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Figure 1: Our approach automatically aligns a set of images (a) showing instances of one object class to a “reference image” (b)
and constructs a subspace of shape and appearance (c). This subspace is used to guide manipulations of a different image (d). When
painting a colored stroke, our subspace is used to propagate plausible colors to plausible locations (e, top) or to restrict shape defor-
mations to plausible shapes (e, bottom). Additionally, the space is used to suggest relevant shape and appearance alternatives (f).

Abstract
We propose a system to restrict the manipulation of shape and appearance in an image to a valid subspace which we
learn from a collection of exemplar images. To this end, we automatically co-align a collection of images and learn a
subspace model of shape and appearance using principal components. As finding perfect image correspondences for
general images is not feasible, we build an approximate partial alignment and improve bad alignments leveraging
other, more successful alignments. Our system allows the user to change appearance and shape in real-time and the
result is “projected” onto the subspace of meaningful changes. The change in appearance and shape can either be
locked or performed independently. Additional applications include suggestion of alternative shapes or appearance.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—
Application packages

1. Introduction

The ability to manipulate digital images is a fascinating oppor-
tunity taken both by professional artists producing digital con-
tent as well as by casual users editing their home photo collec-
tion. While the option to change shape and appearance of an im-
age into any possible other shape or appearance sounds like a
good idea at first, in practice too many possible options actually

decrease the human ability to make the right decision [TK81].
Therefore, the right balance between generality and reduction
of choices has to be found. We devise a computational way to
automatically suggest such choices for a class of images.

One option to restrict manipulations in a meaningful way
is the construction of subspaces within the space of all
possible images. Here, images are understood as points in a
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high-dimensional space. Images from a certain class, such
as faces, do not cover the entire space but a lower-dimensional
manifold which is likely related to the human mental
representation of this class [SL00]. This idea was first
proposed for human faces, both in 2D [TP91, CET01] and
3D [BV99], 3D human bodies [ACP03] or other specialized
3D shapes [CF13], where the manifold is approximated using
principal component analysis (PCA).

However, to construct subspaces, training data needs to
be aligned manually by means of careful selection of
a template and intervention [CET01], such as clicking
correspondences [BV99]. This excludes casual users, such as
a hypothetical biologists seeking to create a subspace of leaf
images for a class of plants captured in a collection of 1000
non-calibrated images or even non-professional users striving
to create a subspace of a special breed of dogs from a dozen
of images. No simple and efficient way exists to align a large
collection of images allowing for the creation of subspaces.

In this work, we propose a simple alignment strategy
applicable to casual image collections such as images of
butterflies. As finding perfect or even sufficiently correct
correspondences for all images in a large set is infeasible,
we first build an incomplete partial alignment that is later
completed to align all images.

Our key application is appearance and shape manipulation
in images as seen in Fig. 1. Selecting the right color for a fish
and assigning it to the right spot is difficult as the selection
is from a high-dimensional shape-appearance space. While
selection of color alone is already challenging, selecting shape
and respecting the combination of shape and appearance are
even harder. Our system allows the user to change appearance
or shape in real-time and the result is restricted to meaningful
changes by finding a close image in the subspace correspond-
ing to the image class. If desired, changes in appearance and
shape can be locked to result in correlated changes of both. As
the images forming a subspace lack detail, our approach only
captures the change in shape and appearance and transfers
this change to the image being edited.

Our particular contributions are:

• Efficient partial alignment of images in common image
collections with varying appearance.
• Completion of partial alignment to a global alignment for

all images using an alignment graph.
• A novel interactive user interface for appearance and shape

subspace manipulation that preserves detail.

2. Background

In this work we are concerned with intuitive manipulation
of shape and appearance in images. The two main existing
approaches either propagate spatially localized manipulations
of some control primitives to the rest of the image, or suggest
entire images as global alternatives.

The first line of work builds on propagation of sparse manipu-
lations of appearance or shape to the full image. To manipulate
appearance, sparse strokes defining a certain appearance for
some locations in the image are propagated to the rest of the im-
age, either using edge-aware (local) [LLW04,LFUS06,GO11]
or all-pairs propagation (global) approaches [PL07, AP08] or
a unification of both global and local methods [XYJ13]. For
example, a red ball is covered by a green stroke, and other
red and spatially close red balls are changed to become green.
The goal of the propagation often is to fill smooth regions and
stop propagation at edges. For manipulating shape, instead of
making strokes, sparse control points are moved in the image
and a plausible deformation is propagated to the rest of the im-
age [Boo89,ACOL00,IMH05,SMW06]. As an example, a user
clicks two control points such as the feet of a character in the
image to remain fixed and places a third one on the head. Mov-
ing the control point on the head, the latter follows the displace-
ment, but the feet remain in place. A key challenge is to pro-
duce an intuitive deformation response and avoid shape distor-
tion and overlap. Deformations that locally preserve distances
are of particular interest here [ACOL00, IMH05,SMW06]. As
a second strategy, plausible suggestions for alternatives can be
made if a parametric space is available [MAB∗97, SSCO09].
Such alternatives are usually applied to appearance where they
are not spatially localized but change the entire image.

