Semirandom Models: Correlation Clustering

Instructor: Yury Makarychev, TTIC

Two approaches to Modelling for Real-life Instances

Assume that an instance satisfies certain structural properties:

- Perturbation Resilience
- Assumptions of the graph, weights, etc

Generative models. Assume that an instance is generated in a certain way:

- Random models: e.g. G is a $G(n, p)$ graph
- Semirandom models: random + adversarial choices

Two Approaches to Modelling Real-life Instances

Assume that an instance satisfies certain structural properties:

- Perturbation Resilience
- Assumptions of the graph, weights, etc

Generative models. Assume that an instance is generated in a certain way:

- Random models: e.g. G is a $G(n, p)$ graph
- Semirandom models: random + adversarial choices

Semirandom Models

There are algorithms for semirandom models of graph partitioning, graph coloring, community detection, sorting noisy data, constraint satisfaction, and other problems.

Today: semirandom instances for correlation clustering

Roodmap

Introduction

- Define Correlation Clustering \& a semirandom model
- Review known results

Algorithm

- Solve an SDP relaxation
- Remove edges with high SDP cost
- Prove the Main Structural Algorithm, which claims that the remaining problem is "easy"
- Construct a small set of representative solutions

Correlation Clustering

We are given a graph $G=(V, E, c)$ with edge costs c_{e} and edge labels.

- V is the set of datapoints/vertices
- for $(u, v) \in E$, we are given whether
u and v are similar or dissimilar and the confidence level $c_{e} \in[0,1]$

Correlation Clustering

$$
E=E_{+} \cup E_{-}
$$

" + " edges connect similar vertices
"-" edges connect dissimilar vertices
$c_{u v} \in[0,1]$ is the confidence level

Perfect Information

Perfect Information

There is a clustering C_{1}, \ldots, C_{k} such that all

- +-edges lie within clusters
- --edges connect different clusters

Imperfect Information

Reality: Some edges are inconsistent with clustering

Objective: Find a clustering that minimizes the total cost of edges inconsistent with it

Semirandom Model

Adversarial choices:

- Choose a planted clustering $C_{1}^{*}, \ldots C_{k}^{*}$
- Choose a graph $G=(V, E)$ and edge costs C_{e}
- Label edges within clusters with +, labels across clusters with -.

At this point, we have perfect information.

Random corruption:

- Flip the label $+\leftrightarrow-$ of every edge w.p. $\varepsilon<1 / 2$.

Semirandom: Planted Solution

Semirandom: Random Corruption

Semirandom: Random Corruption

Semirandom: Random Corruption

Results

Results: Worst Cose

Arbitrary graph with arbitrary costs C_{e}
[Charikar, Guruswami, and Wirth "05]
[Demaine, Emanuel, Fiat, and Immorlica '06]
$O(\log n)$
approximation

Completete graph with unit costs $c_{e}=1 \quad 1.994 \ldots$
[Cohen-Addad, Lee, and Newman '23]

Completete graph with costs $c_{e} \in[\alpha, 1]$ approximation
[Jafarov, Kalhan, Makarychev, and M'20]
$3+2 \log _{e} 1 / \alpha$
approximation

Results: Random \& Semi-random Models

[Ben-Dor, Shamir, and Yakhini '99] [Bansal, Blum, and Chawla '04] [Mathieu and Schudy '10] [Chen, Jalali, Sanghavi, and Xu '14]
Algorithms for complete and $G(n, p)$ graphs
[Makarychev, M, Vijayaraghavan '14] An algorithm for arbitrary graphs which finds a solution of cost

$$
(1+\delta) O P T+O(n \text { polylog } n)
$$

This is a PTAS when $O P T \gg \varepsilon^{-1} n$ polylog n. The algorithm recovers the planted solution under mild expansion assumptions on G.

SDP reloxation

Introduce a variable $x_{u v}$ for every pair of vertices.
The intended solution is

$$
\begin{gathered}
x_{u v}=\left\{\begin{array}{l}
1, \text { if } u \text { and } v \text { are in the same cluster } \\
0, \text { if } u \text { and } v \text { are in different clusters }
\end{array}\right. \\
X=\left(x_{u v}\right)=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

SDP relaxation

$\operatorname{minimize} \sum_{e \in E_{+}}\left(1-x_{e}\right)+\sum_{e \in E_{-}} x_{e}$
s.t.

$$
\begin{aligned}
& X=\left(x_{u v}\right) \succcurlyeq 0 \quad \text { (positive semidefinite) } \\
& 0 \leq x_{u v} \leq 1
\end{aligned}
$$

Assume $c_{e}=1$ to simplify the exposition.

