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Figure 1: Three frames of an animation showing a motion of a balloon in depth (Left to right). The outcome of
disparity manipulation and our optimization, which reduces distortions in the balloon motion perception, are shown for frame
F3. The cross-section through the space-time cube shows disparity as a function of time and space. When the balloon enters the
zone between the house and the tree, the disparity manipulation results in abrupt disparity changes over time that are not present
before the manipulation. Our optimization prevents the manipulation from distorting this originally smooth change.

Abstract
Beyond the careful design of stereo acquisition equipment and rendering algorithms, disparity post-processing has
recently received much attention, where one of the key tasks is to compress the originally large disparity range
to avoid viewing discomfort. The perception of dynamic stereo content however, relies on reproducing the full
disparity-time volume that a scene point undergoes in motion. This volume can be strongly distorted in manipulation,
which is only concerned with changing disparity at one instant in time, even if the temporal coherence of that
change is maintained. We propose an optimization to preserve stereo motion of content that was subject to an
arbitrary disparity manipulation, based on a perceptual model of temporal disparity changes. Furthermore, we
introduce a novel 3D warping technique to create stereo image pairs that conform to this optimized disparity map.
The paper concludes with perceptual studies of motion reproduction quality and task performance in a simple game,
showing how our optimization can achieve both viewing comfort and faithful stereo motion.

1. Introduction

Watching stereoscopic media such as movies and computer
games can be an exciting experience, often described by state-
ments such as “. . . and then this character really jumped out
of the screen!” Remarkably many such statements refer to
a change of perceived depth rather than a static condition.
Until now, computational modeling of temporal changes of
disparity (stereo motion) has only received little attention.
Regrettably, manipulation of disparity, which is routinely
performed to improve viewing comfort or to achieve artistic
objectives, can impede perceived motion in depth. For exam-
ple disparity compression in local scene regions may induce
acceleration of motion-in-depth for objects traversing such
regions. Such uncontrolled binocular cues can be perceived as

annoying motion artifacts, which in navigation simulators or
remote manipulators can affect the performance in precision-
demanding tasks such as collision avoidance. In this work we
show how to process binocular disparity to reproduce both
faithful depth perception and stereo motion.

Let us consider the balloon approaching the viewer in
Fig. 1 as an example. Here state-of-the-art solutions will im-
prove viewing comfort by selective disparity compression in
empty scene regions and preserve the balloon shape only at
individual instants of time. If the manipulation causes com-
pression or expansion of some depth regions with respect
to others, the balloon will exhibit sudden change of speed
i. e., acceleration, as it moves in depth from one such region
to another. Temporal coherence of such disparity manipula-
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tion can be maintained by smoothing and propagating the
resulting disparity changes along the motion flow, but the
objective here is not to preserve the motion appearance fi-
delity per se. Moreover, since the disparity change is a strong
cue for motion itself [GR98], such uncontrolled disparity
manipulation may introduce a cue conflict with respect to
important pictorial cues such as the balloon size change due
to perspective scaling. Clearly, a more holistic approach to
the object stereo motion is required that accounts for local
scene configurations as well. In this work we address this
problem in the following four contributions:

• A perceptual analysis of stereo motion
• An optimization to detect and preserve stereo motion cues
• A perceptual study of stereo motion task performance
• A 3D warping to create a stereo image pair with arbitrary,

spatially-varying disparity from a polygonal 3D scene.

2. Background

Dynamic changes of binocular disparity naturally arise
through any form of object motion in the surroundings. Even
when the eyes perfectly converge on an object moving in
depth, which results in the null absolute disparity for this ob-
ject, the relative disparity with respect to other objects creates
a strong cue for detecting motion-in-depth (MID), and esti-
mating its direction and velocity [EC85]. While monoscopic
cues such as changing object size and its visibility/occlusion
configurations, perspective deformations of inclined surfaces,
and lens accommodation may contribute to the motion judg-
ment as well, dynamic binocular disparity greatly improves
the precision of motion perception [GR98].

Such reliable motion judgment is required in many every-
day tasks such as estimating the time when the approaching
object will reach a specified position, called also the time-to-
contact (TTC), determining the object impact direction, or
performing the interception task of one moving object by an-
other. Clearly, these tasks are of high relevance in many com-
puter game and training simulator scenarios as well, where
the participant performance may critically depend on the
precision of perceived motion.

