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Two approaches to Modelling for 
Real-life Instances

Assume that an instance satisfies certain structural 
properties: 
•  Perturbation Resilience
•  Assumptions of the graph, weights, etc

Generative models. Assume that an instance is 
generated in a certain way:
•  Random models: e.g. 𝐺𝐺 is a 𝐺𝐺(𝑛𝑛, 𝑝𝑝) graph
•  Semirandom models: random + adversarial choices
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•  Random models: e.g. 𝐺𝐺 is a 𝐺𝐺(𝑛𝑛, 𝑝𝑝) graph
•  Semirandom models: random + adversarial choices



Semirandom Models

There are algorithms for semirandom models of graph 
partitioning, graph coloring, community detection, 
sorting noisy data, constraint satisfaction, and other 
problems.

Today: semirandom instances for correlation clustering



Roadmap

Introduction
•Define Correlation Clustering & a semirandom model
•Review known results

Algorithm
•Solve an SDP relaxation
•Remove edges with high SDP cost
•Prove the Main Structural Algorithm, which claims 
that the remaining problem is “easy”

•Construct a small set of representative solutions



Correlation Clustering

We are given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸, 𝑐𝑐) with edge costs 
𝑐𝑐𝑒𝑒 and edge labels. 
•  𝑉𝑉 is the set of datapoints/vertices
•  for 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸, we are given whether 

𝑢𝑢 and 𝑣𝑣 are similar or dissimilar
and the confidence level 𝑐𝑐𝑒𝑒 ∈ [0,1]



Correlation Clustering

𝐸𝐸 = 𝐸𝐸+ ⊔ 𝐸𝐸−
“+” edges connect similar vertices
“−” edges connect dissimilar vertices
𝑐𝑐𝑢𝑢𝑢𝑢 ∈ [0,1] is the confidence level



Perfect Information

Perfect Information 
There is a clustering 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 such that all 
•  +-edges lie within clusters
•  −-edges connect different clusters 



Imperfect Information

Reality: Some edges are inconsistent with clustering

Objective: Find a clustering that minimizes the total 
cost of edges inconsistent with it



Semirandom Model

Adversarial choices:
•  Choose a planted clustering 𝐶𝐶1∗, …𝐶𝐶𝑘𝑘∗

•  Choose a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and edge costs 𝑐𝑐𝑒𝑒
•  Label edges within clusters with +, 
 labels across clusters with −.

At this point, we have perfect information.

Random corruption:
•  Flip the label + ↔ − of every edge w.p. 𝜀𝜀 < ⁄1 2 .



Semirandom: Planted Solution

𝐸𝐸+ are within clusters
𝐸𝐸_ are across clusters

𝐶𝐶1∗

𝐶𝐶2∗

𝐶𝐶3∗

𝐶𝐶4∗

𝐶𝐶5∗
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Results



Results: Worst Case

Arbitrary graph with arbitrary costs 𝑐𝑐𝑒𝑒
[Charikar, Guruswami, and Wirth ‘05] 
[Demaine, Emanuel, Fiat, and Immorlica ‘06]

Completete graph with unit costs 𝑐𝑐𝑒𝑒 = 1
[Cohen-Addad, Lee, and Newman ‘23]

Completete graph with costs 𝑐𝑐𝑒𝑒 ∈ [𝛼𝛼, 1]
[Jafarov, Kalhan, Makarychev,  and M ‘20]

𝑂𝑂 log𝑛𝑛
approximation 

1.994 …
approximation 

3 + 2 log𝑒𝑒1/𝛼𝛼
approximation 



Results: Random & Semi-random 
Models
[Ben-Dor, Shamir, and Yakhini ‘99] [Bansal, Blum, and Chawla ‘04]
[Mathieu and Schudy ‘10] [Chen, Jalali, Sanghavi, and Xu ‘14]

Algorithms for complete and 𝐺𝐺 𝑛𝑛, 𝑝𝑝  graphs

[Makarychev, M, Vijayaraghavan ‘14] An algorithm for 
arbitrary graphs which finds a solution of cost
 

1 + 𝛿𝛿 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑂𝑂(𝑛𝑛 polylog 𝑛𝑛)

This is a PTAS when 𝑂𝑂𝑂𝑂𝑂𝑂 ≫ 𝜀𝜀−1𝑛𝑛 polylog 𝑛𝑛. The 
algorithm recovers the planted solution under mild 
expansion assumptions on 𝐺𝐺.