For both approaches, the user either knows where and how
to change the image, or changes everything at once. Also,
combinations of appearance and shape are not addressed. We
want to exploit data available on the Internet to restrict manip-
ulation and suggestion and capture the conjoint variation of
shape and appearance in a subspace. Using exemplar images
directly without creating a subspace allows to present sample
suggestions e. g., in response to sketches [LZC11], but does
not explain how to apply these changes to new instances. This
is complementary to the chosen method from above by adding
the restriction to a subspace of appearance and shape changes.
The difficulty is to acquire such a space.

Subspaces have a long history of use in computer graphics
where they come in form of Eigenfaces [TP91], morphable
models [BV99] or active appearance models [CET01]. Their
applications range from faces [BV99] over human body
poses [ACP03] to other objects such as demonstrated for sea
animals by Cashman and Fitzgibbon [CF13]. Recently, the
idea of finding subspaces has been extended to 3D objects
when either given a collection of 3D objects [OLGM11] or
even just a collection of images [PFZG10].

The underlying difficulty in constructing subspaces is the
requirement of correspondences between training exemplars.
Early work used either controlled conditions to acquire the ex-
emplars [BV99] or manual alignment. Modern semi-automatic
approaches to align image pairs e. g., for morphing [LLN∗14]
often combine a data and a smoothness term with user-defined
constraints. Our approach targets automatic alignment, such
as done for 3D shapes [SZGP05, FKY08, OLGM11] and
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deformations limited to rigid parts [KY07]. Optical flow algo-
rithms [LK81, TBKP12, LWA∗12] are designed to align video
frames with their temporally adjacent frames. However, they
are not suitable for image pairs containing large deformations,
significant structural differences or changes in appearance,
such as found when aligning two butterflies. Recently, several
image alignment techniques such as SIFT flow [LYT11] or
Patch Match [BSFG09] were proposed that are able to deal
with drastically different scales and would allow to align
training images. While they are successful in producing
plausible images by shuffling image patches, they do not yield
meaningful deformation fields. Non-rigid dense correspon-
dence (NRDC) [HSGL11] is based on Patch Match and works
best for pairs of images depicting similar regions acquired
by different cameras or under different lighting conditions
undergoing non-rigid deformations. The idea of co-aligning
an image collection is demonstrated in ImageWeb [HGO∗10]
which assumes a partial, per-region affine transformation.
That is great for browsing image collections with repeating
objects but does not capture smoothly varying deformations
such as between two faces. Furthermore, no considerations
are made for the spatial placement of the regions themselves.

Cheng et al. [CZM∗10] use a boundary-band map to find
repetitions of similar objects in single images. Goldberg
et al. [GCZ∗12] present a semi-automatic system that
leverages a collection of aligned images to improve image
manipulations related to some of our applications. Different
from our approach, manual intervention is used and the
alignment is limited to align the outer boundary using shape
contexts [BMP00]. Furthermore, their approach does not
create a space and cannot be used to understand the variation
of e. g., horses, as a whole, such as required for our suggestion
applications. Our approach is strictly automatic and uses all
structures that can be matched reliably, including internal
structures, such as the eyes of animals. Aligning these properly
is essential for creating an expressive space.

Outside of computer graphics, the most successful alignment
methods proposed in computer vision use involved learning
and graph matching machinery for alignments [CMC∗09].
We will show how producing a collection of approximate
alignments is good enough to construct a useful subspace.

3. Our Approach

Figure 2: Some instances from the example class “Horses”.

Figure 3: All exemplars are aligned to a reference image,
here shown for the case of a butterfly class. In the 3rd column,
the gradient-colored lines show the flow direction (from blue
to orange) that align (4th col.) the exemplar (2nd col.) to the
reference (1st col.).

Figure 4: We separate shape and appearance of a collection
of images (here shown on the diagonal) to create a space that
contains arbitrary, continuous re-combinations (off-diagonal
elements).

Overview After acquiring a set of images, our approach
proceeds in three steps: alignment of example data (Sec. 3.1),
construction of a subspace from the aligned images (Sec. 3.2)
and application to novel user interfaces (Sec. 4). The first two
steps are performed offline while our user interfaces always
provide real-time feedback.

Input of our system is a set of unaligned RGB images from
one class (Fig. 2). Those images have to show instances
in roughly the same pose on a constant background. If the
background is not constant, it has to be removed manually. The
instances have different appearance, slightly different pose
and perspective and are centered. Our example classes were
collected from Internet image queries, manually removing
outliers in terms of the above requirements. No other manual
intervention was performed.