It is believed that two binocular mechanisms might con-
tribute to the MID perception, but their precise role is still
an open research problem [HNG08]. A changing disparity
over time (CDOT) mechanism (called also the stereo-first
mechanism) determines relative disparities between scene
elements and monitors their changes. An interocular velocity
differences (IOVD) mechanism (called also the motion-first
mechanism) relies on combining two monocular velocity sig-
nals that are derived based on temporally coherent motion
patterns separate for each eye.

The sensitivity studies for the MID detection, which have
been performed for various temporal frequencies of disparity
modulation, revealed the peak sensitivity within the range 0.5–
2 cycles-per-degree [Tyl71, Ric72], and the high-frequency

cutoff at 10.5 Hz [NBPC05], which is significantly lower than
60 Hz as measured for temporal modulation of luminance
contrast.

Harris and Watamaniuk [HW95] and Portfors-Yeomans
and Regan [PYR96] investigated the sensitivity of human
visual system (HVS) to speed changes in MID, which arise
due to the CDOT and IOVD mechanisms. They found the
sensitivity to follow Weber’s law, where the ratio (the Weber
fraction k) of discriminated speed change to a reference speed
typically varied between 0.08 up to 0.25. Interestingly, the
Weber fraction does not significantly depend on the magni-
tude of disparity [BS04, Fig. 6], and whether the object moves
away or approaches the observer. Based on those findings,
we derive a model of perceived disparity velocity changes in
Sec. 4.2.

Interaction of binocular MID and monocular cues (in par-
ticular the change of size) typically leads to the overall im-
provement of motion judgement. Gray and Regan [GR98]
found that for separately considered monocular and binocu-
lar cues consistently underestimated or overestimated values
of absolute TTC are obtained, while the accuracy improved
significantly when both cues are available. As the linear hori-
zontal width of a moving object decreases the reliability of
monocular information drops [GR98], and then the preci-
sion of TTC task might fully rely on the quality of binocular
information. Surprisingly, binocular vision seems to be im-
portant in the TTC task for distances relevant for highway
driving up to 75 m [CL88]. As observed by Regan and Bever-
ley [RB79] with increasing motion speed or inspection times
(lower framerates) the changing-disparity cue becomes more
effective in conveying the MID sensation than the changing-
size cue. This is also the case when MID is accompanied by
more complex shape changes than simple isotropic rescaling,
which may arise for deformable or rigid, but non-rotationally
symmetric objects. Also, the detection thresholds for just
noticeable MID are typically lower for the binocular cues
than for their monocular counterparts. Regan and Beverley
demonstrated that a change in size can be cancelled by an an-
tagonistic change in relative disparity, and proposed a simple
weighted-sum model to combine both cues.

Heuer [Heu87] reported that for contradictory cues, rivalry
can be observed instead of summation, which may lead to
the instability of dominating cue. Brenner et al. [BvdBvD86]
suggest that conflicting cues might be responsible for large
differences between subjects in the motion judgment, and
propose that most likely scene interpretation that is selected
by subjects should minimize the cue conflicts. Gray and Re-
gan [GR98] observe that the human performance in the TTC
task is decreasing for distorted stereo configurations.

All the above indicates that the high accuracy of dynamic
disparity information is required to enable reliable MID judge-
ment, which is instrumental in numerous practical tasks. In
many object motion scenarios dynamic disparity is the only
reliable or the most effective MID cue to perform those tasks.
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Even in the presence of other strong MID cues, their effective-
ness can be seriously degraded when combined with distorted
binocular disparity. Our perceptual study in Sec. 5 is an ex-
ample where distorted stereo has a significant effect on task
performance. As we discuss in the following section such
distorted disparity information is quite common in stereo 3D
imaging and computer graphics applications.

3. Previous Work

Besides the proper set-up of real and virtual cameras when
generating stereo content [Men09, HGG∗11, OHB∗11], the
post-manipulation of disparity has recently received con-
siderable attention [JLHE01, LHW∗10, DRE∗11, KZC∗11,
YLXH13]. Typically disparity is manipulated in individ-
ual frames, and temporal processing is limited to “smooth-
ing” between different disparity ranges at scene transitions
[LHW∗10, YLXH13]. Also, it is ensured that for moving
scene elements local warping distortions are propagated along
the motion flow to the successive frames [LHW∗10]. A lim-
ited temporal extent of per-frame temporal smoothing and
low-pass filtering characteristic of first order smoothing terms
used do not allow to maintain high-frequency temporal fea-
tures of disparity dynamic for complex motions. Our work
goes beyond such local smoothing and enables explicit global
control of disparity changes over time. This way we can
preserve both spatially local disparity manipulations and tem-
porarily global disparity dynamics.

