
Algorithms for perturbation
resilient problems

Instructor: Yury Makarychev, TTIC

Max Planck ADFOCS 2023

Practice

𝑘𝑘-meansMultiway Cut

Need to solve combinatorial
optimization and clustering
problems

Theory

Many of these problems are NP-hard and cannot be
solved exactly in polynomial time.

Traditional approach
•Don’t make any assumptions about the input.
•Design an approximation algorithm for the worst
case.

Recall: an algorithm has an 𝛼𝛼-approximation if

𝐴𝐴𝐴𝐴𝐴𝐴 ≥ 𝑂𝑂𝑂𝑂𝑂𝑂/𝛼𝛼 for a maximization problem
𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 𝛼𝛼 𝑂𝑂𝑂𝑂𝑂𝑂 for a minimization problem

Beyond-Worst-Case Analysis

• Real-life instances appear to be much easier than
worst-case instances.

• Heuristics used in practice often get much better
approximation than it is theoretically possible for
worst-case instances.

 Why is it the case?
 Create good models for real-life instances.
 Design algorithms that solve instances from these
models.

Two Approaches to Modelling
Real-life Instances

Assume that an instance satisfies certain structural
properties:
• Perturbation Resilience
• Assumptions of the graph, weights, etc

Generative models. Assume that an instance is
generated in a certain way:
• Random models: e.g. 𝐴𝐴 is a 𝐴𝐴(𝑛𝑛, 𝑝𝑝) graph
• Semirandom models: random + adversarial choices

Perturbation Resilience
Bilu and Linial ‘10

Cluster the following data set.

Warm up

Cluster the following data set.

Warm up

Cluster the following data set in 3 groups.

Warm up

Cluster the following data set in 3 groups.

Warm up

Cluster the following data set in 3 groups.

Warm up

“Clustering is difficult only when it
does not matter.”

Daniely, Linial, Saks

When do solutions matter?

Bilu and Linial ‘10:

Optimal solutions matter when they are unique and
stand out among other solutions.

When do solutions matter?

Bilu and Linial ‘10:

Optimal solutions matter when they are unique and
stand out among other solutions.

An instance of a problem is perturbation resilient if

the optimal solution remains the same when
we perturb the instance.

Cluster the following data set in 4 groups.

Perturbation-resilient Instance

Cluster the following data set in 3 groups.

Non-PR Instance

Perturbation-resilience

 Consider an instance ℐ of an optimization or
clustering problem. Assume that it has a number of
parameters

𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 > 0
The parameters may be edge, vertex, or constraint
weights, or distances between points.

 ℐ′ is a 𝛾𝛾-perturbation of ℐ if it can be obtained
from ℐ by “perturbing the parameters” —
multiplying each 𝑝𝑝𝑖𝑖 by a number from 1 to 𝛾𝛾.

𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖′ ≤ 𝛾𝛾 ⋅ 𝑝𝑝𝑖𝑖

Perturbation-resilience

[Bilu and Linial ‘10] An instance ℐ of an optimization
or clustering problem is γ-perturbation-resilient if the
optimal solution remains the same when we perturb
the instance:

every γ-perturbation ℐ′ has the same optimal
solution as ℐ

(the value/cost of the solution may be different)

Perturbation-resilience

Every γ-perturbation ℐ′ has the same optimal solution
as ℐ.

• Empirical evidence shows: the optimal solution often
“stands out” among all other solutions [Bilu, Linial]

• In ML, we want to find the “true” solution.
• Make many somewhat arbitrary choices; e.g. choose
one similarity function among several options

• If the instance is not p.r., the optimal solution will be
different from the true solution.

Weak perturbation-resilience

[Makarychev, M, Vijayaraghavan ‘14]
An instance ℐ of an optimization or clustering problem
is γ-weakly perturbation-resilient if the optimal
solution for every γ-perturbation ℐ′ of ℐ is “close” to
the optimal solution for ℐ.