The core of our approach automatically aligns every image
to a reference image (Fig. 3). An alignment is a deformation
field, that, when applied to the respective instance from the
set, produces an image with the same appearance but in the
shape of the reference, i. e., shape and appearance are factored
out (Fig. 4). From the aligned images and their deformation
fields, a subspace of appearance and shape is created which
allows for novel image manipulation interfaces. Such user
interfaces constrain the result to be part of the subspace in
terms of appearance, shape, or both.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



Nguyen et al. / Guiding Image Manipulations using Shape-appearance Subspaces from Co-alignment of Image Collections

Figure 5: Comparison between the alignment of source and
target exemplars using either direct or indirect of alignment.
The alignment paths between exemplars are shown on the
right.

3.1. Alignment

Alignment is difficult as our images are not taken under
controlled conditions and vary drastically in their appearance.
These challenges are addressed as follows: First, we predict
how well each pair of images might align. Next, from this
information, we identify a reference image to which all
other images might align well. The actual alignment to
this reference is performed as a concatenation of simple
alignments along the shortest path in a graph over the images.
For each pair that needs to be aligned, we first find the best
per-pixel correspondences and a measure of confidence,
before we blur areas with low confidence and regularize the
resulting flow to locally rigid transformations. Each step will
be detailed in the following paragraphs.

Alignment Graph Directly aligning a large number of
images with a reference image is likely to fail as appearance
and shape of our input images show substantial variation.
Establishing an alignment between similar images however
is routinely done. Regrettably, this does not suffice to align
every image with the reference image as required for our
needs. As a solution, we perform indirect alignment: We
create an alignment graph, where similar images are aligned
directly and the alignment of dissimilar image pairs is found
as a sequence of edge hops (an alignment path) in this graph.
This idea has been successfully applied to the alignment of
multi-view stereo images [Hub02] and 3D shapes [HZG∗12].

To create the alignment graph, we first define a distance metric
d between images. The Gram matrix A of this metric, with
Aa,b = d(a,b) holds in each entry the distance between each
pair a, b.

As image distance d, a robust measure is required since
common metrics such as L2 or perceptual ones such as
SSIM [WBSS04] are not resilient to the, at this point unknown,
deformations. However, we would like to use a metric that
reports a small difference, even if the images differ by a small
deformation, as long as their appearance is similar. Conversely,

a high value should be returned if the appearance is very
different or the deformation is large. Let, a,b ∈ [0..1]2→ R3

be images encoded in the LAB-color space. We define d by

d(a,b) =
∫

[0..1]2

min
y,z∈[−s..s]2

‖a(x+y)−b(x+ z)‖2 dx,

i. e., as the sum of the min-pooling LAB-color-difference in
a neighborhood of size s = 0.01. Similar spatial pooling is
believed to be used by the human visual system too and has
shown to provide robustness in recognition [SWB∗07].

When viewed as an adjacency matrix, A implicitly defines
a fully-connected graph with the image distances as edge
weights. We further add a small constant ε = 0.1 to each
entry of A to penalize longer paths in the graph. The reference
image is chosen to be the one with minimum total length of
the shortest paths to all other images. To align each image
a with the reference, first, the shortest path to the reference
according to A is found. Then, the pairwise alignments along
this path are performed as described in the next subsection
and finally concatenated. Fig. 5 shows several examples
where a concatenation of alignments (indirect alignment)
improves over a single direct alignment. In addition to
these “backward” alignments, we analogously compute
the “forward” deformation fields, aligning the reference to
each respective image. The latter are later used to build the
subspace of shape variations (Sec. 3.2). Note that the shortest
paths from the reference to other images form a shortest-path
tree (see supplementary material for a visualization).

To improve the quality of the resulting subspace, we discard
images that have a low alignment-quality, which is judged
by the SSIM image difference between the reference and the
backward-deformed image. Fig. 11 shows the forward and
backward alignments for several classes.

Figure 7: Alignment of a source (1st row, 2nd col.) to a target
image (1st col.) using Shape Context [BMP00] (3rd col.) and
our approach (4th col.). The second row shows blends of the
respective image in the first row and the target image. Note
how our method improves the alignment of interior structures,
e. g., of the red stripe on the wings of the butterfly to the orange
one, while Shape Context only aligns the outer boundary.