SDP relaxation

$\operatorname{minimize} \sum_{e \in E_{+}}\left(1-x_{e}\right)+\sum_{e \in E_{-}} x_{e}$
s.t.

$$
\begin{aligned}
& X=\left(x_{u v}\right) \succcurlyeq 0 \quad \text { (positive semidefinite) } \\
& 0 \leq x_{u v} \leq 1
\end{aligned}
$$

Let $f_{e}\left(x_{e}\right)=1-x_{e}$ if $e \in E_{+}$and

$$
f_{e}\left(x_{e}\right)=x_{e} \quad \text { if } e \in E_{-}
$$

SDP reloxation

 $\operatorname{minimize} \sum_{e \in E} f_{e}\left(x_{e}\right)$s.t.

$$
\begin{aligned}
& X=\left(x_{u v}\right) \succcurlyeq 0 \quad \text { (positive semidefinite) } \\
& 0 \leq x_{u v} \leq 1
\end{aligned}
$$

Let $f_{e}\left(x_{e}\right)=1-x_{e}$ if $e \in E_{+}$and

$$
f_{e}\left(x_{e}\right)=x_{e} \quad \text { if } e \in E_{-}
$$

What is $f_{e}\left(x_{e}^{*}\right)$?
 $$
\begin{array}{ll} f_{e}\left(x_{e}\right)=1-x_{e} & \text { if } e \in E_{+} \\ f_{e}\left(x_{e}\right)=x_{e} & \text { if } e \in E_{-} \end{array}
$$

Q: Let x_{e}^{*} be the planted solution. What is $f_{e}\left(x_{e}^{*}\right)$?

SDP reloxation

 $\operatorname{minimize} \sum_{e \in E} f_{e}\left(x_{e}\right)$s.t.

$$
\begin{aligned}
& X=\left(x_{u v}\right) \succcurlyeq 0 \quad \text { (positive semidefinite) } \\
& 0 \leq x_{u v} \leq 1
\end{aligned}
$$

Let $f_{e}\left(x_{e}\right)=1-x_{e}$ if $e \in E_{+}$and

$$
f_{e}\left(x_{e}\right)=x_{e} \quad \text { if } e \in E_{-}
$$

Denote the cost of the planted solution by OPT.

Algorithm

Step 0: solve the SDP, obtain $X=\left(x_{u v}\right)$ and $f_{e}\left(x_{e}\right)$

Algorithm

Step 0: solve the SDP, obtain $X=\left(x_{u v}\right)$ and $f_{e}\left(x_{e}\right)$ Step 1: remove all edges e with $f_{e}\left(x_{e}\right) \geq 1-\delta$

Algorithm

Step 0: solve the SDP, obtain $X=\left(x_{u v}\right)$ and $f_{e}\left(x_{e}\right)$
Step 1: remove all edges e with $f_{e}\left(x_{e}\right) \geq 1-\delta$
Q: What is the total cost Cost_{1} of all removed edges?
A: A contribution of a removed edge e

- to Cost $_{1}$ is 1
- to $S D P$ is $\geq 1-\delta$
$\Rightarrow \operatorname{Cost}_{1} \leq \frac{S D P}{1-\delta} \leq(1+2 \delta) S D P$

Algorithm

It turns out that we removed most corrupted edges!
Main Structural Theorem: W.h.p. the cost Cost $_{2}$ of the remaining corrupted edges is at most

$$
\operatorname{Cost}_{2} \leq \frac{\delta O P T}{D}+O_{\delta}\left(n \log ^{3} n\right)
$$

where $D=O(\log n)$.
Step 2: Apply a standard $D=O(\log n)$
approximation algorithm to the remaining instance [Charikar, Guruswami, Wirth '05; Demaine, Emanuel, Fiat, Immorlica '06]

Assume the Structural Theorem

We obtain a clustering whose cost is at most

$$
\left(\frac{\delta O P T}{D}+O\left(n \log ^{3} n\right)\right) \times D=\delta O P T+O_{\delta}\left(n \log ^{4} n\right)
$$

Taking into account Cost_{1}, we upper bound the cost of all the edges:

$$
(1+3 \delta) O P T+O_{\delta}\left(n \log ^{4} n\right)
$$

Structural Theorem

Main Structural Theorem: W.h.p. the cost Cost $_{2}$ of the remaining corrupted edges is at most $\frac{\delta O P T}{D}+$ $O_{\delta}\left(n \log ^{3} n\right)$ where $D=O(\log n)$.