SDP relaxation

Introduce a variable 𝑥𝑥𝑢𝑢𝑢𝑢 for every pair of vertices.
The intended solution is

𝑥𝑥𝑢𝑢𝑢𝑢 = �1, if 𝑢𝑢 and 𝑣𝑣 are in the same cluster
0, if 𝑢𝑢 and 𝑣𝑣 are in different clusters

𝑋𝑋 = 𝑥𝑥𝑢𝑢𝑢𝑢 =

1 1 1
1 1 1
1 1 1

 
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

 
1 1 0
1 1 0
0 0 1

 
block matrix



SDP relaxation

minimize ∑𝑒𝑒∈𝐸𝐸+(1 − 𝑥𝑥𝑒𝑒)+ ∑𝑒𝑒∈𝐸𝐸− 𝑥𝑥𝑒𝑒
s.t.
 𝑋𝑋 = 𝑥𝑥𝑢𝑢𝑢𝑢 ≽ 0 (positive semidefinite)
 0 ≤ 𝑥𝑥𝑢𝑢𝑢𝑢 ≤ 1

Assume 𝑐𝑐𝑒𝑒 = 1 to simplify the exposition.



SDP relaxation

minimize ∑𝑒𝑒∈𝐸𝐸+(1 − 𝑥𝑥𝑒𝑒)+ ∑𝑒𝑒∈𝐸𝐸− 𝑥𝑥𝑒𝑒
s.t.
 𝑋𝑋 = 𝑥𝑥𝑢𝑢𝑢𝑢 ≽ 0 (positive semidefinite)
 0 ≤ 𝑥𝑥𝑢𝑢𝑢𝑢 ≤ 1

Let  𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 ∈ 𝐸𝐸+ and
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  if 𝑒𝑒 ∈ 𝐸𝐸−



SDP relaxation

minimize ∑𝑒𝑒∈𝐸𝐸 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒)
s.t.
 𝑋𝑋 = 𝑥𝑥𝑢𝑢𝑢𝑢 ≽ 0 (positive semidefinite)
 0 ≤ 𝑥𝑥𝑢𝑢𝑢𝑢 ≤ 1

Let  𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 ∈ 𝐸𝐸+ and
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  if 𝑒𝑒 ∈ 𝐸𝐸−



What is 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒∗)?

Q: Let 𝑥𝑥𝑒𝑒∗ be the planted solution. What is 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒∗)?

𝑥𝑥𝑒𝑒∗ ∶ 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒∗)
1 ∶ 0

0 ∶ 0
0 ∶ 11 ∶ 1

𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 ∈ 𝐸𝐸+
𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  if 𝑒𝑒 ∈ 𝐸𝐸−



SDP relaxation

minimize ∑𝑒𝑒∈𝐸𝐸 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒)
s.t.
 𝑋𝑋 = 𝑥𝑥𝑢𝑢𝑢𝑢 ≽ 0 (positive semidefinite)
 0 ≤ 𝑥𝑥𝑢𝑢𝑢𝑢 ≤ 1

Let  𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 ∈ 𝐸𝐸+ and
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  if 𝑒𝑒 ∈ 𝐸𝐸−

Denote the cost of the planted solution by 𝑂𝑂𝑂𝑂𝑂𝑂.