Goal: Exact algorithms

 Design exact algorithms for 𝛾𝛾-perturbation resilient
instances.
 Design an algorithm that finds a solution “close” to
an optimal solution for weakly 𝛾𝛾-perturbation
resilient instances.
 We want 𝛾𝛾 to be small.

𝑘𝑘-means and 𝑘𝑘-median

Given a set of points 𝑋𝑋, distance 𝑑𝑑(⋅,⋅) on 𝑋𝑋, and 𝑘𝑘

Partition 𝑋𝑋 into 𝑘𝑘 clusters 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 and find a
“center” 𝑐𝑐𝑖𝑖 in each 𝐶𝐶𝑖𝑖 so as to minimize

�
𝑖𝑖=1

𝑘𝑘

�
𝑢𝑢∈𝐶𝐶𝑖𝑖

𝑑𝑑(𝑢𝑢, 𝑐𝑐𝑖𝑖)

�
𝑖𝑖=1

𝑘𝑘

�
𝑢𝑢∈𝐶𝐶𝑖𝑖

𝑑𝑑 𝑢𝑢, 𝑐𝑐𝑖𝑖 2 (𝑘𝑘-means)

(𝑘𝑘-median)

Results

Results (clustering)

𝛾𝛾 ≥ 3 𝒌𝒌-center,
𝒌𝒌-means,
𝒌𝒌-median

[Awasthi, Blum, Sheffet
`12]

𝛾𝛾 ≥ 1 + 2
𝒌𝒌-center,
𝒌𝒌-means,
𝒌𝒌-median

[Balcan, Liang `13]

𝛾𝛾 ≥ 2 sym. /asym.
𝒌𝒌-center

[Balcan, Haghtalab,
White `16]

𝛾𝛾 ≥ 2 𝒌𝒌-means,
𝒌𝒌-median

[Angelidakis,
Makarychev, M `17]

Results (optimization)

𝛾𝛾 ≥ 𝑐𝑐𝑛𝑛 Max Cut [Bilu, Linial `10]

𝛾𝛾 ≥ 𝑐𝑐 𝑛𝑛 Max Cut
[Bilu, Daniely, Linial,
Saks `13]

𝛾𝛾 ≥ 𝑐𝑐 log𝑛𝑛 log log𝑛𝑛 Max Cut
[Makarychev, M,
Vijayaraghavan `13]

𝛾𝛾 ≥ 2 − 2/𝑘𝑘 Multiway [AMM `17]

Results (optimization)

Our algorithms are robust.
• Find the optimal solution, if the instance is p.r.
• Find an optimal solution or detects that the instance is
not p.r., otherwise.

•Never output an incorrect answer.

Solve weakly p.r. instances.

Algorithm for Clustering
Problems

i. 𝛾𝛾-perturbation resilience ⇒ 𝛾𝛾-center proximity
ii. 2-center proximity ⇒ each cluster is a subtree of

the MST

iii. use single-linkage + DP to find 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘

Plan [AMM `17]

Center proximity property

[Awasthi, Blum, Sheffet `12] A clustering 𝐶𝐶1, …, 𝐶𝐶𝑘𝑘
with centers 𝑐𝑐1, …, 𝑐𝑐𝑘𝑘 satisfies the center proximity
property if for every 𝑝𝑝 ∈ 𝐶𝐶𝑖𝑖 :

𝑑𝑑 𝑝𝑝, 𝑐𝑐𝑗𝑗 > 𝛾𝛾 𝑑𝑑 𝑝𝑝, 𝑐𝑐𝑖𝑖

𝑐𝑐𝑖𝑖

𝐶𝐶𝑗𝑗𝐶𝐶𝑖𝑖

𝑐𝑐𝑗𝑗
𝑝𝑝

Perturbation resilience: the optimal clustering doesn’t
change when we perturb the distances.