In video retargeting applications rigidity in temporally
salient image regions is often enforced [KLHG09, WLSL10].
This can be performed in disparity-driven image warping
as well [LHW∗10], but here the goal is to avoid geomet-
ric deformation of moving objects, which are strong gaze
attractors, rather than to prevent deformations of perceived
motion trajectory. Wang et al. [WLSL10] used a second-order
smoothing term to minimize creation of “virtual” camera mo-
tion. Hoffman et al. [HKB11] analyzed the impact of image
refresh rate and stereo 3D display technology (precisely, the
eye-view separation method) on the visibility of flicker, mo-
tion smoothness, and distortions in perceived depth.

While many factors may impact visual comfort when look-
ing at stereoscopic displays the conflict between the eye con-
vergence and accommodation is usually identified as the most
prominent one [LIFH09, SKHB11]. Similar to other dispar-
ity manipulation techniques [JLHE01, LHW∗10, DRE∗11,
KZC∗11, YLXH13], our approach ensures that the comfort-
able range of binocular disparity is always maintained. Yano
et al. [YIMT02] and Speranza et al. [STRH06] investigated
the impact of object motion on the visual comfort. They found
that the rate of disparity changes over time, which is deter-
mined by the object velocity, may strongly affect the visual
comfort. Also, frequent changes from crossed disparity with
vergence point in front of the horopter to uncrossed disparity
with vergence point behind the horopter may significantly
reduce the comfort.

Stereo 3D typically evokes higher positive emotions and
stronger feeling of immersion in games compared to the 2D
mode and often leads to a better accuracy of performed tasks,
especially those that involve spatial 3D interaction [KSL12].
For example, Hubona et al. [HWSB99] have found that stereo-
scopic viewing improves both precision and speed in the
object positioning and resizing tasks, while object shadows
are far less effective cues. In VR applications, which involve
self-motion based on optical flow, binocular 3D information
facilitates the judgement of moving object direction through
the flow parsing in the HVS into the self-motion and object
motion components [MA09]. All these applications involve
the movement of objects in some form, and potentially can
benefit from our disparity optimization, which should lead to
a more natural motion appearance.

4. Our Approach

Time

Input

Our

Manip.

Depth

Depth

Depth

Figure 2: Starting from an input stereo content (Top row)
with motion (red arrow), here shown in different frames
(Columns) a typical manipulation is disparity compression to
achieve viewing comfort (Second row). In this example, the
flying cube will be slowed down in the proximity of the other
cubes and will tend to jump over the empty space between the
cubes (marked in grey), where the manipulated disparity is
compressed. Our approach (Third row) finds a compromise
that allows the manipulation where possible and restores
motion in depth.

Our approach takes the temporal disparity field processed
by any arbitrary disparity manipulation method and then re-
stores the possibly altered motion-in-depth represented by
the disparity change over time (Fig. 2). It matches it to the
disparity change over time in the original temporal dispar-
ity field but it preserves the spatial disparity characteristic
introduced by the manipulation. A post-process design of our
method enables its application to a general disparity manip-
ulation, e. g., disparity retargeting [LHW∗10, YLXH13] or
disparity compression [DRE∗11], without its modification or
knowledge of implementation details.

To this end we devise a cost function for a potential map-
ping (Sec. 4.1) that is minimized, leading to a mapping that
preserves disparity kinematics (Sec. 4.3). In our optimization
we perform a perceptual scaling of disparity velocity changes
to better account for the actually perceived changes of object
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Figure 3: The cost function computation: (a) Input scene as in Fig. 2, where a small cube is moving along a red trajectory.
Slicing the scene (violet line) and adding time as the second dimension results in a temporal light field-like RGB field for two
eyes (b)-top and a temporal disparity field where brightness depicts depth (b)-bottom of the input scene. Our optimization (c)
finds the time-varying disparity image f such that it preserves the manipulated stereo content in h and the input stereo motion in
g. The similarity cost cm( f ) matches disparity at the same space-time positions (c1: yellow box) in f and h. The smoothness
costs cs( f ) and ct( f ) match the disparity difference at the same positions in space (c2: violet box) and time (c3: red box) in f
and h. Note, how temporal smoothness is aligned with the motion flow. The acceleration cost ca( f ) matches the second order
central disparity difference at the same positions (c4: red box) in f and g.

velocity (Sec. 4.2). Spatio-temporal subsampling (Sec. 4.4)
and GPU processing (Sec. 4.5) are required to achieve the
real-time performance of our optimization solver. Finally,
we use a novel 3D warping approach (Sec. 4.6) to synthe-
size a new stereo image pair that conforms to the optimized
disparity map.

