Algorithms for perturbation resilient problems

Instructor: Yury Makarychev, TTIC

Max Planck ADFOCS 2023

Practice

Need to solve combinatorial optimization and clustering problems

Multiway Cut

Many of these problems are NP-hard and cannot be solved exactly in polynomial time.

Traditional approach

- Don't make any assumptions about the input.
- Design an approximation algorithm for the worst case.

Recall: an algorithm has an α -approximation if

 $ALG \ge OPT/\alpha$ for a maximization problem $ALG \le \alpha \ OPT$ for a minimization problem

Beyond-Worst-Case Analysis

- Real-life instances appear to be much easier than worst-case instances.
- Heuristics used in practice often get much better approximation than it is theoretically possible for worst-case instances.
- > Why is it the case?
- Create good models for real-life instances.
- Design algorithms that solve instances from these models.

Two Approaches to Modelling Real-life Instances

Assume that an instance satisfies certain structural properties:

- Perturbation Resilience
 - Assumptions of the graph, weights, etc

Generative models. Assume that an instance is generated in a certain way:

- Random models: e.g. G is a G(n, p) graph
- Semirandom models: random + adversarial choices

Perturbation Resilience

Bilu and Linial '10

Cluster the following data set.

Cluster the following data set.

"Clustering is difficult only when it does not matter."

Daniely, Linial, Saks

When do solutions matter?

Bilu and Linial '10:

Optimal solutions matter when they are unique and stand out among other solutions.

When do solutions matter?

Bilu and Linial '10:

Optimal solutions matter when they are unique and stand out among other solutions.

An instance of a problem is perturbation resilient if

the optimal solution remains the same when we perturb the instance.

Perturbation-resilient Instance

Non-PR Instance

Perturbation-resilience

 \succ Consider an instance \mathcal{I} of an optimization or clustering problem. Assume that it has a number of parameters

 $p_1, ..., p_m > 0$

The parameters may be edge, vertex, or constraint weights, or distances between points.

 $> \mathcal{I}' \text{ is a } \gamma \text{-perturbation of } \mathcal{I} \text{ if it can be obtained}$ from \mathcal{I} by "perturbing the parameters" multiplying each p_i by a number from 1 to γ . $p_i \leq p'_i \leq \gamma \cdot p_i$

Perturbation-resilience

[Bilu and Linial '10] An instance \mathcal{I} of an optimization or clustering problem is γ -perturbation-resilient if the optimal solution remains the same when we perturb the instance:

every $\gamma\text{-perturbation}\ \mathcal{I}'$ has the same optimal solution as $\mathcal I$

(the value/cost of the solution may be different)

Perturbation-resilience

Every γ -perturbation \mathcal{I}' has the same optimal solution as \mathcal{I} .

- Empirical evidence shows: the optimal solution often "stands out" among all other solutions [Bilu, Linial]
- In ML, we want to find the "true" solution.
 - Make many somewhat arbitrary choices; e.g. choose one similarity function among several options
 - If the instance is not p.r., the optimal solution will be different from the true solution.

Weak perturbation-resilience

[Makarychev, M, Vijayaraghavan '14]

An instance \mathcal{I} of an optimization or clustering problem is γ -weakly perturbation-resilient if the optimal solution for every γ -perturbation \mathcal{I}' of \mathcal{I} is "close" to the optimal solution for \mathcal{I} .

Goal: Exact algorithms

- > Design exact algorithms for γ -perturbation resilient instances.
- > Design an algorithm that finds a solution "close" to an optimal solution for weakly γ -perturbation resilient instances.
- \succ We want γ to be small.

k-means and k-median

Given a set of points X, distance $d(\cdot, \cdot)$ on X, and k

Partition X into k clusters C_1, \ldots, C_k and find a "center" C_i in each C_i so as to minimize

$$\sum_{i=1}^{k} \sum_{u \in C_i} d(u, c_i) \quad (k\text{-median})$$

$$\sum_{i=1}^{k} \sum_{u \in C_i} d(u, c_i)^2 \quad (k\text{-means})$$

Results (clustering)