𝑑𝑑 𝑢𝑢, 𝑣𝑣 /𝛾𝛾 ≤ 𝑑𝑑′ 𝑢𝑢, 𝑣𝑣 ≤ 𝑑𝑑(𝑢𝑢, 𝑣𝑣)

[ABS `12] 𝑑𝑑′(⋅,⋅) doesn’t have to be a metric
[AMM `17] 𝑑𝑑′(⋅,⋅) is a metric

Metric perturbation resilience is a more natural notion.

Perturbation resilience ⇒ center
proximity

Assume center proximity doesn’t hold.
Then 𝑑𝑑 𝑝𝑝, 𝑐𝑐𝑗𝑗 ≤ 𝛾𝛾 𝑑𝑑 𝑝𝑝, 𝑐𝑐𝑖𝑖 .

Perturbation resilience ⇒ center
proximity [ABS `12, AMM `17]

𝑐𝑐𝑖𝑖

𝐶𝐶𝑗𝑗𝐶𝐶𝑖𝑖

𝑐𝑐𝑗𝑗
𝑝𝑝

Assume center proximity doesn’t hold.
• Let 𝑑𝑑′ 𝑝𝑝, 𝑐𝑐𝑗𝑗 = 𝑑𝑑 𝑝𝑝, 𝑐𝑐𝑖𝑖 ≥ 𝛾𝛾−1𝑑𝑑(𝑝𝑝, 𝑐𝑐𝑗𝑗).
• Don’t change other distances.
• Consider the shortest-path closure.

Perturbation resilience ⇒ center
proximity [ABS `12, AMM `17]

𝑐𝑐𝑖𝑖

𝐶𝐶𝑖𝑖

𝑝𝑝

𝐶𝐶𝑗𝑗

𝑐𝑐𝑗𝑗

This is a 𝛾𝛾-perturbation.

Distances inside clusters 𝑪𝑪𝒊𝒊 and 𝑪𝑪𝒋𝒋 don’t change.
Consider 𝑢𝑢, 𝑣𝑣 ∈ 𝐶𝐶𝑖𝑖 .

𝑑𝑑′ 𝑢𝑢, 𝑣𝑣 = min
𝑑𝑑 𝑢𝑢, 𝑣𝑣 ,

𝑑𝑑 𝑢𝑢, 𝑝𝑝 + 𝑑𝑑′ 𝑝𝑝, 𝑐𝑐𝑗𝑗 + 𝑑𝑑 𝑐𝑐𝑗𝑗 , 𝑣𝑣

Perturbation resilience ⇒ center
proximity [ABS `12, AMM `17]

𝑐𝑐𝑖𝑖

𝐶𝐶𝑖𝑖

𝑝𝑝

𝐶𝐶𝑗𝑗

𝑐𝑐𝑗𝑗

𝑢𝑢

𝑣𝑣

Distances inside clusters 𝑪𝑪𝒊𝒊 and 𝑪𝑪𝒋𝒋 don’t change.
Consider 𝑢𝑢, 𝑣𝑣 ∈ 𝐶𝐶𝑖𝑖 .

𝑑𝑑′ 𝑢𝑢, 𝑣𝑣 = min
𝑑𝑑 𝑢𝑢, 𝑣𝑣 ,

𝑑𝑑 𝑢𝑢, 𝑝𝑝 + 𝑑𝑑′ 𝑝𝑝, 𝑐𝑐𝑗𝑗 + 𝑑𝑑 𝑐𝑐𝑗𝑗 , 𝑣𝑣

Perturbation resilience ⇒ center
proximity [ABS `12, AMM `17]

𝑐𝑐𝑖𝑖

𝐶𝐶𝑖𝑖

𝑝𝑝

𝐶𝐶𝑗𝑗

𝑐𝑐𝑗𝑗

𝑢𝑢

𝑣𝑣

Since the instance is 𝛾𝛾-p.r., 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 must be the unique
optimal solution for distance 𝑑𝑑′.
Still, 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗 are optimal centers for 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 .