Alignment We seek to find a flow field that is smooth and
aligns the images well but cannot assume it is produced
by a simple camera motion, even if it was 3D such as in
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Figure 6: Alignment of exemplar b to exemplar a (1st col.) using different methods. As our exemplars differ drastically, both,
PatchMatch [BSFG09] (2nd col.) and NRDC [HSGL11] (3rd col.), failed to produce a reasonable flow. Optical flow methods based
on the assumptions of small disparity and image similarity such as Lucas Kanade [LK81] (4th col.) or Simple Flow [TBKP12]
are not designed to work for our problem. SIFT Flow [LYT11] (5th col.) allows robust matching between objects of different
appearance at the cost of only piecewise smooth flow. Our method (6th col.) works best as it is specifically designed for images
containing a single object.

alignment for structure-from-motion. Possible techniques
to deal with such problems are SIFT Flow [LYT11], Patch
Match [BSFG09] or NRDC [HSGL11]. We found however
that, while those techniques are good at aligning images
that are different in a plausible way, this comes at the cost of
creating flow fields that are often close to meaningless. E. g.,
in the case of our butterflies they are more successful than our
approach to transfer appearance from one exemplar to another,
but at the price of a puzzle-like flow field that reassembles
image a using image b in a piecewise smooth manner (Fig. 6).
Silhouette-based matching [BMP00,CZM∗10] might succeed
to align boundaries (Fig. 7) but fails to align internal structures
(Fig. 8). Finding a plausible flow is a key requirement to
capture the shape variation underlying our data, though.

To this end, we devise the following alignment (Fig. 8)
between two images a and b which is computed for each pixel
independently and in parallel: Each x ∈ [0..1]2 in b searches
over a two-dimensional neighborhood of size r ∈ [0..1]2 in a
to find the best corresponding pixel fb,a(x), i. e., the one with
the lowest cost Eb,a:

fb,a(x) = argmin
y∈[x−r,x+r]

Eb,a(x,y), with

Eb,a(x,y) = Edat
b,a(x,y)+wmagEmag(x,y),

Edat
b,a(x,y) =

∫
[−l..l]2 ws(z)‖b(x+ z)−a(y+ z)‖2 dz∫

[−l..l]2 ws(z)dz
,

Emag(x,y) = ‖x−y‖2 /‖r‖2

where Edat
b,a is the data term defined as the sum of the weighted

LAB-color difference of the corresponding patches of size
l in a and b, ws(z) = exp(−σs ‖z‖2

2 /(2l2)) is a spatial
smoothness weighting function, controlled by σs [TBKP12].
The flow magnitude term Emag(x,y), weighted by wmag,
constrains the flow vectors to be as small as possible.

Besides the corresponding pixel’s location fb,a(x), we also

Figure 8: Given source and target images with different
appearance (1st col.), we compute an initial flow and its
confidence (cf. Fig. 9, 3rd col., bottom). This initial flow field
is blurred using the confidence as guidance and regularized to
enforce locally rigid transformations (1st row, 2nd to 4th col.).
The second row shows the warped source using the respective
flow from the first row. The third row shows the blends between
the warped source and the target.

compute a measure of confidence cb,a(x) as the product of
two factors: The first is the curvature κ of the energy function
Eb,a(x, fb,a(x)), a common indicator of reliability in stereo cor-
respondence problems [TMDSA08]. The second factor is an
agreement check, to test if the flow from a to b is the same as the
flow from b to a: (1−

∥∥∆b,a(x)+∆a,b( fb,a(x))
∥∥

2 /(2‖r‖2))
γ,

where γ is a parameter to control the function and ∆b,a(x) =
fb,a(x)−x. We then remove all areas with confidence below a
certain threshold. Fig. 9 illustrates the effect of the two factors
and the thresholding on our alignment. For brevity, we denote
∆b,a(x) by ∆(x) and cb,a(x) by c(x) in the following.

The confidence c(x) is used to replace unreliable ar-
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Figure 9: Our alignment computes the confidence from the
curvature of the matching quality (1st col.), by an agreement
check term (2nd col.) and by removing low-confidence areas
(3rd col.). An alignment using all three terms (4th col., top)
improves over using only the first term (4th col., bottom).

eas of ∆(x) by extrapolating from more confident ar-
eas [TBKP12, LWA∗12]. This is achieved by the following
modified blur filter:

g(x) = x+

∫
[0..1]2 w(x,y)∆(y)dy∫

[0..1]2 w(x,y)dy
,

w(x,y) = exp(−σd ‖x−y‖2
2) exp(−σcc(x)‖x−y‖2

2)c(y).

The first term of the blur kernel w is the spatial smoothness
term, controlled by the parameter σd. Furthermore, the blur
kernel has a two-fold dependency on the confidence c: First,
pixels with a high confidence are less affected by other pixels
(second term), σc controls the steepness of the function.
Second, pixels with a high confidence contribute more to the
value of other pixels (third term).

