## Semirandom Models: Correlation Clustering

Instructor: Yury Makarychev, TTIC

Max Planck ADFOCS 2023

#### Two approaches to Modelling for Real-life Instances

Assume that an instance satisfies certain structural properties:

- Perturbation Resilience
- Assumptions of the graph, weights, etc

Generative models. Assume that an instance is generated in a certain way:

- Random models: e.g. G is a G(n, p) graph
- Semirandom models: random + adversarial choices

#### Two Approaches to Modelling Real-life Instances

Assume that an instance satisfies certain structural properties:

- Perturbation Resilience
- Assumptions of the graph, weights, etc

Generative models. Assume that an instance is generated in a certain way:

- Random models: e.g. G is a G(n, p) graph
- Semirandom models: random + adversarial choices

#### Semirandom Models

There are algorithms for semirandom models of graph partitioning, graph coloring, community detection, sorting noisy data, constraint satisfaction, and other problems.

Today: semirandom instances for correlation clustering

## Roadmap

#### Introduction

- Define Correlation Clustering & a semirandom model
- Review known results

#### Algorithm

- Solve an SDP relaxation
- Remove edges with high SDP cost
- Prove the Main Structural Algorithm, which claims that the remaining problem is "easy"
- Construct a small set of representative solutions

## **Correlation Clustering**

We are given a graph G = (V, E, c) with edge costs  $c_e$  and edge labels.

- V is the set of datapoints/vertices
- for  $(u, v) \in E$ , we are given whether

u and v are similar or dissimilar

and the confidence level  $c_e \in [0,1]$ 



#### **Correlation Clustering**



 $E = \mathbf{E_+} \sqcup \mathbf{E_-}$ 

- "+" edges connect similar vertices
- "-" edges connect dissimilar vertices  $c_{\mu\nu} \in [0,1]$  is the confidence level

#### Perfect Information



#### Perfect Information

There is a clustering  $C_1, \ldots, C_k$  such that all

- +-edges lie within clusters
- --edges connect different clusters

#### Imperfect Information



**Reality:** Some edges are inconsistent with clustering

**Objective:** Find a clustering that minimizes the total cost of edges inconsistent with it

## Semirandom Model

#### Adversarial choices:

- Choose a planted clustering  $C_1^*, ..., C_k^*$
- Choose a graph G = (V, E) and edge costs  $c_e$
- Label edges within clusters with +, labels across clusters with -.

At this point, we have perfect information.

#### Random corruption:

• Flip the label +  $\leftrightarrow$  - of every edge w.p.  $\varepsilon < 1/2$  .

#### Semirandom: Planted Solution



 $E_{-}$  are across clusters

#### Semirandom: Random Corruption



#### Semirandom: Random Corruption



#### Semirandom: Random Corruption





#### Results: Worst Case

Arbitrary graph with arbitrary costs  $C_e$ [Charikar, Guruswami, and Wirth '05] [Demaine, Emanuel, Fiat, and Immorlica '06]  $O(\log n)$ 

Completete graph with unit costs  $c_e = 1$  1.994 ... [Cohen-Addad, Lee, and Newman '23] approximation

Completete graph with costs  $c_e \in [\alpha, 1]$ [Jafarov, Kalhan, Makarychev, and M '20]  $3 + 2 \log_e 1/\alpha$  approximation

#### Results: Random & Semi-random Models

[Ben-Dor, Shamir, and Yakhini '99] [Bansal, Blum, and Chawla '04] [Mathieu and Schudy '10] [Chen, Jalali, Sanghavi, and Xu '14] Algorithms for complete and G(n, p) graphs

[Makarychev, M, Vijayaraghavan '14] An algorithm for arbitrary graphs which finds a solution of cost

 $(1 + \delta)OPT + O(n \text{ polylog } n)$ 

This is a PTAS when  $OPT \gg \varepsilon^{-1}n$  polylog n. The algorithm recovers the planted solution under mild expansion assumptions on G.