$\gamma \geq 3$	k-center, k-means, k-median	[Awasthi, Blum, Sheffet `12]
$\gamma \ge 1 + \sqrt{2}$	k-center, k-means, k-median	[Balcan, Liang `13]
$\gamma \ge 2$	sym. /asym. <i>k</i> -center	[Balcan, Haghtalab, White `16]
$\gamma \geq 2$	k-means, k-median	[Angelidakis, Makarychev, M`17]

Results (optimization)

$\gamma \ge cn$	Max Cut	[Bilu, Linial `10]
$\gamma \ge c\sqrt{n}$	Max Cut	[Bilu, Daniely, Linial, Saks `13]
$\gamma \geq c\sqrt{\log n}\log\log n$	Max Cut	[Makarychev, <mark>M</mark> , Vijayaraghavan `13]
$\gamma \ge 2 - 2/k$	Multiway	[AMM `17]

Results (optimization)

Our algorithms are robust.

- Find the optimal solution, if the instance is p.r.
- Find an optimal solution or detects that the instance is not p.r., otherwise.
- Never output an incorrect answer.

Solve weakly p.r. instances.

Algorithm for Clustering Problems

Plan [AMM `17]

- i. γ -perturbation resilience $\Rightarrow \gamma$ -center proximity
- ii. 2-center proximity ⇒ each cluster is a subtree of the MST

iii. use single-linkage + DP to find C_1, \ldots, C_k

Center proximity property

[Awasthi, Blum, Sheffet `12] A clustering $C_1, ..., C_k$ with centers $c_1, ..., c_k$ satisfies the center proximity property if for every $p \in C_i$:

 $d(p,c_j) > \gamma d(p,c_i)$

Perturbation resilience \Rightarrow center proximity

Perturbation resilience: the optimal clustering doesn't change when we perturb the distances.

 $d(u,v)/\gamma \leq d'(u,v) \leq d(u,v)$

[ABS `12] $d'(\cdot,\cdot)$ doesn't have to be a metric [AMM `17] $d'(\cdot,\cdot)$ is a metric

Metric perturbation resilience is a more natural notion.

Assume center proximity doesn't hold.

Then $d(p, c_j) \leq \gamma d(p, c_i)$.

Assume center proximity doesn't hold.

• Let $d'(p, c_i) = d(p, c_i) \ge \gamma^{-1} d(p, c_i)$.

Distances inside clusters C_i and C_j don't change.

Consider $u, v \in C_i$.

 $d'(u,v) = \min\begin{pmatrix} d(u,v), \\ d(u,p) + d'(p,c_j) + d(c_j,v) \end{pmatrix}$

Distances inside clusters C_i and C_j don't change.

Consider $u, v \in C_i$.

 $d'(u,v) = \min\begin{pmatrix} d(u,v), \\ d(u,p) + d'(p,c_j) + d(c_j,v) \end{pmatrix}$

Since the instance is γ -p.r., C_1 , ..., C_k must be the unique optimal solution for distance d'.

Still, c_i and c_j are optimal centers for C_i and C_j .

 $d'(p,c_i) = d'(p,c_j) \Rightarrow \text{can move } p \text{ from } C_i \text{ to } C_j$

Each cluster is a subtree of MST

[ABS `12] 2-center proximity \Rightarrow every $u \in C_i$ is closer to c_i than to any $v \notin C_i$

Assume the path from $u \in C_i$ to c_i in MST, leaves C_i .

Each cluster is a subtree of MST

[ABS `12] 2-center proximity \Rightarrow every $u \in C_i$ is closer to c_i than to any $v \notin C_i$

Assume the path from $u \in C_i$ to c_i in MST, leaves C_i .

Root MST at some r. T(u) is the subtree rooted at u.

 $cost_u(j, c)$: the cost of partitioning T(u)

- into *j* clusters (subtrees)
- so that c is the center of the cluster containing u.