The resulting blurred flow field g is now smooth but might
distort the shape. An improved flow h is found by mapping
the flow in a neighborhood of each pixel to the closest flow
in this neighborhood being a rigid transformation. This is
done using the flow as point correspondences and orthogo-
nalization [Hor87, SMW06]. In discrete settings, we use a
neighborhood of size 32×32 pixels for our results. The final
output is a flow field that extrapolates from high-confidence
areas to fill unreliable areas by a smooth and locally-rigid
deformation. The orthogonalization of the flow field is similar
to our proposed locally-rigid color transfer (Sec. 4.1), but
deals with 2D deformation fields instead of 3D colors. Fig. 10
shows how our orthogonalization can be used to improve the
flow field generated using other approaches, nevertheless, our
alignment achieves better quality.

Discussion Our method is simple but efficient for the difficult
problem of aligning substantially different images that
undergo non-rigid deformations without manual intervention.
At each step (Fig. 8), the result for every pixel is computed
independently and in parallel. In a discrete setting, for a pair of
images with size 256×256 pixels, we set r = 80×80 pixels,
l = 8 pixels, σs = 15,wmag = 0.1,γ = 5,σd = σc = 100 and
the computation of the deformation field takes 2 seconds. For

Figure 10: Orthogonalization of the flow field generated
using SIFT Flow (Fig. 6, 2nd row, 5th col.). The two exemplars
are shown in the first column of Fig. 6. The first column shows
the orthogonalized flow. Next are the warped source (2nd col.)
generated using this flow and its blend with the target (3rd
col.). Finally, we show the blend (4th col.) of our result (Fig. 6,
1st row, 6th col.) and the target.

a reef fish collection of N = 50 exemplars, it takes less than
3 minutes to construct the alignment graph and to align the
fish along the shortest paths. The complexity of our algorithm
isO(N2) for both adjacency matrix and single-source shortest
path construction, which are fast for realistic values of N. The
bottleneck is the alignment to the reference image along the
shortest paths. Albeit the time complexity being onlyO(N)
(since the shortest paths form a tree with N− 1 edges, i. e.,
alignment steps), the individual alignments are costly.

Similar to Lang et al. [LWA∗12], we use a set of confident areas
to construct a flow field. However, different from their method,
our initial flow and confidence are dense [TBKP12]. Further-
more, as their framework aims for scene flow, an edge stopping-
based confidence propagation was exploited to improve the
quality; in our case, as images come from drastically different
sources, we propagate the flow solely based on the confidences.
High-confidence areas, including, but not limited to, the global
boundary as for shape contexts [BMP00] are propagated to
low-confidence areas. Yet, compared to boundary-based ap-
proaches, we are also able to match more general internal
features (Fig. 8) without manual intervention [GCZ∗12].

Still, our method has limitations. First, by using an alignment
graph, we assume that the input contains enough image pairs
with similar appearance. Second, we use rotationally variant
features based on patch difference and flow magnitude. As a re-
sult, our method fails to align drastically rotated objects. Those
unsuccessful alignments however can be detected using SSIM
and removed from the construction of the subspace. Third,
as for the construction of our subspace we do not need pixel-
accurate alignment (Sec. 3.2), we focus on a simple approach
aiming scalability. Further processing might be necessary for
applications requiring high quality alignment. Our confidence
contains many false positives; although we try to filter out those
areas by an agreement check and thresholding, they strongly
affect the quality of the reconstructed flow. Last, finding the
initial flow is the bottleneck of our method’s performance. As
our images are diverse in appearance, we need to search over
large neighborhoods (r = 80×80 pixels for all of our results)
in a to search for fb,a(x), the best corresponding pixel in a for
x in b. Optimizing this step would greatly improve scalability.
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Figure 11: Alignment of different exemplars (columns) from several classes (rows). For each class, the first column shows the refer-
ence image, the first row shows the input, the second row shows the forward alignment of the reference to the input and the third row
shows the backward alignment of the input to the reference. The color below each exemplar indicates the match quality determined
by SSIM, cf. the legend on the right. Smaller values indicate better alignment quality. Instances marked with a tick improved by using
indirect alignment while instances marked with a cross were excluded because their image difference after alignment remained high.

3.2. Subspace Construction

Given the appearance, in form of the aligned images (Fig. 11,
the 3rd row of every class) and shape variations, in form of
the forward deformation fields, we compute subspaces using
PCA [BV99]. An image with n pixels is considered a point
(image vector) in a 5n-dimensional space: 3 dimensions for
RGB color and 2 for the forward deformation field, per pixel.
For the color, if the input images come with an alpha channel,
the RGB values of transparent pixels are set to the average of
the RGB values of all other images where alpha is non-zero.

The PCA is performed on the set of all image vectors, resulting
in a set of basis vectors which, in combination with an average,
captures the variation in shape and appearance best with
respect to the L2-norm. Each such “basis image” represents
one direction of conjoint variation of appearance and shape.

