry edges with respect to synthetic
images. Our aim was to show that our method outperforms standard
image-downsampling techniques. We tested various velocities and
compared our method to Lanczos resampling as well as Mitchell
and Netravali [1988], asking people to compare the detail visibility.

In the first part of the study, subjects compared the static reference
image of high-resolution that was placed on the right to a moving
image on the left. The left image was per-frame Lanczos-filtered
or our solution, initialized randomly and not labeled. We did not
consider more naı̈ve solutions like nearest-neighbor filtering, as
their lower quality and objectionable flickering are readily visible.
Subjects could toggle between two methods via the keyboard without
any time limit. Subjects were asked to choose the method for which
the reproduction of details is closest to the reference version. The
results of this part of experiment are shown in Fig. 6(left). The
second part of the study was similar to the first (Lanczos), but
moving full-HD resolution images have been compared without any
reference (Fig. 6, middle). For this first experiment, the pixel size in
the moving image was three times enlarged to match the scale of the
reference image. All other experiments used the native resolution.

Next, we tested our method against Mitchell-Netravali [1988] filter-
ing. The filter can be balanced between sharpening and smoothing
using two parameters which makes it adequate for a large variety
of images. We asked subjects to adjust the parameters to match
their preferences with respect to the high-resolution image. Later,
they were asked to compare their result with our technique, again by
toggling between the methods (Fig. 6, right).

Our technique performed better in terms of detail reconstruction,
even when allowing filter parameter adjustments. During all exper-
iments no flickering or temporal artifacts have been observed. A
series of t-tests (Tab. 1) showed statistical difference in all cases
with a significance level of .05.
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50 %

Our Lanczos

0 %

50 %

100 %
Our Mitchell

0 %

50 %

100 %

Paint Cat Hair Car Text

Our 3:1 Lanczos 3:1
100 %

Paint Cat Hair Car Text Paint Cat Hair Car Text

Figure 6: Our method against Lanczos in 3:1 scale (left) and origi-
nal scale (middle) as well as Mitchell-Netravali (right).

Minimal Text We also investigated horizontally moving text often
used for TV news channels, as well as hand-held devices. To push
our technique to the limits, we attempted to produce a 2× 3 pixel
sized font containing English capital letters. We created it by hand
at a 6× 9 resolution, but did not invest much time in optimizing the
characters. We showed all the letters in random order to subjects ask-
ing for identification and compared our method to Lanczos filtering.
The characters have been placed in chunks of five characters rather
than isolated fonts to mimic a text document. We did not compare
to static text because any attempts to produce such a small font were
futile.

Although not perfect (Fig. 7), the results indicate the quality-increase
due to our apparent resolution enhancement. Performed series of
t-tests showed significant difference between our font and standard
downsampling for 13 out of 26 (Fig. 7) for a significance level of .05.



Paint Cat Hair Car Text
Our vs. Lanczos (3:1 scale)

t(26) 8.485 8.485 3.551 3.551 ∞
p < .001 < .001 .002 .002 < .001
Cohen’s d 3.207 3.207 1.342 1.342 ∞

Our vs. Lanczos
t(26) 5.204 3.551 8.485 8.485 8.485
p < .001 .002 < .001 < .001 < .001
Cohen’s d 1.967 1.342 3.207 3.207 3.207

Our vs. Mitchell
t(26) 5.204 2.419 ∞ 3.551 8.485
p < .001 .023 < .001 .001 < .001
Cohen’s d 1.967 0.914 ∞ 1.342 3.207

Table 1: High-resolution images experiment: The table contains t-
and p-values as well as effect size (Cohen’s d) for pairwise compari-
son of our method with respect to Lanczos and Mitchel filtering.
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Figure 7: Character recognition: Standard filtering vs. Ours. Dark
horizontal lines indicate significant statistical difference.

The biggest improvement was, as expected, in the horizontal direc-
tion that coincides with the movement. H, K, M, N, R, X contain
much horizontally oriented information, making them easy to read.
On the other hand, the lack of improvement in vertical direction,
affects letters such as: B, G.

3D Rendering We also conducted a smaller study for 3D render-
ing applications. We estimated the eye tracking based on a derived
motion flow. We assumed that the motion is piecewise linear for
different image regions, and, thus, we can apply our technique
locally. We used a scene showing highly detailed hair and a 3D
terrain in a fly-over view similar to Google Earth. The stimuli for
this experiment are included in the accompanying video. Similar
to the high-resolution image experiment, subjects could toggle be-
tween moving images for our method and respectively Lanczos and
Mitchel filtering. All five subjects chose our solution over Lanczos
and Mitchel for both scenes.