Q: What is Cost_{2} for the planted solution x_{e}^{*} ?

Idea: There are few integrality gap examples

The SDP solution maybe
() Close to the planted solution - Good news! Step 1 removes most corrupted edges.
(:) Far from X^{*} - Too bad!
Step 1 might not accomplish much.
If a feasible SDP solution is far from X^{*},

- its cost before corruption is much larger than that of X^{*}
- the expected cost after corruption is also much larger than that of X^{*}
- Bernstein's concentration inequality \Rightarrow unlikely that
$S D P \leq O P T$

Idea: There are few integrality gap examples

If a feasible SDP solution is far from X^{*},

- its cost before corruption is much larger than that of X^{*}
- the expected cost after corruption is also much larger than that of X^{*}
- Bernstein's concentration inequality \Rightarrow unlikely that

$$
S D P \leq O P T
$$

- W.h.p. there is no feasible SDP solution that is far from X^{*} and whose value $S D P \leq O P T$
\Rightarrow the optimal SDP solution must be close to X^{*}

Structural Theorem

Choose $G=\left(V, E, c_{e}\right)$ and clustering $C_{1}^{*}, \ldots, C_{k}^{*}$. The clustering defines edge labels.

Random Step: Flip the label of every e w.p. $\varepsilon<1 / 2$
SDP Step: Find an optimal SDP solution
Let E_{R} be the set of randomly corrupted edges.
Need to show that

$$
\operatorname{Cost}_{2}=\left|\left\{e \in E_{R}: f_{e}\left(x_{e}\right)<1-\delta\right\}\right|
$$

is small.

Structural Theorem

Choose $G=\left(V, E, c_{e}\right)$ and clustering $C_{1}^{*}, \ldots, C_{k}^{*}$. The clustering defines edge labels.

Random Step: Flip the label of every e w.p. $\varepsilon<1 / 2$
SDP Step: Find an SDP solution with SDP $\leq O P T$
Let E_{R} be the set of randomly corrupted edges.
Need to show that

$$
\operatorname{Cost}_{2}=\left|\left\{e \in E_{R}: f_{e}\left(x_{e}\right)<1-\delta\right\}\right|
$$

is small.

A game between SDP \& Random

Think that the SDP solution is chosen by an adversary who wants to disprove our theorem.

Random Player: Flip the label of every e w.p. $\varepsilon<1 / 2$ SDP Player: Choose a feasible SDP solution

SDP Player wins $: *$ if

$$
S D P \leq O P T \text { and } \operatorname{Cost}_{2} \text { is large. }
$$

We will show that SDP wins with exponentially small probability.

A game between SDP \& Random

Think that the SDP solution is chosen by an adversary who wants to disprove our theorem.

SDP Player: Choose a feasible SDP solution Random Player: Flip the label of every e w.p. $\varepsilon<1 / 2$

SDP Player wins : if

$$
S D P \leq O P T \text { and } \operatorname{Cost}_{2} \text { is large. }
$$

We will show that SDP wins with exponentially small probability.

Game: SDP

SDP Player:

Choose a feasible SDP solution: $X=\left(x_{u v}\right) \succcurlyeq 0$
When SDP chooses X, E_{R} and f_{e} are not yet defined.
Let $\quad f_{e}^{*}\left(x_{e}\right)=1-x_{e} \quad$ if e is in some C_{i}^{*}

$$
f_{e}^{*}\left(x_{e}\right)=x_{e} \quad \text { otherwise }
$$

Think of bet $_{e} \equiv f_{e}^{*}\left(x_{e}\right) \in[0,1]$ as a bet that SDP places on edge e.