Step 0: solve the SDP, obtain 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) and 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒)

Algorithm

𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 0.9
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Step 1: remove all edges 𝑒𝑒 with 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 ≥ 1 − 𝛿𝛿
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Algorithm

Step 0: solve the SDP, obtain 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) and 𝑓𝑓𝑒𝑒(𝑥𝑥𝑒𝑒)
Step 1: remove all edges 𝑒𝑒 with 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 ≥ 1 − 𝛿𝛿

Q: What is the total cost 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1 of all removed edges?
A: A contribution of a removed edge 𝑒𝑒 

•  to 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1 is 1
•  to 𝑆𝑆𝑆𝑆𝑂𝑂 is ≥ 1 − 𝛿𝛿

⇒ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1 ≤
𝑆𝑆𝑆𝑆𝑆𝑆
1−𝛿𝛿

≤ 1 + 2𝛿𝛿 𝑆𝑆𝑆𝑆𝑂𝑂



Algorithm

It turns out that we removed most corrupted edges!

Main Structural Theorem: W.h.p. the cost 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 of the 
remaining corrupted edges is at most

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 ≤
𝛿𝛿 𝑂𝑂𝑂𝑂𝑂𝑂
𝑆𝑆

+ 𝑂𝑂𝛿𝛿 𝑛𝑛 log3 𝑛𝑛

where 𝑆𝑆 = 𝑂𝑂(log𝑛𝑛).
Step 2: Apply a standard 𝑆𝑆 = 𝑂𝑂 log𝑛𝑛  
approximation algorithm to the remaining instance 
[Charikar, Guruswami, Wirth ‘05; Demaine, Emanuel, Fiat, Immorlica ‘06]



Assume the Structural Theorem

We obtain a clustering whose cost is at most 

𝛿𝛿 𝑂𝑂𝑂𝑂𝑂𝑂
𝑆𝑆

+ 𝑂𝑂 𝑛𝑛 log3 𝑛𝑛 × 𝑆𝑆 = 𝛿𝛿 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑂𝑂𝛿𝛿 𝑛𝑛 log4 𝑛𝑛

Taking into account 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡1, we upper bound the cost of all 
the edges:

1 + 3𝛿𝛿 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑂𝑂𝛿𝛿 𝑛𝑛 log4 𝑛𝑛




Structural Theorem

Main Structural Theorem: W.h.p. the cost 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 of the 
remaining corrupted edges is at most 𝛿𝛿 𝑂𝑂𝑆𝑆𝑂𝑂

𝑆𝑆
+

𝑂𝑂𝛿𝛿 𝑛𝑛 log3 𝑛𝑛  where 𝑆𝑆 = 𝑂𝑂(log𝑛𝑛).

Q: What is 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 for the planted solution 𝑥𝑥𝑒𝑒∗?

𝑓𝑓𝑒𝑒 = 1

𝑓𝑓𝑒𝑒 = 1

𝑓𝑓𝑒𝑒 = 1
𝑓𝑓𝑒𝑒 = 1

𝑓𝑓𝑒𝑒 = 1



Idea: There are few integrality gap 
examples
The SDP solution maybe

 Close to the planted solution – Good news! 
 Step 1 removes most corrupted edges.
 Far from 𝑋𝑋∗ – Too bad!
 Step 1 might not accomplish much.

If a feasible SDP solution is far from 𝑋𝑋∗, 
•  its cost before corruption is much larger than that of 𝑋𝑋∗
•  the expected cost after corruption is also much larger 
than that of 𝑋𝑋∗

•  Bernstein’s concentration inequality ⇒ unlikely that
𝑆𝑆𝑆𝑆𝑂𝑂 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂



Idea: There are few integrality gap 
examples
If a feasible SDP solution is far from 𝑋𝑋∗, 
•  its cost before corruption is much larger than that of 
𝑋𝑋∗

•  the expected cost after corruption is also much 
larger than that of 𝑋𝑋∗

•  Bernstein’s concentration inequality ⇒ unlikely that
𝑆𝑆𝑆𝑆𝑂𝑂 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂

•  W.h.p. there is no feasible SDP solution that is far 
from 𝑋𝑋∗ and whose value 𝑆𝑆𝑆𝑆𝑂𝑂 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂
⇒ the optimal SDP solution must be close to 𝑋𝑋∗



Structural Theorem

Choose 𝐺𝐺 = (𝑉𝑉,𝐸𝐸, 𝑐𝑐𝑒𝑒) and clustering 𝐶𝐶1∗, … ,𝐶𝐶𝑘𝑘∗. The 
clustering defines edge labels.