4.1. Cost function

Let Ω =R2×R+ be the space-time domain and S = Ω→R
be the set of all time-varying disparity images defined on
it. Disparity in this work refers to vergence angles or pixel
disparity measured in arc minutes, which requires a known
observer-to-screen distance and screen size. Now, consider
g∈ S as well as h∈ S , which denote an original and a manip-
ulated time-varying disparity image. A typical change from g
to h could be disparity retargeting [LHW∗10, YLXH13] or
disparity compression [DRE∗11]. Our approach finds a third
time-varying disparity image f ∈ S that optimally combines
manipulation and stereo motion preservation with respect to
certain costs as shown in Fig. 3.

Our cost function is designed to balance the following four
factors. We want the optimized results f to remain similar to
the manipulated stereo content h, and the disparity changes
introduced, to be smooth in a local space-time neighborhood.
At the same time we want to preserve the velocity of the
original content g, and strongly penalize any acceleration
changes. To this end we have to change the manipulated input
once more. Doing this, we need to ensure that performed
changes are spatially and temporally coherent. To this end
we use four cost functions to be defined now.

First, the optimized time-varying disparity image f should
be similar to the manipulated one h (Fig. 3c1)

cm( f ) =
∫

Ω

( f (x, t)−h(x, t))2 .

where t denotes time and x 2D position in the screen space.
In what follows, the bold notation is used for vectors.

Second, the change between the disparity images f and
h should be spatially smooth (Fig. 3c2). In order to allow
changes in compression manipulation independently for in-
dividual moving objects, the spatial smoothness term is
weighted non-uniformly based on the inverted local spatial
gradient magnitude of the manipulated disparity:

cs( f )=
∫

Ω

∣∣∣∣∣∣∣∣[ax(x, t) 0
0 ay(x, t)

]
·
[
∇x
(

f (x, t)−h(x, t)
)]T∣∣∣∣∣∣∣∣2,

where ∇x is the gradient with respect to x, and ax(x, t),
ay(x, t) are power functions ensuring that the cost function is
little affected on surfaces while smoothing at object silhou-
ettes is strongly suppressed as in [FFLS08]:

ax(x, t) = e−10| ∂h(x,t)
∂x | and ay(x, t) = e−10| ∂h(x,t)

∂y |.

We observed that by setting the exponent to -10 any visible
degradation of sharp disparity transitions on boundaries of
objects is prevented, while sufficient freedom to disparity
changes is provided otherwise.

Third, an introduced additional modification of disparity
should be smooth along the object motion (Fig. 3c3):

pf(x, t) = p
(
∇ f (x, t) ·u(x, t)

)
ph(x, t) = p

(
∇h(x, t) ·u(x, t)

)
ct( f ) =

∫
Ω

(
pf(x, t)︸ ︷︷ ︸

Optim. Vel.

− ph(x, t)︸ ︷︷ ︸
Manip. Vel.

)2
,

where u(x, t) is the 3D screen space-time normalized mo-
tion vector at position x at time t,∇ the gradient with respect
to x and t, · the 3D dot product, and p ∈ R→ R is a func-
tion that maps physical disparity velocity to perceptual units
(Sec. 4.2).

Finally – and most different from previous work on energy-
based image or disparity manipulation – the original accel-
eration in g should be preserved (Fig. 3c4). We therefore
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construct the acceleration term to match the second derivative
of manipulated time-varying disparity image f to the sec-
ond derivative of original disparity g along the motion path
u(x, t):

pg(x, t) = p
(
∇g(x, t) ·u(x, t)

)
ca( f ) =

∫
Ω

∣∣∣∣∣∣∇(pf(x, t)
)︸ ︷︷ ︸

Optim. Acc.

−∇
(

pg(x, t)
)︸ ︷︷ ︸

Orig. Acc.

∣∣∣∣∣∣2.

Other methods for modification of image sequences often
rely on per-frame temporal smoothness enforced by min-
imization of first temporal derivative [LHW∗10, DRE∗11,
YLXH13, KLHG09, WLSL10]. That reduces the change of
optimized image property, disparity in our case, over time
so it becomes as constant as possible. Such approaches have
two key issues. First, they often operate on per-frame basis
which might result in limited temporal extent of the optimiza-
tion depending on the solver used. We instead use sparse
samples in the temporal domain to capture the global tem-
poral characteristic of the motion-in-depth in the range of
several seconds. Second, first-order smoothing also removes
high frequencies in the temporal disparity signal, turning ev-
ery original motion into a smooth motion. Instead we use
the second temporal derivative (acceleration) of the disparity
and match the manipulated time-varying disparity image f
to the original acceleration in g. This reintroduce the origi-
nal motion characteristic independent of its scale that could
have been both locally and globally altered by changes in
disparity range and distribution. Depth-map guided temporal
upsampling later guarantees that we recover high temporal
frequencies of disparity lost by sparse sampling (Sec. 4.4).
Our method is therefore equivalent to the simple temporal
smoothing only in the case of constant speed motion.