Game: SDP

SDP Player:
Choose a feasible SDP solution: $X=\left(x_{u v}\right) \succcurlyeq 0$
Define $f_{e}^{*}\left(x_{e}\right)=1-x_{e}$ if e is in some C_{i}^{*} $f_{e}^{*}\left(x_{e}\right)=x_{e} \quad$ otherwise

Think of bet $_{e} \equiv f_{e}^{*}\left(x_{e}\right) \in[0,1]$ as a bet that SDP places on edge e.
Q: What bet $f_{e}^{*}\left(x_{e}^{*}\right)$ does the planted solution x_{e}^{*} place on every edge?

Game: SDP

SDP Player:
Choose a feasible SDP solution: $X=\left(x_{u v}\right) \succcurlyeq 0$
Define $f_{e}^{*}\left(x_{e}\right)=1-x_{e}$ if e is in some C_{i}^{*} $f_{e}^{*}\left(x_{e}\right)=x_{e} \quad$ otherwise

Think of bet $_{e} \equiv f_{e}^{*}\left(x_{e}\right) \in[0,1]$ as a bet that SDP places on edge e.
Q: What bet $f_{e}^{*}\left(x_{e}^{*}\right)$ does the planted solution x_{e}^{*} place on every edge?
A: $f_{e}^{*}\left(x_{e}^{*}\right)=0$. Further, $f_{e}^{*}\left(x_{e}\right)=\left|x_{e}-x_{e}^{*}\right|$ shows by how much x_{e} deviates from x_{e}^{*}.

Game: Random

Random Player:
Flips the label of each e w.p. $\varepsilon<1 / 2$.
Let $Z_{e}=1$ if $e \in E_{R}$ (that is, was flipped by Random) and $Z_{e}=-1$ otherwise.

$$
\mathbb{E}\left[Z_{e}\right]=\varepsilon \cdot 1+(1-\varepsilon) \cdot(-1)=2 \varepsilon-1<0
$$

A game between SDP \& Random

SDP Player: Places a bet bet $_{e} \equiv f_{e}^{*}\left(x_{e}\right)$ on each e Random Player: flips a biased ± 1 "coin" Z_{e} with

$$
\mathbb{E}\left[Z_{e}\right]=\varepsilon \cdot 1+(1-\varepsilon) \cdot(-1)=2 \varepsilon-1<0
$$

SDP Player wins : only if
$O P T-S D P \geq 0$
Cost $_{2}$ is large

$$
f_{e}\left(x_{e}\right)+f_{e}^{*}\left(x_{e}\right)=1 \text { if } e \in E_{R}
$$

formula for $O P T-S D P$

$$
O P T-S D P=\sum_{e} f_{e}\left(x_{e}^{*}\right)-f\left(x_{e}\right)
$$

If $e \notin E_{R}$

$$
f_{e}\left(x_{e}^{*}\right)-f_{e}\left(x_{e}\right)=-f_{e}\left(x_{e}\right)=-f_{e}^{*}\left(x_{e}\right)=Z_{e} f^{*}\left(x_{e}\right)
$$

If $e \in E_{R}$

$$
\begin{aligned}
f_{e}\left(x_{e}^{*}\right)-f_{e}\left(x_{e}\right) & =1-f_{e}\left(x_{e}\right)=1-\left(1-f_{e}^{*}\left(x_{e}\right)\right) \\
& =f_{e}^{*}\left(x_{e}\right)=Z_{e} f^{*}\left(x_{e}\right)
\end{aligned}
$$

$f_{e}\left(x_{e}\right)+f_{e}^{*}\left(x_{e}\right)=1$ if $e \in E_{R}$
 formula for $O P T-S D P$

$$
O P T-S D P=\sum_{e} Z_{e} f^{*}\left(x_{e}\right)
$$

If $e \notin E_{R}$

$$
f_{e}\left(x_{e}^{*}\right)-f_{e}\left(x_{e}\right)=-f_{e}\left(x_{e}\right)=-f_{e}^{*}\left(x_{e}\right)=Z_{e} f^{*}\left(x_{e}\right)
$$