Random Step: Flip the label of every 𝑒𝑒 w.p. 𝜀𝜀 < ⁄1 2
SDP Step: Find an optimal SDP solution

Let 𝐸𝐸𝑅𝑅 be the set of randomly corrupted edges.
Need to show that 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 = 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅:𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 < 1 − 𝛿𝛿
is small.



Structural Theorem

Choose 𝐺𝐺 = (𝑉𝑉,𝐸𝐸, 𝑐𝑐𝑒𝑒) and clustering 𝐶𝐶1∗, … ,𝐶𝐶𝑘𝑘∗. The 
clustering defines edge labels.

Random Step: Flip the label of every 𝑒𝑒 w.p. 𝜀𝜀 < ⁄1 2
SDP Step: Find an SDP solution with 𝑆𝑆𝑆𝑆𝑂𝑂 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂

Let 𝐸𝐸𝑅𝑅 be the set of randomly corrupted edges.
Need to show that 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 = 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅:𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 < 1 − 𝛿𝛿
is small.



A game between SDP & Random

Think that the SDP solution is chosen by an adversary 
who wants to disprove our theorem.

Random Player: Flip the label of every 𝑒𝑒 w.p. 𝜀𝜀 < ⁄1 2
SDP Player: Choose a feasible SDP solution

SDP Player wins  if
 𝑆𝑆𝑆𝑆𝑂𝑂 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 is large. 

We will show that SDP wins with exponentially small 
probability.
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Think that the SDP solution is chosen by an adversary 
who wants to disprove our theorem.

SDP Player: Choose a feasible SDP solution
Random Player: Flip the label of every 𝑒𝑒 w.p. 𝜀𝜀 < ⁄1 2

SDP Player wins  if
 𝑆𝑆𝑆𝑆𝑂𝑂 ≤ 𝑂𝑂𝑂𝑂𝑂𝑂 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 is large. 

We will show that SDP wins with exponentially small 
probability.



Game: SDP

SDP Player: 
 Choose a feasible SDP solution: 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) ≽ 0
 When SDP chooses 𝑋𝑋, 𝐸𝐸𝑅𝑅 and 𝑓𝑓𝑒𝑒 are not yet
 defined.
 Let  𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 is in some 𝐶𝐶𝑖𝑖∗

      𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  otherwise

 Think of 𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒 ≡ 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 ∈ [0,1] as a bet that
 SDP places on edge 𝑒𝑒.



Game: SDP

SDP Player: 
 Choose a feasible SDP solution: 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) ≽ 0
 Define 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 is in some 𝐶𝐶𝑖𝑖∗

      𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  otherwise

 Think of 𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒 ≡ 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 ∈ [0,1] as a bet that
 SDP places on edge 𝑒𝑒.
Q: What bet 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒∗  does the planted solution 𝑥𝑥𝑒𝑒∗ 
place on every edge?



Game: SDP

SDP Player: 
 Choose a feasible SDP solution: 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) ≽ 0
 Define 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 1 − 𝑥𝑥𝑒𝑒 if 𝑒𝑒 is in some 𝐶𝐶𝑖𝑖∗

      𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑥𝑥𝑒𝑒  otherwise

 Think of 𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒 ≡ 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 ∈ [0,1] as a bet that
 SDP places on edge 𝑒𝑒.
Q: What bet 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒∗  does the planted solution 𝑥𝑥𝑒𝑒∗ 
place on every edge?
A: 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒∗ = 0. Further, 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = |𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑒𝑒∗| shows by 
how much 𝑥𝑥𝑒𝑒 deviates from 𝑥𝑥𝑒𝑒∗.