To control the relative importance of appearance and shape,
the respective components in the image vectors are multiplied
by weights before the PCA (0 ≤ α ≤ 1 for color and
1− α for shape). Alternatively, using the extreme cases
where α ∈ {0,1}, we can also create shape and appearance
subspaces independently. In the following, we assume that
this weighting is performed before “projecting” any data to
the subspace and, consequently, undone after reconstruction
from the subspace by dividing by the same respective weights.

For all classes shown, we observed that the first m =
10/20/30 basis vectors {b j} j=1..m with the largest corre-
sponding eigenvalues λ j contain more than 87 / 97 / 99% of
the deformation and 72 / 85 / 93% of the appearance variation.
We keep m = 20 basis vectors to represent the space. A spatial
resolution of n = 32×32 was found to be sufficient to capture
the amount of detail present in the data used. As the precision is
limited by the alignment and the number of exemplars per class,
we cannot expect fine details to be reproduced in practice.

4. Applications and Results

Our approach allows for a range of novel user interactions
when manipulating a query image unknown at training time.
The query image is to be aligned with the reference image,
either using our approach or manually. If the image comes
with a segmentation in form of an alpha matte, this matte
is also used. The basic idea of all applications is to use the
subspace to restrict the options a user has to interact with an
image to a few plausible ones.

4.1. Shape and Appearance Manipulation

Given a user-manipulated query image u in RGB space from
a known class, with a known deformation and appearance
change, we can restrict the manipulation to become a plausible
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Figure 12: Results of our method (“Our”) and other methods (“Other”) applied to images from several classes (“Original”). Shape
manipulation is compared to Schaefer et al.’s rigid MLS approach [SMW06], appearance manipulation to Gastal and Oliviera’s
colorization system [GO11]. For every class, we show suggestions for appearance (top) and shape (bottom). Please see Sec. 4.1
and Sec. 4.2 for a discussion.

one by constructing its image vector v ∈ R5n (cf. Sec. 3.2)
and finding the closest point v̄ which can be represented in
the subspace using numerical minimization.

All processing happens with respect to the reference shape,
so u is first warped to the reference and then down-sampled
to obtain the color components of v. The deformation
components correspond to the (down-sampled) deformation
field of u w. r. t. the reference image.

We adopt an idea from geometric modeling using blend
shapes [SLS∗12]. The image vector v̄ which we regard as
the closest to v inside the subspace is the vector with the
coordinates x that minimizes

5n

∑
i=1

ki

∣∣∣∣∣
∣∣∣∣∣vi−

m

∑
j=1

x jb j,i

∣∣∣∣∣
∣∣∣∣∣
2

+µ
m

∑
j=1

x2
j

λ j
.

The first term is the data term, forcing the reconstruction
of v̄ to be close to v, while the second term is a prior term
that gives more weight to coordinates x which are plausible
in the subspace [SLS∗12]. The vector k is used for spatial
weighting. For the color components, we use a 20 times higher
weight at the positions of the painted strokes than for the
rest of the image. This also allows us to apply our method
to the colorization of gray images by setting the weight of
non-stroke pixels to 0, as demonstrated in the supplementary
material. We also exclude pixels from optimization that are not
part of the query image, i. e., have an alpha value of zero, by
assigning them zero weight. For the deformation components,
we use a smooth fall-off of the weights around the source
controls of the user’s constraints. The weights for both, color
and deformation components, are normalized separately.
Finally, µ is a scalar regulating the prior’s contribution.
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The resulting guidance v̄ is then transferred back to the
original, high-resolution query image u as follows. First, we
up-sample the color and deformation components of v̄ sep-
arately using bicubic up-sampling. The deformation, which
is w. r. t. the reference image, is transformed to be relative to
the instance’s original shape before we apply it to the query
image. As the deformations are expected to be low-frequency,
no special measures are taken during up-sampling.

Appearance Transfer We preserve high-frequency appear-
ance details of the query image u which are not captured in
the subspace itself. To this end, at each pixel i of u, we find the
moving least squares (MLS) solution for the rigid transforma-
tion [SMW06] in color space that aligns the query image’s col-
ors around i to best fit those of the guidance v̄, similar to affine
transformations used to transfer patch appearance [SPDF13].