𝑑𝑑′ 𝑝𝑝, 𝑐𝑐𝑖𝑖 = 𝑑𝑑′ 𝑝𝑝, 𝑐𝑐𝑗𝑗 ⇒ can move 𝑝𝑝 from 𝐶𝐶𝑖𝑖 to 𝐶𝐶𝑗𝑗

Perturbation resilience ⇒ center
proximity [ABS `12, AMM `17]

𝑐𝑐𝑖𝑖

𝐶𝐶𝑖𝑖

𝑝𝑝

𝐶𝐶𝑗𝑗

𝑐𝑐𝑗𝑗

[ABS `12] 2-center proximity ⇒
every 𝑢𝑢 ∈ 𝐶𝐶𝑖𝑖 is closer to 𝑐𝑐𝑖𝑖 than to any 𝑣𝑣 ∉ 𝐶𝐶𝑖𝑖

Assume the path from 𝑢𝑢 ∈ 𝐶𝐶𝑖𝑖 to 𝑐𝑐𝑖𝑖 in MST, leaves 𝐶𝐶𝑖𝑖 .

Each cluster is a subtree of MST

𝑢𝑢 𝑐𝑐𝑖𝑖
𝑣𝑣

[ABS `12] 2-center proximity ⇒
every 𝑢𝑢 ∈ 𝐶𝐶𝑖𝑖 is closer to 𝑐𝑐𝑖𝑖 than to any 𝑣𝑣 ∉ 𝐶𝐶𝑖𝑖

Assume the path from 𝑢𝑢 ∈ 𝐶𝐶𝑖𝑖 to 𝑐𝑐𝑖𝑖 in MST, leaves 𝐶𝐶𝑖𝑖 .

Each cluster is a subtree of MST

𝑢𝑢 𝑐𝑐𝑖𝑖
𝑣𝑣

Root MST at some 𝑟𝑟. 𝑂𝑂 𝑢𝑢 is the subtree rooted at 𝑢𝑢.

cost𝑢𝑢(𝑗𝑗, 𝑐𝑐): the cost of partitioning 𝑂𝑂 𝑢𝑢
• into 𝑗𝑗 clusters (subtrees)
• so that 𝑐𝑐 is the center of the cluster containing 𝑢𝑢.

Dynamic programming algorithm

𝑢𝑢

𝑟𝑟

𝑂𝑂(𝑢𝑢)

𝑐𝑐

Fill out the DP table bottom-up.
Example: 𝑘𝑘-median, 𝑢𝑢 has 2 children 𝑢𝑢1 and 𝑢𝑢2.

Dynamic programming algorithm

𝑢𝑢

𝑂𝑂(𝑢𝑢)

𝑢𝑢2𝑢𝑢1

Fill out the DP table bottom-up.
Example: 𝑘𝑘-median, 𝑢𝑢 has 2 children 𝑢𝑢1 and 𝑢𝑢2.

Dynamic programming algorithm

𝑢𝑢

𝑂𝑂(𝑢𝑢)

Fill out the DP table bottom-up.
Example: 𝑘𝑘-median, 𝑢𝑢 has 2 children 𝑢𝑢1 and 𝑢𝑢2.

Dynamic programming algorithm

𝑢𝑢

𝑂𝑂(𝑢𝑢)

Fill out the DP table bottom-up.
Example: 𝑘𝑘-median, 𝑢𝑢 has 2 children 𝑢𝑢1 and 𝑢𝑢2.