If $e \in E_{R}$

$$
\begin{aligned}
f_{e}\left(x_{e}^{*}\right)-f_{e}\left(x_{e}\right) & =1-f_{e}\left(x_{e}\right)=1-\left(1-f_{e}^{*}\left(x_{e}\right)\right) \\
& =f_{e}^{*}\left(x_{e}\right)=Z_{e} f^{*}\left(x_{e}\right)
\end{aligned}
$$

$$
f_{e}\left(x_{e}\right)+f_{e}^{*}\left(x_{e}\right)=1 \text { if } e \in E_{R}
$$

Upper Bound for Cost $_{2}$

Cost $_{2}=\left|\left\{e \in E_{R}: f_{e}\left(x_{e}\right)<1-\delta\right\}\right|$

$$
=\left|\left\{e \in E_{R}: f_{e}^{*}\left(x_{e}\right)>\delta\right\}\right| \leq \sum_{e} \frac{f^{*}\left(x_{e}\right)}{\delta}
$$

A game between SDP \& Random

SDP Player: Places a bet bet $_{e} \equiv f_{e}^{*}\left(x_{e}\right)$ on each e Random Player: flips a biased ± 1 "coin" Z_{e} with

$$
\mathbb{E}\left[Z_{e}\right]=\varepsilon \cdot 1+(1-\varepsilon) \cdot(-1)=2 \varepsilon-1<0
$$

SDP Player wins : only if

$$
\begin{aligned}
& O P T-S D P=\sum_{e} f^{*}\left(x_{e}\right) \cdot Z_{e} \geq 0 \\
& \text { Cost }_{2} \leq \frac{1}{\delta} \sum_{e} f^{*}\left(x_{e}\right) \text { is large }
\end{aligned}
$$

A game between SDP \& Random

SDP Player wins only if

$$
\begin{aligned}
& O P T-S D P=\sum_{e} f^{*}\left(x_{e}\right) \cdot Z_{e} \geq 0 \\
& \operatorname{Cost}_{2} \leq \frac{1}{\delta} \sum_{e} b e t_{e} \text { is large }
\end{aligned}
$$

But...

$$
\mathbb{E}\left[\sum f^{*}\left(x_{e}\right) \cdot Z_{e}\right]=\sum_{e}(2 \varepsilon-1) f^{*}\left(x_{e}\right)=(2 \varepsilon-1) \sum_{e} f^{*}\left(x_{e}\right)<0
$$

Bernstein's Inequality:

$$
\operatorname{Pr}\left(\sum f^{*}\left(x_{e}\right) \cdot Z_{e} \geq 0\right)=\exp \left(-\Omega(1-2 \varepsilon) \sum_{e} f^{*}\left(x_{e}\right)\right)
$$

is exponentially small when $\sum_{e} f^{*}\left(x_{e}\right)$ is large!

A game between SDP \& Random

The probability that a given SDP solution wins is exponentially small ().

In reality, we solve the SDP after - not before - edge labels are randomly perturbed. What shall we do about that?

Random moves first \& SDP second

Changing the order of moves may appear problematic: in a casino, if we were allowed to place a bet after we see where the ball lands, we could easily win!
If X could be any matrix with $x_{u v} \in[0,1]$ then the SDP player could win by defining x_{e} so that

$$
f_{e}^{*}\left(x_{e}\right)=\left\{\begin{array}{c}
0, \text { if } Z_{e}=-1 \\
1, \text { if } Z_{e}=1
\end{array}\right.
$$

Then,

$$
\begin{aligned}
& \sum_{e} f^{*}\left(x_{e}\right) \cdot Z_{e}=\sum_{e: Z_{e}=1} c_{e} \approx \varepsilon c(E)>0 \\
& \sum_{e} f^{*}\left(x_{e}\right) \approx \varepsilon c(E) \text { is large }
\end{aligned}
$$

Random moves first $\&$ SDP second

We showed that every fixed "strategy" $X=\left(x_{u v}\right)$ wins with exponentially small probability

$$
p=\exp (-P)
$$

Union bound: the SDP player still looses w.h.p. if he chooses $X=\left(x_{u v}\right)$ from an exponentially large family of solutions $|\mathcal{F}|=\exp (F)$ as long as

$$
P \gg F
$$

To conclude, we show that there exists a representative family of SDP solutions of size $\exp \left(O\left(n \log ^{3} n\right)\right)$.