Game: Random

Random Player:
Flips the label of each 𝑒𝑒 w.p. 𝜀𝜀 < ⁄1 2.
Let 𝑍𝑍𝑒𝑒 = 1 if 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅 (that is, was flipped by Random)
and 𝑍𝑍𝑒𝑒 = −1 otherwise.

𝔼𝔼 𝑍𝑍𝑒𝑒 = 𝜀𝜀 ⋅ 1 + 1 − 𝜀𝜀 ⋅ −1 = 2𝜀𝜀 − 1 < 0



A game between SDP & Random

SDP Player: Places a bet 𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒 ≡ 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒  on each e
Random Player: flips a biased ±1 “coin” 𝑍𝑍𝑒𝑒  with

𝔼𝔼 𝑍𝑍𝑒𝑒 = 𝜀𝜀 ⋅ 1 + 1 − 𝜀𝜀 ⋅ −1 = 2𝜀𝜀 − 1 < 0

SDP Player wins  only if

 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂 ≥ 0

 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 is large



Formula for 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂

𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂 = �
𝑒𝑒

𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒∗ − 𝑓𝑓 𝑥𝑥𝑒𝑒

If 𝑒𝑒 ∉ 𝐸𝐸𝑅𝑅
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒∗ − 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = −𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = −𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑍𝑍𝑒𝑒𝑓𝑓∗(𝑥𝑥𝑒𝑒)

If 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒∗ − 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 1 − 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒
 = 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑍𝑍𝑒𝑒𝑓𝑓∗(𝑥𝑥𝑒𝑒)

𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 + 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 1 if 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅



Formula for 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂

𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂 = �
𝑒𝑒

𝑍𝑍𝑒𝑒𝑓𝑓∗ 𝑥𝑥𝑒𝑒

If 𝑒𝑒 ∉ 𝐸𝐸𝑅𝑅
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒∗ − 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = −𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = −𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑍𝑍𝑒𝑒𝑓𝑓∗(𝑥𝑥𝑒𝑒)

If 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅
 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒∗ − 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 = 1 − 1 − 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒
 = 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 𝑍𝑍𝑒𝑒𝑓𝑓∗(𝑥𝑥𝑒𝑒)

𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 + 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 1 if 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅



Upper Bound for 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 = 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅:𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 < 1 − 𝛿𝛿

 = 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅:𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 > 𝛿𝛿 ≤ ∑𝑒𝑒
𝑓𝑓∗ 𝑥𝑥𝑒𝑒
𝛿𝛿

 

𝑓𝑓𝑒𝑒 𝑥𝑥𝑒𝑒 + 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = 1 if 𝑒𝑒 ∈ 𝐸𝐸𝑅𝑅



A game between SDP & Random

SDP Player: Places a bet 𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒 ≡ 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒  on each e
Random Player: flips a biased ±1 “coin” 𝑍𝑍𝑒𝑒  with

𝔼𝔼 𝑍𝑍𝑒𝑒 = 𝜀𝜀 ⋅ 1 + 1 − 𝜀𝜀 ⋅ −1 = 2𝜀𝜀 − 1 < 0

SDP Player wins  only if

 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂 = ∑𝑒𝑒 𝑓𝑓∗(𝑥𝑥𝑒𝑒) ⋅ 𝑍𝑍𝑒𝑒 ≥ 0

 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 ≤
1
𝛿𝛿
∑𝑒𝑒 𝑓𝑓∗(𝑥𝑥𝑒𝑒) is large



A game between SDP & Random

SDP Player wins only if

 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑂𝑂 = ∑𝑒𝑒 𝑓𝑓∗(𝑥𝑥𝑒𝑒) ⋅ 𝑍𝑍𝑒𝑒 ≥ 0
 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡2 ≤