Our smoothness term ct( f ) only states that the optimiza-
tion to restore the motion should respect the manipulated
disparity image h and should not alter it rapidly. Therefore it
does not contradict the acceleration term ca( f ).

4.2. Perceived Disparity Velocity Changes

We want to model the HVS sensitivity to a change of disparity
over time which, as we discussed in Sec. 2, contributes to the
perceived velocity of MID through the CDOT mechanism.
Such a model should ensure that perceptually important mo-
tion characteristics are well-reproduced and otherwise the
optimization can safely ignore imperceptible motion distor-
tions.

We assume that the sensitivity follows the Weber-Fechner
law and based on the measurement in [PYR96, PYR97] we
conservatively set the Weber fraction k = 0.08 irrespectively
of the motion direction. Let α̇ = dα/dt be the change of
disparity over time. Then the perceived disparity velocity
of α̇ is p(α̇) = 1

k (ln(α̇ + 1)− ln(ε + 1)), where ε is the

smallest disparity velocity that can be detected. To compare
two disparity velocities α̇ and β̇, using ∆p = p(α̇)− p(β̇) =
1
k (ln(α̇+1)− ln(β̇+1)), it is not required to know ε. Effec-
tively, ∆p is scaled in sensory just noticeable difference units
(JND), which also means that the velocity differences α̇− β̇

for which ∆p < 1 JND are not perceivable. Since k = 0.08,
one needs to change the disparity velocity α̇ by at least 8 %
to discriminate any difference.

The model can be directly applied to the temporal smooth-
ness term ct( f ), where the perceived disparity velocity
change is computed for the time-varying disparity images f
and h. This is also the case for the acceleration term ca( f ),
where the physical disparity velocity is converted into the sen-
sory response units p(α̇), prior to the disparity acceleration
computation (in the discrete formulation the acceleration is
approximated by the second order central differences based
on ∆p).

4.3. Minimization

Finding the best disparity f = argmin
f̂

c( f̂ ) with

c( f ) = wm cm( f )+ws cs( f )+wt ct( f )+wa ca( f )

is a constrained (to the target disparity range) optimization
problem. The values wm = 0.05 for the data, ws = 1.0 for the
spatial, wt = 0.1 for the temporal, and wa = 0.1 for the accel-
eration weighting are used in all our results. In the following,
we will discretize and linearize the problem, before solving it
numerically.

Discretization The solution space is discretized into ns spa-
tial and nt temporal elements, which altogether requires
n = ns nt new disparity values to be found. Thereby the so-
lution is a real vector f ∈ Rn. Let g ∈ Rn and h ∈ Rn be
discrete versions of g, the original and h, the manipulated
time-varying disparity images.

Optimization The first two costs can be written as a dis-
crete differential. The data term cost is ||f−h||2. The spatial
smoothness cost is ||An(f− h)||2, where the matrix An in
row i is 4 in column i, −1 at all four elements with index j
that are a spatial neighbor to i and zero otherwise. The two
other costs are non-linear due to the perceptual model. Let
Af and Ab ∈ Rn×n denote discrete versions of the forward
and backward motion flow u, respectively. This motion flow
permutation matrix encodes in row i and column j, how much
the i-th space-time pixel is a result of forward or backward
motion flow of space-time pixel j. The temporal smoothness
is

||p(Aff− f)− p(Afh−h)||2,

where p(α̇) is applied element-wise. Finally, the acceleration
cost is∣∣∣∣(p(Aff− f)− p(f−Abf)

)
−
(

p(Afg−g)− p(g−Abg)
)∣∣∣∣2.

c© 2013 The Author(s)
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4.4. Upsampling

Solving the above minimization problem at the full space-
time resolution of common stereo content can consume an
intractable amount of time and memory. However, we find
that the coarse-to-fine optimization works well in a subsam-
pled space-time domain, followed by on-the-fly upsampling
to the original resolution (Fig. 4). To capture all properties of
motion, temporal sampling frequency must be high enough,
so that a majority of points on any surface are visible at least
in three consecutive frames. In all video sequences considered
in this paper we used a uniform subsampling of 1 : 10 in time
and 1 : 5 in space. Only the spatio-temporal change of dis-
parity is upsampled and applied to the current frame, to keep
fine details. Two different strategies address the upsampling
in time and space.