These transformations can be computed independently and in
parallel for each pixel i as follows. Let p j,q j ∈R3 be the query
and guidance pixel’s colors, respectively, at pixels j in a square
patch around i. Let w j be Gaussian weights depending on the
spatial distance of j to i, which have been multiplied by the re-
spective alpha values at j in the query and guidance image and
normalized such that ∑ j w j = 1. We find the rotational matrix

Ri that minimizes ∑ j wj
∥∥Ri(p j− p̄)− (q j− q̄)

∥∥2
2, where

p̄ = ∑ j w jp j and q̄ = ∑ j w jq j are the weighted centroids
of p j and q j, respectively. We use a polar decomposition

RiSi = Apq + δI where Apq = ∑ j w j
(
p j− p̄

)(
q j− q̄

)>
, similar to [MHTG05]. The parameter δ > 0 controls the
regularization which is necessary to avoid singular matrices.
Combining Ri with the translation vector ti = q̄− p̄ yields
the complete rigid transformation. Fig. 13 compares our
appearance transfer method to alternative approaches. We
use a patch size of 32× 32. The influence of the patch size
is analyzed in the supplemental material.

Most notable, manipulations in shape lead to changes in
appearance and vice versa. If this is not desired or required,
manipulation of shape and appearance can also be performed
independently by using a subspace created from shape or
appearance alone.

Discussion Typical results for manipulation of shape and ap-
pearance are shown in Fig. 12. In the following, we will discuss
a selection. The dolphin space is created from 29 exemplars.
Deforming the straight dolphin into a curved version using the
common approach leads to unnatural bending that is not found
in our approach. The change of color in the reef fish (a space
created from 50 exemplars) propagates in a plausible way to all
body parts while the reference struggles with the subtle texture
of the fish. Changing the posture of the chicken (40 exemplars)
is easy to accomplish using only two constraints which only
lead to rotation for the common approach. For the case of the
butterfly, the preservation of symmetry is particularly striking
when using our manipulation tools. When moving the eyes
of the cat further apart, the nose will move up to keep cat-like

proportions, while the MLS deformed cat appears unnatural.
Assigning an unlikely color to a horse (72 exemplars), can
still produce a reasonable result with our approach because
of the subspace restriction and regularization we use. Using
our approach, we can easily create a realistic green pear with
a red spot (47 exemplars) while the common method fails
to position the spot properly. From the space of jeans, we
can easily produce classic stonewashed jeans whereas the
reference neither knows about the correct extent of the bright
spots, nor about the symmetry. Combined manipulation of
shape and appearance is demonstrated in Fig. 14.

Figure 14: Co-manipulation of appearance and shape:
The subspace has captured the fact that smaller pears tend
to be more red than larger ones. When making a pear (c)
smaller (d), its color changes to reddish at the same time (e).
Conversely, painting the pear with red and yellow (b) will also
result in a smaller pear (a).

All PCA-related computations are carried out on a standard
CPU while still providing real-time performance due to
our modest subspace resolution. The image processing
components are computed on the GPU at interactive rates.

Study We compared subspace-aware against common shape
and appearance manipulation interfaces in a user study.
Common manipulations were provided by means of Gastal
and Oliviera’s interactive colorization [GO11] for appearance
and a rigid MLS image deformation [SMW06] for shape.
Appearance and shape manipulation tasks were performed
separately. For each task, 7 subjects were asked to adjust
appearance (by painting color strokes) or shape (by setting
position constraints) of a source image to become visually
similar to a target image; once using our and once using the
common interfaces. Pairs of source and target images, both not
from the training set, from three classes (butterfly, pear, fish)
were presented to the subjects in combination with one of the
interfaces in random order. The task had to be finished either
within a 20 second time budget or in an open-ended setting.

In the open-ended setting, for appearance manipulation, the
average time-to-finish was 42.5s using our and 67.0s using
a common interface (significant at p < .01, paired t-test; large
effect size: Cohen’s d = 0.9). For shape manipulation, the
average time-to-finish was 40.0s (our) and 58.0s (common
interface), the average number of constraints used was
2.95 (ours) and 4.57 (common interface), cf. Fig. 15 (all
significant at p < .01, paired t-test; large effect sizes: Cohen’s
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Figure 13: Comparison of color transfer methods. The first column shows the original with the user’s strokes (top) and the image
reconstructed from the subspace (bottom). Starting in the second column, the first row shows stroke-based colorization using the
methods of Levin et al. [LLW04], Gastal and Oliviera [GO11], An and Pellacini [AP08], Xu et al. [XYJ13], Li et al. [LJH10] and
Adobe Photoshop’s “replace color” function, respectively. On the second row, the second to the fifth column shows colorization
given the subspace guidance using the methods used on the first row, the sixth column shows guided image filtering [HST13]
using subspace as guidance and finally our locally-rigid appearance transfer on the final column.

Figure 15: Our approach achieves meaningful deformations
using a lower number of constraints. Top row: A subspace is
created from frames of a match animation (a). As we learned
the most important deformation, two constraints (c) on the
match (b) will be enough to curve it (c). Using MLS (d), more
constraints (e) are necessary to achieve a smooth bending.
Bottom row: Using only two constraints on a butterfly (f),
we achieve an interesting new shape (g). For MLS (h), more
constraints (i) are required to preserve symmetry.

d = 0.8 and 0.9). This indicates less effort with our approach
compared to the common one.