1
𝛿𝛿
∑𝑒𝑒 𝑏𝑏𝑒𝑒𝑡𝑡𝑒𝑒 is large

But…

𝔼𝔼 �𝑓𝑓∗(𝑥𝑥𝑒𝑒) ⋅ 𝑍𝑍𝑒𝑒 = �
𝑒𝑒

2𝜀𝜀 − 1 𝑓𝑓∗(𝑥𝑥𝑒𝑒) = 2𝜀𝜀 − 1 �
𝑒𝑒

𝑓𝑓∗(𝑥𝑥𝑒𝑒) < 0

Bernstein’s Inequality:

 Pr(∑𝑓𝑓∗(𝑥𝑥𝑒𝑒) ⋅ 𝑍𝑍𝑒𝑒 ≥ 0) = exp(−Ω 1 − 2𝜀𝜀 ∑𝑒𝑒 𝑓𝑓∗ 𝑥𝑥𝑒𝑒 )

is exponentially small when ∑𝑒𝑒 𝑓𝑓∗(𝑥𝑥𝑒𝑒) is large!



A game between SDP & Random

The probability that a given SDP solution wins is 
exponentially small .

In reality, we solve the SDP after – not before – edge 
labels are randomly perturbed. What shall we do about 
that?



Random moves first & 
SDP second
Changing the order of moves may appear 
problematic: in a casino, if we were allowed to 
place a bet after we see where the ball lands, 
we could easily win!

If 𝑋𝑋 could be any matrix with 𝑥𝑥𝑢𝑢𝑢𝑢 ∈ [0,1] then the 
SDP player could win by defining 𝑥𝑥𝑒𝑒 so that

 𝑓𝑓𝑒𝑒∗ 𝑥𝑥𝑒𝑒 = �0, if 𝑍𝑍𝑒𝑒 = −1
1, if 𝑍𝑍𝑒𝑒 = 1

Then,

  ∑𝑒𝑒 𝑓𝑓∗(𝑥𝑥𝑒𝑒) ⋅ 𝑍𝑍𝑒𝑒 = ∑𝑒𝑒:𝑍𝑍𝑒𝑒=1 𝑐𝑐𝑒𝑒 ≈ 𝜀𝜀 𝑐𝑐 𝐸𝐸 > 0

 ∑𝑒𝑒 𝑓𝑓∗(𝑥𝑥𝑒𝑒) ≈ 𝜀𝜀 𝑐𝑐(𝐸𝐸) is large



Random moves first & 
SDP second

We showed that every fixed “strategy” 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) wins 
with exponentially small probability 

𝑝𝑝 = exp(−𝑂𝑂)

Union bound: the SDP player still looses w.h.p. if he 
chooses 𝑋𝑋 = (𝑥𝑥𝑢𝑢𝑢𝑢) from an exponentially large family of 
solutions ℱ = exp(𝐹𝐹) as long as 

𝑂𝑂 ≫ 𝐹𝐹

To conclude, we show that there exists a representative 
family of SDP solutions of size exp 𝑂𝑂 𝑛𝑛 log3 𝑛𝑛 .



Grothendieck Inequality

Given: 

•  vectors 𝑢𝑢1, … ,𝑢𝑢𝑛𝑛 and 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 with 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 ≤ 1
•  a matrix 𝑀𝑀 = (𝑚𝑚𝑖𝑖𝑗𝑗)
There exist 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ∈ {±1} and 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 ∈ {±1} s.t.

�
𝑖𝑖𝑗𝑗

𝑚𝑚𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 ≤ 𝐾𝐾𝐺𝐺�
𝑖𝑖𝑗𝑗

𝑚𝑚𝑖𝑖𝑗𝑗 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗

where 𝐾𝐾𝐺𝐺 < 1.7823 is an absolute constant.