Original h Optimized f Ratio h/f

Scaling
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Interpol.

Figure 4: Temporal upsampling of a spatio-temporal dis-
parity field. An object is moving in both image and depth
space (blue). The ratio of the temporarily nearest original
and optimized disparities h and f is interpolated with respect
to the motion flow to get the disparity scaling at a given
high-resolution frame time (red). Scaling is applied to the
high-resolution disparity (green) to get the high-resolution
output disparity.

Time In time, dense motion flow to the position in the previ-
ous keyframe and to the position in the subsequent keyframe
are used. We detect occlusion in motion flow by comparing
the depth value of the current pixel and the corresponding
pixel along the motion flow. If those values differ significantly
or the flow points outside the image, we consider the flow to
be a disocclusion or occlusion and ignore the corresponding
depth value in the interpolation. Instead of interpolating dis-
parity in time, we interpolate disparity gradients and add them
to the current high-resolution original frame. This preserves
motion changes beyond the temporal sampling frequency of
the optimization discretization.

Space In space, joint bilateral upsampling [KCLU07] with
the current high-resolution disparity image as the guidance is
applied to the output of the temporal upsampling. Again, we
interpolate gradients that are applied to the high-resolution
frame. This allows for spatial details, finer than the spatial
sampling frequency of the discretization of the solver.

4.5. Implementation

Optimization We use a gradient descent to find the best
time-varying disparity image. The system cannot be opti-
mized in closed form, due to the perceptual non-linearities
and the boundary conditions of positive disparity. Starting
from f(0) = h, in every step i a correction vector f′(i) is con-
structed from derivation of all costs and the solution is up-
dated f(i+1) = f(i)− λf′(i). A λ = 0.5 and approximately 8
iterations were found to be sufficient for convergence to the
solution for animations we tested. Adding more iterations
and/or usage of smaller λ did not introduce any visible dif-
ference in final image sequence nor individual frames when
compared visually.

GPU implementation The solver is implemented on a GPU
and performs the updates of the mapping function in realtime.
We maintain a window of previous frames combined with a
prediction of future frames. The solver uses the last solution
as the new initial guess. The deformation field is stored into
a read-only 3D GPU buffer and each solver iteration is par-
allelized over all elements. If we consider the resolution of
the subsampled space as a constant chosen based on content
structure details rather than screen resolution the optimiza-
tion runs in constant time independent of the target resolution.
Please note, that a constant iteration count worked well in our
experiments. Both spatial and temporal upsampling require
processing linear in the number of output frame pixels. This
is computationally equivalent to an application of a simple
post-process filter, e. g., motion blur, which is a technique
commonly used in rea-ltime applications.

4.6. 3D Warping

Both, the manipulated and the optimized disparity maps do
not necessarily correspond to any single pinhole camera pro-
jection. Therefore, such disparity patterns cannot be directly
produced by conventional ray-tracing or rasterization. Instead,
we have to modify the image locally. Typically the scene is
rendered from a monocular center point of view and then im-
age warping is performed [LHW∗10, DRE∗10]. Occlusions
are resolved using a depth map, if available. However, disoc-
clusions might still appear if some originally occluded region
becomes visible, resulting in typical artifacts (Fig. 5).

To overcome this problem, we propose to render geometry
twice. The first pass creates only a linear depth map that is ma-
nipulated and optimized in the pipeline described above. The
second pass produces a color image pair, but moves vertices
in the rasterization such that the resulting disparity conforms
to the desired disparity. In order to allow for fine disparity
mapping regardless of 3D geometry quality, we utilize tessel-
lation on modern GPUs and adaptively subdivide triangles in
object space up to the size of one pixel when projected on the
screen. Larger thresholds can be used to favor performance.
The rest of the rendering pipeline remains unchanged. We use
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a cascade of three increasingly approximate ways to recon-
struct the appropriate vertex motion: Direct fetching followed
by neighbor fetching, and finally global disparity curves.

Image warping

Ours

2D 3D (Ours) 3D (Ours)2D

Stage
Direct
Neighbor

Global

Figure 5: Common image warping and our approach ap-
plied to the left image of a stereoscopic image pair. The insets
show close-up views of typical artifacts in common image
warping. Color encoding in the bottom image illustrates,
which of the three proposed vertex warping methods has been
applied for a given image region.