Fill out the DP table bottom-up.

 u, u_1, u_2 lie in the same cluster

$$\label{eq:cost} \begin{split} \cos t_u(j,c) &= d(u,c) + \cos t_{u_1}(j_1,c) + \cos t_{u_2}(j_2,c) \\ \text{where } j_1 + j_2 &= j+1 \end{split}$$

 u, u_1, u_2 lie in different clusters $\cot_u(j, c) = d(u, c) + \cot_{u_1}(j_1, c_1) + \cot_{u_2}(j_2, c_2)$ where $j_1 + j_2 = j - 1$, $c_1 \in T(u_1)$, $c_2 \in T(u_2)$

 u, u_1 lie in the same clusters, u_2 in a different $\operatorname{cost}_u(j, c) = d(u, c) + \operatorname{cost}_{u_1}(j_1, c) + \operatorname{cost}_{u_2}(j_1, c_2)$ where $j_1 + j_2 = j$, $c_2 \in T(u_2)$

Multiway Cut

Given

- a graph G = (V, E, w)
- a set of terminals t_1, \ldots, t_k

Find a partition of V into sets $S_1, ..., S_k$ that minimizes the weight of cut edges s.t. $t_i \in S_i$.

Algorithms for Max Cut and Multiway Cut [MMV `13]

Write an SDP or LP relaxation for the problem. Show that it is integral if the instance is γ -p.r.

solve the relaxation if the SDP/LP solution is integral return the solution else return that the instance is not γ-p.r.

The algorithm is *robust*: it *never* returns an incorrect answer.

Multiway Cut

Write the relaxation for Multiway Cut by Călinescu, Karloff, and Rabani [CKR `98]

To get an α -approximation, we would design a rounding scheme with

 $\Pr[(u, v) \text{ is cut}] \leq \alpha d(u, v)$

Then

 $\mathbb{E}[\text{weight of cut edges}] \le \alpha \sum_{(u,v) \in E} w_{uv} d(u,v)$

Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges, we would we would design a rounding scheme with

 $Pr[(u, v) \text{ is not cut}] \ge \beta (1 - d(u, v))$

Then

$$\mathbb{E}[\text{wt. of uncut edges}] \ge \beta \sum_{(u,v)\in E} w_{uv}(1 - d(u,v))$$

General approach to solving p.r. instances of graph partitioning

Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

 $Pr[(u, v) \text{ is cut}] \leq \alpha \, d(u, v) \qquad \text{minimization}$ $Pr[(u, v) \text{ is not cut}] \geq \beta (1 - d(u, v))$ or

 $Pr[(u, v) \text{ is cut}] \ge \beta d(u, v) \qquad \text{maximization}$ $Pr[(u, v) \text{ is not cut}] \le \alpha (1 - d(u, v))$

Then the relaxation for γ -p.r. is integral, when $\gamma \ge \alpha/\beta$

Solving Max Cut [MMV `13]

Use the Goemans–Williamson SDP relaxation with ℓ_2^2 -triangle inequalities.

Design a rounding procedure with

$$\frac{\alpha}{\beta} = O\left(\sqrt{\log n} \log \log n\right),\,$$

which is a combination of two algorithms:

- the algorithm for Sparsest Cut with Nonuniform Demands by Arora, Lee, and Naor `08,
- the algorithm for Min Uncut by Agarwal, Charikar, Makarychev, M `05

Solving Multiway Cut [AMM `17]

Rounding procedures for Multiway Cut by

- Sharma and Vondrák `14
- Buchbinder, Schwartz, and Weizman `17 are highly non-trivial.

We need a rounding procedure only for LP solutions that are almost integral.

Design a simple rounding procedure with

$$\frac{\alpha}{\beta}=2-\frac{2}{k}$$
.

Summary

- Algorithms for 2-perturbation-resilient instances of problems with a natural center-based objective: k-means, k-median, facility location.
- Robust algorithms for $O\left(\sqrt{\log n} \log \log n\right)$ -p.r. instanced of Max Cut and $\left(2 - \frac{2}{k}\right)$ -p.r. instances of Multiway Cut.
- Negative results for p.r. instances of Max Cut, Multiway Cut, Max k-Cut, Multi Cut, Set Cover, Vertex Cover, Min 2-Horn Deletion.