Grothendieck Inequality: Dual Form

Let 𝑆𝑆 = 𝑎𝑎𝑏𝑏𝑂𝑂 =
𝑎𝑎1𝑏𝑏1 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏1
⋮ ⋱ ⋮

𝑎𝑎1𝑏𝑏𝑛𝑛 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛
:𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗 ∈ ±1

For vectors 𝑢𝑢1, … ,𝑢𝑢𝑛𝑛 and 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 with 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 ≤ 1, 
we have for their Gram matrix:

𝐺𝐺 = 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 𝑖𝑖𝑗𝑗
∈ 𝐾𝐾𝐺𝐺 ⋅ conv(𝑆𝑆)



Grothendieck Inequality: Dual Form

Let 𝑆𝑆 = 𝑎𝑎𝑏𝑏𝑂𝑂 =
𝑎𝑎1𝑏𝑏1 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏1
⋮ ⋱ ⋮

𝑎𝑎1𝑏𝑏𝑛𝑛 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛
:𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗 ∈ ±1

If 𝑋𝑋 ≽ 0 and diagonal entries 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, then

𝑋𝑋 ∈ 𝐾𝐾𝐺𝐺 ⋅ conv(𝑆𝑆)



Grothendieck Inequality: Dual Form

Let 𝑆𝑆 = 𝑎𝑎𝑏𝑏𝑂𝑂 =
𝑎𝑎1𝑏𝑏1 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏1
⋮ ⋱ ⋮

𝑎𝑎1𝑏𝑏𝑛𝑛 ⋯ 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛
:𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗 ∈ ±1

If 𝑋𝑋 ≽ 0 and diagonal entries 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, then

𝑋𝑋 ∈ 𝐾𝐾𝐺𝐺 ⋅ conv(𝑆𝑆)

𝑆𝑆 has size 𝑆𝑆 = 22𝑛𝑛.



Grothendieck Inequality: Dual Form

If 𝑋𝑋 ≽ 0 and diagonal entries 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, then

𝑋𝑋 ∈ 𝐾𝐾𝐺𝐺 ⋅ conv(𝑆𝑆)

𝑆𝑆 has size 𝑆𝑆 = 22𝑛𝑛.
Approximate Carathéodory's Theorem [Maurey]: 

Every 𝑋𝑋 is approximated by an average of 

𝑘𝑘 = O log 𝑛𝑛
𝛾𝛾2

 matrices* from 𝑆𝑆 with ℓ∞-error ≤ 𝛾𝛾.

* with repetitions



Grothendieck Inequality: Dual Form

If 𝑋𝑋 ≽ 0 and diagonal entries 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1, then

𝑋𝑋 ∈ 𝐾𝐾𝐺𝐺 ⋅ conv(𝑆𝑆)

𝑆𝑆 has size 𝑆𝑆 = 22𝑛𝑛.
Approximate Carathéodory's Theorem [Maurey]: 

Every 𝑋𝑋 is approximated by an average of 

𝑘𝑘 = O log 𝑛𝑛
𝛾𝛾2

 matrices* from 𝑆𝑆 with ℓ∞-error ≤ 𝛾𝛾.

Let Ϝ = {𝑀𝑀1+⋯+𝑀𝑀𝑘𝑘
𝑘𝑘

:𝑀𝑀𝑖𝑖 ∈ 𝐹𝐹}.

* with repetitions



Grothendieck Inequality: Dual Form

Let Ϝ = 𝑀𝑀1+⋯+𝑀𝑀𝑘𝑘
𝑘𝑘

:𝑀𝑀𝑖𝑖 ∈ 𝑆𝑆  where 𝑘𝑘 = 𝑂𝑂 log 𝑛𝑛
𝛾𝛾2

.

Every feasible SDP solution 𝑋𝑋 is approximated by a 
matrix 𝑀𝑀 ∈ Ϝ : 𝑋𝑋 −𝑀𝑀 ∞ ≤ 𝛾𝛾. We need 𝛾𝛾 = 1

log 𝑛𝑛
.

There are Ϝ = 𝑆𝑆 𝑘𝑘 = 2𝑂𝑂
𝑛𝑛log 𝑛𝑛
𝛾𝛾2 = exp 𝑂𝑂 𝑛𝑛 log3 𝑛𝑛  

such matrices.



We are done!

Only need to take care of the error term 𝛾𝛾. This is a 
bit technical but not difficult step.