Direct fetching In almost all cases, direct fetching is suf-
ficient: Let vp be the pixel coordinates of the projection of
a vertex v. We read the depth map at vp and check if the
difference between the depth of v and the depth map value
is smaller than a threshold ε. If this is the case, we read the
disparity map and move the vertex to achieve the desired
disparity between the left and right frames. This approach
fails in the presence of occlusions or disocclusions, as the
disparity map at vp does not contain the disparity that is to
be assigned to v.

Neighborhood stage If direct fetching fails, we first find
the nearest depth in a 3 × 3 pixel-neighborhood of vp to
increase robustness on object edges. If the minimal depth
difference is smaller than ε we use the disparity value for the
same position in the disparity map. Otherwise, we assume
that the vertex was occluded in the original rendering. It
might, however, not be occluded after disparity optimization
or manipulation. Therefore we need to resolve what disparity
it would have had if it was not occluded. We do that by
searching the neighboring non-occluded depth map pixels for
similar depth values. We assume that spatially close objects
with similar depth are likely to have similar disparity.

We use 64 samples from the 2D Halton sequence to gener-
ate polar coordinates for sampling in a wider neighborhood
of each vertex. The Halton sequence makes the sampling
more robust to aliasing compared to regular sampling. The
i-th sample position si is

si = vp + r2
i (cos(2παi),sin(2παi)),

where (ri,αi) ∈ (0,1)2 is the i-th element of the 2D Halton
sequence. We use square of radius in order to sample the close
neighborhood more densely. Once again, the depth difference
smaller than ε indicates equality.

If there was no suitable value in the neighborhood either,
it is still unclear where to move the vertex v. As a last resort,
we revert to a global disparity curve as explained next.

Global curve stage If the depth map sampling failed, there
either is no visible object with similar depth in the disparity
map or we failed to find it. In that case we cannot recover
the correct disparity for the vertex but we try to minimize
the error that would be observed as a rendering artifact. To
this end, we reconstruct an approximation of the global curve
mapping depth to disparity in a pre-process before the 3D
warping. The mapping is constructed using radial basis func-
tions with bandwidth prediction. In a first pass we predict
bandwidth i. e., how many different disparity values map to
a certain neighborhood of depth values. In a second pass,
we reconstruct the mapping from depth to disparity with an
adapted bandwidth.

In the first pass we build a standard histogram of the depth
map. Populated bins will require a higher bandwidth, i. e.,
smaller kernel for reconstruction, less populated bins need a
wider kernel. In particular, bins can be empty. In the second
pass, we iterate over all depth-disparity value pairs. We use
information about empty bins from the first pass to set the
support of a hat reconstruction kernel of disparity values to
the left and right neighborhood in the final histogram. The
support matches to the distance to the next non-empty bin in a
given direction. This way one depth-disparity pair may influ-
ence more than one histogram bin and therefore fill missing
mapping intervals but does not cause blurring in other parts.
Hat function filtering provides linear interpolation for empty
intervals of mapping curve. We consider linear interpolation
for these regions of depth range to be a conservative choice.
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Discussion Conventional image warping [LHW∗10,
DRE∗10] cannot deal with disocclusions. An alternative
would be layered depth images (LDI) [SGHS98], that do
contain all intersections of a viewing ray per pixel, not only
the first. Similar to all image-based warping techniques,
LDIs are prone to the undersampling problem, which might
degrade the quality of synthesized images, in particular, for
surfaces that originally have been seen under grazing angles.
We avoid discretization altogether by first warping and
discretizing later. Kim et al. [KHH∗11] suggest rendering
from multiple perspectives to generate a 3D lightfield.
Non-physical views can then be created as slices through
this field. That, however, involves rendering of many data
that will not be used. Our approach instead modifies the
rasterization phase itself so that it only produces the final
image with desired disparity. Our method only modifies
the vertex projection phase of rendering and therefore is
easily applicable wherever deferred shading [DWS∗88] is
used. We achieve that using vertex based warping directly on
GPU. In our method, all disocclusions are resolved before
the rasterization is performed, therefore, we do not lose any
image information.

The resulting rendering might still produce artifacts if the
global mapping curve does not match the local disparity
mapping. We expect that the disparity manipulation roughly
preserves some key properties such as depth ordering and
therefore a global curve is a reasonable estimation of disparity
at a given depth. While one could consider a more localized
reconstruction of the mapping curve, in our scenes, we have
not experienced any problems with the global curve approach
and we observed a significant reduction of rendering artifacts
due to the elimination of disocclusions (Fig. 5).