7 Discussion

Slightly moving images have become common practice of web-
page designers that present scrolling photos, or scrolling text (e.g.,
news), and small animations. Besides guiding attention and looking
more natural and lively (the Ken Burns effect), improved detail
perception, as shown in our experiments, might explain this trend.
Our experiments suggest that the strongest enhancement can be
obtained using our technique, but even frame-wise downsampling
(taking into account the current mapping to physical pixels) is a
better strategy than naı̈ve resampling of a downsampled image.

Proper filtering becomes even more important for large displays, as
illustrated by our study, but big velocities imply the need for higher
refresh rates to counteract the hold-type effect.

The optimization scheme delivers a high-quality result, but is com-
putationally costly (e.g., double full-HD image 3840× 2160 using
three subimages is processed in approx. 18 minutes, standard full
HD needed 5 min). Although our CPU-based optimization could be
improved, especially using a GPU implementations. Our first exper-
iments with a gradient-descent GPU solver (enforcing constraints in
each iteration via clamping), showed that the computation time can
be reduced to below 1 s.

Our model does not rely on any profound hardware-specific as-
sumptions (e.g., not on the RGB subpixel layout) which makes our
technique relatively immune to technological and perceptual differ-
ences. In our experiments with an 120 Hz CRT display as well as
60 Hz DLP and LCD projectors we have obtained a clear resolution
enhancement. Therefore, we also expect that our technique works for
OLED displays where very high frame rates should lead to an even
stronger resolution enhancement. Essentially, our model conforms
with the major goals of display manufacturers to reduce the visibility
of RGB subpixel layout and screen door effect, which otherwise
could ruin the impression of image integrity and continuity.

8 Conclusion

Due to the limited spatial resolution of current displays, the depic-
tion of very fine spatial details is difficult. This work proposed a
novel reconstruction for moving images taking human perception
into account to improve the detail display. Our work is general in
the sense that it extends to arbitrarily high frame rates. This was
underlined by a perceptual study. We presented various applications
including improved photo details, panorama pop-up views, online
rendering, and scroll texts (where we pushed the limits by showing
that a 2× 3 pixel font can still be legible).

In the future, we want to combine our technique with schemes to
exploit the display mosaics similarly to the ClearType fonts. Initial
attempts have not led to a clear quality improvement and this issue
requires further investigation. We demonstrated the applicability of
our approach to offline rendering. In the future, we would like to opt
for an online context, eventually combining our solution with an eye
trackers to only locally perform the optimization computation. In a
first attempt, we also tried to construct directional filters from the
results of the optimization process, but (because our optimization
is not a filtering) the values often exceed the dynamic range of
the display. Via blending we can reduce the contrast, but then the
results are clearly inferior to the full optimization and show color
aberrations. This remains an exciting avenue for future work.
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MÄKELÄ, P., ROVAMO, J., AND WHITAKER, D. 1994. Effects
of luminance and external temporal noise on flicker sensitivity
as a function of stimulus size at various eccentricities. Vision
Research 34, 15, 1981–91.

MARTINEZ-CONDE, S., MACKNIK, S. L., AND HUBEL, D. H.
2004. The role of fixational eye movements in visual perception.
Nature Reviews Neuroscience 5, 3, 229–239.

MCKEE, S. P., AND TAYLOR, D. G. 1984. Discrimination of time:
comparison of foveal and peripheral sensitivity. J. Opt. Soc. Am.
A 1, 6, 620–628.

MESSING, D. S., AND KEROFSKY, L. J. 2006. Using optimal
rendering to visually mask defective subpixels. In Human Vision
and Electr. Imaging XI, vol. 6057 of SPIE Proc. Series, 236–247.

MITCHELL, D. P., AND NETRAVALI, A. N. 1988. Reconstruction
filters in computer-graphics. Proc. SIGGRAPH 22, 4, 221–228.

PARK, S., PARK, M., AND KANG, M. 2003. Super-resolution
image reconstruction: A technical overview. IEEE Signal Pro-
cessing Magazine 20, 3, 21–36.

PLATT, J. 2000. Optimal filtering for patterned displays. Signal
Processing Letters, IEEE 7, 7, 179 –181.

PURVES, D., SHIMPI, A., AND LOTTO, B. R. 1999. An empirical
explanation of the Cornsweet effect. J. Neuroscience 19, 19,
8542–8551.
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