Dynamic programming algorithm

𝑢𝑢

𝑂𝑂(𝑢𝑢)

𝑢𝑢,𝑢𝑢1,𝑢𝑢2 lie in the same cluster

cost𝑢𝑢 𝑗𝑗, 𝑐𝑐 = 𝑑𝑑 𝑢𝑢, 𝑐𝑐 + cost𝑢𝑢1 𝑗𝑗1, 𝑐𝑐 + cost𝑢𝑢2 𝑗𝑗2, 𝑐𝑐
where 𝑗𝑗1 + 𝑗𝑗2 = 𝑗𝑗 + 1

𝑢𝑢,𝑢𝑢1,𝑢𝑢2 lie in different clusters

cost𝑢𝑢 𝑗𝑗, 𝑐𝑐 = 𝑑𝑑 𝑢𝑢, 𝑐𝑐 + cost𝑢𝑢1 𝑗𝑗1, 𝑐𝑐1 + cost𝑢𝑢2 𝑗𝑗2, 𝑐𝑐2
where 𝑗𝑗1 + 𝑗𝑗2 = 𝑗𝑗 − 1, 𝑐𝑐1 ∈ 𝑂𝑂 𝑢𝑢1 , 𝑐𝑐2 ∈ 𝑂𝑂 𝑢𝑢2

𝑢𝑢,𝑢𝑢1 lie in the same clusters, 𝑢𝑢2 in a different

cost𝑢𝑢 𝑗𝑗, 𝑐𝑐 = 𝑑𝑑 𝑢𝑢, 𝑐𝑐 + cost𝑢𝑢1 𝑗𝑗1, 𝑐𝑐 + cost𝑢𝑢2 𝑗𝑗1, 𝑐𝑐2
where 𝑗𝑗1 + 𝑗𝑗2 = 𝑗𝑗, 𝑐𝑐2 ∈ 𝑂𝑂 𝑢𝑢2

Dynamic programming algorithm

Multiway Cut

Given
•a graph 𝐴𝐴 = (𝑉𝑉,𝐸𝐸,𝑤𝑤)
•a set of terminals 𝑡𝑡1, … , 𝑡𝑡𝑘𝑘

Find a partition of 𝑉𝑉 into sets 𝑆𝑆1, … , 𝑆𝑆𝑘𝑘 that minimizes
the weight of cut edges s.t. 𝑡𝑡𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 .

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝑡𝑡4

Algorithms for Max Cut and Multiway
Cut [MMV `13]

Write an SDP or LP relaxation for the problem.
Show that it is integral if the instance is 𝛾𝛾-p.r.

solve the relaxation
if the SDP/LP solution is integral

return the solution
else

return that the instance is not 𝛾𝛾-p.r.

The algorithm is robust: it never returns an incorrect
answer.

Multiway Cut

Write the relaxation for Multiway Cut by
Călinescu, Karloff, and Rabani [CKR `98]

To get an 𝛼𝛼-approximation, we would design a
rounding scheme with

Pr 𝑢𝑢, 𝑣𝑣 is cut ≤ 𝛼𝛼 𝑑𝑑 𝑢𝑢, 𝑣𝑣

Then
𝔼𝔼 weight of cut edges ≤ 𝛼𝛼�

𝑢𝑢,𝑣𝑣 ∈𝐸𝐸
𝑤𝑤𝑢𝑢𝑣𝑣𝑑𝑑(𝑢𝑢, 𝑣𝑣)

Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges,
we would we would design a rounding scheme
with

Pr 𝑢𝑢, 𝑣𝑣 is not cut ≥ 𝛽𝛽 (1 − 𝑑𝑑 𝑢𝑢, 𝑣𝑣)

Then
𝔼𝔼 wt. of uncut edges ≥ 𝛽𝛽 �

𝑢𝑢,𝑣𝑣 ∈𝐸𝐸
𝑤𝑤𝑢𝑢𝑣𝑣(1 − 𝑑𝑑 𝑢𝑢, 𝑣𝑣)

Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

Pr 𝑢𝑢, 𝑣𝑣 is cut ≤ 𝛼𝛼 𝑑𝑑 𝑢𝑢, 𝑣𝑣

Pr 𝑢𝑢, 𝑣𝑣 is not cut ≥ 𝛽𝛽 1 − 𝑑𝑑 𝑢𝑢, 𝑣𝑣
or

Pr 𝑢𝑢, 𝑣𝑣 is cut ≥ 𝛽𝛽 𝑑𝑑 𝑢𝑢, 𝑣𝑣
Pr 𝑢𝑢, 𝑣𝑣 is not cut ≤ 𝛼𝛼 1 − 𝑑𝑑 𝑢𝑢, 𝑣𝑣
Then the relaxation for 𝛾𝛾-p.r. is integral, when 𝛾𝛾 ≥ 𝛼𝛼/𝛽𝛽

General approach to solving p.r.
instances of graph partitioning

minimization

maximization

!