The rendering is done on per frame basis and the ap-
proach is therefore independent on temporal optimization.
This makes it applicable to any other stereo content rendering
problem.

Per-vertex warping makes the rendering performance
highly dependent on the number of vertices in the scene.
As the warping happens before culling, even vertices behind
the camera will be processed. For real time applications an
extension predicting what can be visible after the warping
using simplified geometry could be implemented. This would
prevent disparity sampling for occluded vertices which is the
main performance issue. Another improvement would utilize
temporal coherence to decrease the number of disparity map
samples per vertex.

5. Results

We performed two perceptual studies in order to evaluate
the visual quality of object motion and to measure the per-
formance in hit point-prediction for a ballistic target. Please
refer to Fig. 6 and the supplemental video for the stimuli.

Figure 6: Three example trials from our perfor-
mance study.

Setup In our experiments 10 and 8 different observers naïve
in regard to the purpose of the experiment and with normal
or corrected-to-normal (stereo) vision were observing a Zal-
man ZM-M240W polarized stereo display from a distance of
80 cm.

Preference study In the first experiment we displayed stereo
video with compressed disparity (similar to the frame-by-
frame application of global operator of Lang et al. [LHW∗10]
without temporal smoothing) and the same video with our
additional stereo-motion optimization side-by-side. Three
computer generated scenes with motion in depth can be seen
in Figs. 1 and 8. The saliency used to guide the compression
was given either to the moving or the static object to simulate
the artist’s intention or to emphasize an important object
based on the scene’s semantics. The compression was set
to be larger than what the display would require, in order
to make the stimulus comparable to a reference video with
non-manipulated disparity shown in the middle. Subjects
were asked to indicate which of the two test sequences is
more similar to the reference in terms of object motion. Our
solution has been strongly preferred in 85.6% of the cases
(p < 0.01, binomial test).
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Figure 7: Motion direction errors with 95% confidence inter-
vals.

Performance study In the second experiment the perfor-
mance of hit point-prediction in terms of precision for a
flying ball has been investigated (Fig. 6). We considered
straight-line and ballistic motion trajectories of a ball mov-
ing in a random direction. The ball was shown only for a
short initial interval after which observers used the mouse
cursor to indicate its hit point on a ground plane. The closest
world-space distance between the correct hit point and a ray
through the clicked pixel was recorded. The stereo content
was either unmodified, compressed, or compressed and pro-
cessed using our approach. Fig. 7 summarizes the experiment
outcome. An analysis of variance (ANOVA) revealed a sta-
tistically significant effect (F(2,333) = 3.99, p < 0.02) of
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reduced performance for the compressed disparity with re-
spect to the unmodified one. When directions were analyzed
independently there was the same effect for the far-to-near
direction (F(2,165) = 5.57, p < 0.01), but not for the near-
to-far direction (F(2,165) = 0.64, p = 0.53). We believe that
impact of distortion is smaller in the near-to-far direction due
to perspective scaling and smaller disparity change due to
manipulation. This results in overall lower magnitude of error
and smaller error differences between the original and manip-
ulated disparity scenarios. As can be seen in Fig. 7, overall
our method performed worse than unmodified disparity and
better than the modified one, but in both cases we could not
prove the significance of these effects.

6. Conclusion

This paper introduced an approach to retarget disparity such
that stereo motion can be reproduced faithfully. The problem
was recast into a time-space-deformation problem that was
solved using a numeric optimization procedure that allows
for real-time performance. Our solution is independent of
the particular stereo manipulation performed which makes
it general. For the case of optimization-based manipulation,
our perceptual disparity motion terms can be included in a
combined optimization. Our perceptual study demonstrates
that our disparity retargeting is strongly preferred over dispar-
ity manipulations that do not explicitly optimize for faithful
motion in depth. The performance study clearly indicates that
any disparity manipulation requires special attention in tasks
that involve visual tracking of moving objects and precise
judgment upon their possible collisions. Finally, we described
a novel 3D warping approach to synthesize stereo image pairs
that conform to a manipulated disparity map from polygonal
3D scenes. Application of this 3D warping is not limited to
disparity maps produced by our system but is applicable to
other manipulations as well.

Our approach is subject to several limitations. The per-
ception of stereo motion might be affected by other factors,
which have not been considered in this work, such as track-
ing and verging on the particular moving object, the object’s
luminance, texture, as well as its possible deformations. We
relegate as future work a more in-depth investigation of those
issues. Our current experiments were limited to computer-
generated animations. Future work will need to show how
approximations in the optical flow and scene depth recon-
struction can affect our techniques.
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