Introduce a variable  $x_{uv}$  for every pair of vertices. The intended solution is

 $x_{uv} = \begin{cases} 1, \text{ if } u \text{ and } v \text{ are in the same cluster} \\ 0, \text{ if } u \text{ and } v \text{ are in different clusters} \end{cases}$  $X = (x_{uv}) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ 

minimize 
$$\sum_{e \in E_+} (1 - x_e) + \sum_{e \in E_-} x_e$$
  
s.t.

$$X = (x_{uv}) \ge 0$$
 (positive semidefinite)  
 $0 \le x_{uv} \le 1$ 

#### Assume $c_e = 1$ to simplify the exposition.

minimize 
$$\sum_{e \in E_+} (1 - x_e) + \sum_{e \in E_-} x_e$$

s.t.

$$X = (x_{uv}) \ge 0$$
 (positive semidefinite)  
 $0 \le x_{uv} \le 1$ 

Let 
$$f_e(x_e) = 1 - x_e$$
 if  $e \in E_+$  and  
 $f_e(x_e) = x_e$  if  $e \in E_-$ 

 $\begin{array}{ll} \text{minimize } \sum_{e \in E} f_e(x_e) \\ \text{s.t.} \\ X = (x_{uv}) \geqslant 0 \quad (\text{positive semidefinite}) \\ 0 \leq x_{uv} \leq 1 \end{array}$   $\begin{array}{ll} \text{Let} \quad f_e(x_e) = 1 - x_e \quad \text{if } e \in E_+ \text{ and} \\ f_e(x_e) = x_e \quad \quad \text{if } e \in E_- \end{array}$ 

What is  $f_e(x_e^*)$ ?

 $f_e(x_e) = 1 - x_e \text{ if } e \in E_+$  $f_e(x_e) = x_e$  if  $e \in E_-$ 

Q: Let  $x_e^*$  be the planted solution. What is  $f_e(x_e^*)$ ?



 $\begin{array}{ll} \text{minimize } \sum_{e \in E} f_e(x_e) \\ \text{s.t.} \\ X = (x_{uv}) \geqslant 0 \quad (\text{positive semidefinite}) \\ 0 \leq x_{uv} \leq 1 \end{array}$   $\begin{array}{ll} \text{Let} \quad f_e(x_e) = 1 - x_e \quad \text{if } e \in E_+ \text{ and} \\ f_e(x_e) = x_e \quad \quad \text{if } e \in E_- \end{array}$ 

Denote the cost of the planted solution by OPT.

Step 0: solve the SDP, obtain  $X = (x_{uv})$  and  $f_e(x_e)$ 



Step 0: solve the SDP, obtain  $X = (x_{uv})$  and  $f_e(x_e)$ Step 1: remove all edges e with  $f_e(x_e) \ge 1 - \delta$ 



Step 0: solve the SDP, obtain  $X = (x_{uv})$  and  $f_e(x_e)$ Step 1: remove all edges e with  $f_e(x_e) \ge 1 - \delta$ 

Q: What is the total cost  $Cost_1$  of all removed edges? A: A contribution of a removed edge e

- to  $Cost_1$  is 1
- to SDP is  $\geq 1-\delta$

$$\Rightarrow Cost_1 \le \frac{SDP}{1-\delta} \le (1+2\delta)SDP$$

It turns out that we removed most corrupted edges!

Main Structural Theorem: W.h.p. the cost  $Cost_2$  of the remaining corrupted edges is at most

$$Cost_2 \leq \frac{\delta OPT}{D} + O_{\delta}(n \log^3 n)$$

where  $D = O(\log n)$ .

Step 2: Apply a standard  $D = O(\log n)$ approximation algorithm to the remaining instance [Charikar, Guruswami, Wirth '05; Demaine, Emanuel, Fiat, Immorlica '06]

#### Assume the Structural Theorem

We obtain a clustering whose cost is at most

$$\left(\frac{\delta \ OPT}{D} + O\left(n \log^3 n\right)\right) \times D = \delta \ OPT + O_{\delta}(n \log^4 n)$$

Taking into account  $Cost_1$ , we upper bound the cost of all the edges:

$$(1+3\delta)OPT + O_{\delta}(n\log^4 n)$$

#### Structural Theorem

Main Structural Theorem: W.h.p. the cost  $Cost_2$  of the remaining corrupted edges is at most  $\frac{\delta OPT}{D} + O_{\delta}(n \log^3 n)$  where  $D = O(\log n)$ .

Q: What is  $Cost_2$  for the planted solution  $x_e^*$ ?