Grothendieck Inequality

Given:

- vectors u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} with $\left\|u_{i}\right\|,\left\|v_{j}\right\| \leq 1$
- a matrix $M=\left(m_{i j}\right)$

There exist $a_{1}, \ldots, a_{n} \in\{ \pm 1\}$ and $b_{1}, \ldots, b_{n} \in\{ \pm 1\}$ s.t.

$$
\sum_{i j} m_{i j}\left\langle u_{i}, v_{j}\right\rangle \leq K_{G} \sum_{i j} m_{i j} a_{i} b_{j}
$$

where $K_{G}<1.7823$ is an absolute constant.

Grothendieck Inequalitu: Dual form

Let $S=\left\{a b^{T}=\left(\begin{array}{ccc}a_{1} b_{1} & \cdots & a_{n} b_{1} \\ \vdots & \ddots & \vdots \\ a_{1} b_{n} & \cdots & a_{n} b_{n}\end{array}\right): a_{i}, b_{j} \in\{ \pm 1\}\right\}$
For vectors u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} with $\left\|u_{i}\right\|,\left\|v_{j}\right\| \leq 1$, we have for their Gram matrix:

$$
G=\left(\left\langle u_{i}, v_{j}\right\rangle\right)_{i j} \in K_{G} \cdot \operatorname{conv}(S)
$$

Grothendieck Inequalitu: Dual form

Let $S=\left\{a b^{T}=\left(\begin{array}{ccc}a_{1} b_{1} & \cdots & a_{n} b_{1} \\ \vdots & \ddots & \vdots \\ a_{1} b_{n} & \cdots & a_{n} b_{n}\end{array}\right): a_{i}, b_{j} \in\{ \pm 1\}\right\}$
If $X \succcurlyeq 0$ and diagonal entries $x_{i i} \leq 1$, then

$$
X \in K_{G} \cdot \operatorname{conv}(S)
$$

Grothendieck Inequalitu: Dual form

Let $S=\left\{a b^{T}=\left(\begin{array}{ccc}a_{1} b_{1} & \cdots & a_{n} b_{1} \\ \vdots & \ddots & \vdots \\ a_{1} b_{n} & \cdots & a_{n} b_{n}\end{array}\right): a_{i}, b_{j} \in\{ \pm 1\}\right\}$
If $X \succcurlyeq 0$ and diagonal entries $x_{i i} \leq 1$, then

$$
X \in K_{G} \cdot \operatorname{conv}(S)
$$

S has size $|S|=2^{2 n}$.

Grothendieck Inequalitu: Dual form

If $X \succcurlyeq 0$ and diagonal entries $x_{i i} \leq 1$, then

$$
X \in K_{G} \cdot \operatorname{conv}(S)
$$

S has size $|S|=2^{2 n}$.
Approximate Carathéodory's Theorem [Maurey]:
Every X is approximated by an average of
$k=0\left(\frac{\log n}{\gamma^{2}}\right)$ matrices * from S with ℓ_{∞}-error $\leq \gamma$.

Grothendieck Inequalitu: Dual form

If $X \succcurlyeq 0$ and diagonal entries $x_{i i} \leq 1$, then

$$
X \in K_{G} \cdot \operatorname{conv}(S)
$$

S has size $|S|=2^{2 n}$.
Approximate Carathéodory's Theorem [Maurey]:
Every X is approximated by an average of
$k=0\left(\frac{\log n}{\gamma^{2}}\right)$ matrices ${ }^{*}$ from S with ℓ_{∞}-error $\leq \gamma$.
Let $\mathrm{F}=\left\{\frac{M_{1}+\cdots+M_{k}}{k}: M_{i} \in F\right\}$.

Grothendieck Inequalitu: Dual form

Let $\mathrm{F}=\left\{\frac{M_{1}+\cdots+M_{k}}{k}: M_{i} \in S\right\}$ where $k=O\left(\frac{\log n}{\gamma^{2}}\right)$.
Every feasible SDP solution X is approximated by a matrix $M \in \mathrm{~F}:\|X-M\|_{\infty} \leq \gamma$. We need $\gamma=\frac{1}{\log n}$.

There are $|\mathrm{F}|=|S|^{k}=2^{o\left(\frac{n \log n}{r^{2}}\right)}=\exp \left(O\left(n \log ^{3} n\right)\right)$ such matrices.

We are done!

Only need to take care of the error term γ. This is a bit technical but not difficult step.