Solving Max Cut [MMV `13]

Use the Goemans–Williamson SDP relaxation with
ℓ22-triangle inequalities.

Design a rounding procedure with
 𝛼𝛼

𝛽𝛽
= 𝑂𝑂 log𝑛𝑛 log log𝑛𝑛 ,

which is a combination of two algorithms:
• the algorithm for Sparsest Cut with Nonuniform Demands
by Arora, Lee, and Naor `08,

• the algorithm for Min Uncut by Agarwal, Charikar,
Makarychev, M `05

Solving Multiway Cut [AMM `17]

Rounding procedures for Multiway Cut by
•Sharma and Vondrák `14
•Buchbinder, Schwartz, and Weizman `17
are highly non-trivial.

We need a rounding procedure only for LP solutions
that are almost integral.

Design a simple rounding procedure with
𝛼𝛼
𝛽𝛽

= 2 − 2
𝑘𝑘

 .

Summary

•Algorithms for 2-perturbation-resilient instances of
problems with a natural center-based objective:
𝑘𝑘-means, 𝑘𝑘-median, facility location.

•Robust algorithms for 𝑂𝑂 log𝑛𝑛 log log𝑛𝑛 -p.r.

instanced of Max Cut and 2 − 2
𝑘𝑘

-p.r. instances of
Multiway Cut.

•Negative results for p.r. instances of Max Cut,
Multiway Cut, Max 𝑘𝑘-Cut, Multi Cut, Set Cover,
Vertex Cover, Min 2-Horn Deletion.

	Algorithms for perturbation resilient problems
	Practice
	Theory
	Beyond-Worst-Case Analysis
	Two Approaches to Modelling �Real-life Instances
	Perturbation Resilience
	Warm up
	Warm up
	Warm up
	Warm up
	Warm up
	� �“Clustering is difficult only when it does not matter.”
	When do solutions matter?
	When do solutions matter?
	Perturbation-resilient Instance
	Non-PR Instance
	Perturbation-resilience
	Perturbation-resilience
	Perturbation-resilience
	Weak perturbation-resilience
	Goal: Exact algorithms
	𝑘-means and 𝑘-median
	Results
	Results (clustering)
	Results (optimization)
	Results (optimization)
	Algorithm for Clustering Problems
	Plan [AMM `17]
	Center proximity property
	Perturbation resilience ⇒ center proximity
	Perturbation resilience ⇒ center proximity [ABS `12, AMM `17]
	Perturbation resilience ⇒ center proximity [ABS `12, AMM `17]
	Perturbation resilience ⇒ center proximity [ABS `12, AMM `17]
	Perturbation resilience ⇒ center proximity [ABS `12, AMM `17]
	Perturbation resilience ⇒ center proximity [ABS `12, AMM `17]
	Each cluster is a subtree of MST
	Each cluster is a subtree of MST
	Dynamic programming algorithm
	Dynamic programming algorithm
	Dynamic programming algorithm
	Dynamic programming algorithm
	Dynamic programming algorithm
	Dynamic programming algorithm
	Multiway Cut
	Algorithms for Max Cut and Multiway Cut [MMV `13]
	Multiway Cut
	Multiway Cut: complementary objective
	General approach to solving p.r. instances of graph partitioning
	Solving Max Cut [MMV `13]
	Solving Multiway Cut [AMM `17]
	Summary