After verifying that our interface can indeed simplify ma-
nipulation, we were interested to see if it could also improve
the quality of the results. In a rating task, for each image pair
produced in the manipulation study, we asked a second group
of 12 subjects to choose the one they found visually more
similar compared to the target image. The subjects preferred
our method in 84.6% (limited-time appearance), 83.0%
(open-ended appearance), 77.9% (limited-time shape) and
75.8% (open-ended shape) of the manipulation tasks. This
indicates with statistical significance (p < .01, binomial test)
that our shape and appearance interfaces outperform common
approaches in terms of quality, too.

In a final study, we tested whether the common colorization

approach by Gastal and Oliviera [GO11] could be improved by
using our subspace, independent of our suggested locally-rigid
appearance transfer. The average time-to-finish was 54.0s
for this approach. The difference to color manipulation
without using a subspace is statistically significant (p < .01,
ANOVA), indicating that our subspace indeed improves task
performance for appearance manipulation, independent of
the transfer method used. Preference ratings by subjects lead
to a similar significant overall picture. The supplementary
material contains further details on all studies.

4.2. Shape and Appearance Suggestions

The principal directions of variation of shape and appearance
can also serve as suggestions for manipulations. This allows
for an interface similar to “Design Galleries” [MAB∗97], just
that the parameter space is found automatically. We support
suggestions for both shape and appearance in combination
or in isolation.

Suggestions are presented by showing potential positive and
negative steps along the nd most relevant eigen-directions.
The number of interesting directions nd can be determined
by using heuristics based on the respective eigen values. In
practice, we use the smallest number of eigen vectors such that
the sum of their eigen values is larger than a given percentage,
e.g., 70%, of the sum of all eigen values, adding them in
decreasing order of their eigen values.

For determining a number of sufficiently diverse and specific
suggestions, we found it best to use the intercept points of
lines, going through the initial point along the eigen vectors,
with an nd-dimensional sphere of a certain radius, which is
scaled with respect to the distance of the most-extreme image
in the training set from the origin. We assume a previous
normalization of the eigen vectors and values. These guidance
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samples are then transferred as done for manipulation and
shown as altered copies of the original.

Discussion Typical results for suggestion of shape and
appearance are show in Fig. 12. For the dolphin, typical shapes
like jumping or bent exemplars show up as shape suggestions.
The appearance suggestions for the given reef fish come up
in a range between blue, orange and gray. The most important
shape changes for butterflies turn out to affect the size and
shape of the pair of wings, respectively, and are symmetrical
like the butterflies themselves. For horses, their posture is
an important component, as well as their height and length.
The appearance space of pears nicely brings up all variants
of more or less ripe pears while the shape suggestions produce
small, large or differently tilted fruits.

4.3. Manipulation of Complex Images

To apply our method to complex images, a user has to provide
a mask for an instance of an image class, e. g., for a dolphin in
an underwater image (Fig. 16, top). The segmented object can
then be aligned to the reference from the respective class using
our automatic alignment (by constructing the alignment graph
and accumulating multiple alignments along the shortest
path as described in Sec. 3.1) or manual alignment and both,
manual edits and suggestions, work the same as previously
described. The altered instance is then pasted in, either in
place of the original or as an additional element. Fig. 16
demonstrates both use cases.

Figure 16: Subspace-supported manipulation in complex
images. After a user has marked an instance of the class
(inset), it can be used for cloning with new shape, new
appearance or both from the space (dolphins) or to constrain
color manipulation (still life).

5. Discussion and Conclusion

This paper proposes a system to restrict the manipulation of
shape and appearance in an image to the subspace of valid
changes which we learn from a collection of exemplar images.

We use an automatic alignment of exemplars to create the
subspace from sample images.

Our system is subject to several limitations. First, the use of
PCA assumes that the deformation and appearance changes
are linear. This however is only true for simple classes and
invalidated in the presence of strong perspective and occlusion.
Future work could try to compensate for camera motion,
perspective and occlusion in a dedicated way. We are not able
to deal with multiple objects that appear in one image and
always assume the image either shows a single instance or
that the latter has been manually selected beforehand. To be
applicable to an instance from one class in a general image,
an alignment has to be available. Finally, our method is not
yet ready to change arbitrary objects appearing, for example,
in a home photo collection if the subspace of the object class
is not available. Expanding the collection of objects would
greatly increase the praticability of our method.

In future work, we would like to generalize the approach
to other domains such as 3D meshes and video to cover the
mutual relation of artistic style, texture, reflectance, or other
properties. While we preserve details of the target instance, we
would also like to use our alignment to construct non-linear
subspaces to capture more detailed variations.
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