#### Idea: There are few integrality gap examples

The SDP solution maybe

- Close to the planted solution Good news! Step 1 removes most corrupted edges.
  Far from X\* – Too bad!
  - Far from  $X^*$  Too bad! Step 1 might not accomplish much.
- If a feasible SDP solution is far from  $X^*$ ,
- its cost before corruption is much larger than that of  $X^{st}$
- the expected cost after corruption is also much larger than that of  $X^*$
- Bernstein's concentration inequality  $\Rightarrow$  unlikely that  $SDP \leq OPT$

#### Idea: There are few integrality gap examples

If a feasible SDP solution is far from  $X^*$ ,

- its cost before corruption is much larger than that of  $X^*$
- the expected cost after corruption is also much larger than that of  $X^*$
- Bernstein's concentration inequality  $\Rightarrow$  unlikely that  $SDP \leq OPT$
- W.h.p. there is no feasible SDP solution that is far from  $X^*$  and whose value  $SDP \leq OPT$

 $\Rightarrow$  the optimal SDP solution must be close to  $X^*$ 

#### Structural Theorem

Choose  $G = (V, E, c_e)$  and clustering  $C_1^*, \dots, C_k^*$ . The clustering defines edge labels.

Random Step: Flip the label of every e w.p.  $\varepsilon < 1/_2$ SDP Step: Find an optimal SDP solution

Let  $E_R$  be the set of randomly corrupted edges. Need to show that

$$Cost_2 = |\{e \in E_R : f_e(x_e) < 1 - \delta\}|$$

is small.

#### Structural Theorem

Choose  $G = (V, E, c_e)$  and clustering  $C_1^*, \dots, C_k^*$ . The clustering defines edge labels.

Random Step: Flip the label of every e w.p.  $\varepsilon < 1/_2$ SDP Step: Find an SDP solution with  $SDP \le OPT$ 

Let  $E_R$  be the set of randomly corrupted edges. Need to show that

$$Cost_2 = |\{e \in E_R : f_e(x_e) < 1 - \delta\}|$$

is small.

Think that the SDP solution is chosen by an adversary who wants to disprove our theorem.

Random Player: Flip the label of every e w.p.  $\varepsilon < 1/_2$ SDP Player: Choose a feasible SDP solution

SDP Player wins  $\bigotimes$  if  $SDP \leq OPT$  and  $Cost_2$  is large. We will show that SDP wins with exponentially small probability.

Think that the SDP solution is chosen by an adversary who wants to disprove our theorem.

SDP Player: Choose a feasible SDP solution Random Player: Flip the label of every e w.p.  $\varepsilon < 1/2$ 

SDP Player wins  $\bigotimes$  if  $SDP \leq OPT$  and  $Cost_2$  is large. We will show that SDP wins with exponentially small probability.

## Game: SDP

#### **SDP Player:**

Choose a feasible SDP solution:  $X = (x_{uv}) \ge 0$ When SDP chooses X,  $E_R$  and  $f_e$  are not yet defined.

Let  $f_e^*(x_e) = 1 - x_e$  if *e* is in some  $C_i^*$  $f_e^*(x_e) = x_e$  otherwise

Think of  $bet_e \equiv f_e^*(x_e) \in [0,1]$  as a bet that SDP places on edge e.

#### Game: SDP

#### **SDP Player:**

Choose a feasible SDP solution:  $X = (x_{uv}) \ge 0$ Define  $f_e^*(x_e) = 1 - x_e$  if e is in some  $C_i^*$  $f_e^*(x_e) = x_e$  otherwise

Think of  $bet_e \equiv f_e^*(x_e) \in [0,1]$  as a bet that SDP places on edge e.

Q: What bet  $f_e^*(x_e^*)$  does the planted solution  $x_e^*$  place on every edge?

## Game: SDP

#### **SDP Player:**

Choose a feasible SDP solution:  $X = (x_{uv}) \ge 0$ Define  $f_e^*(x_e) = 1 - x_e$  if e is in some  $C_i^*$  $f_e^*(x_e) = x_e$  otherwise

Think of  $bet_e \equiv f_e^*(x_e) \in [0,1]$  as a bet that SDP places on edge e.

Q: What bet  $f_e^*(x_e^*)$  does the planted solution  $x_e^*$  place on every edge?

A:  $f_e^*(x_e^*) = 0$ . Further,  $f_e^*(x_e) = |x_e - x_e^*|$  shows by how much  $x_e$  deviates from  $x_e^*$ .

#### Game: Random

**Random Player:** 

Flips the label of each e w.p.  $\varepsilon < 1/2$ . Let  $Z_e = 1$  if  $e \in E_R$  (that is, was flipped by Random) and  $Z_e = -1$  otherwise.

$$\mathbb{E}[Z_e] = \varepsilon \cdot 1 + (1 - \varepsilon) \cdot (-1) = 2\varepsilon - 1 < 0$$

SDP Player: Places a bet  $bet_e \equiv f_e^*(x_e)$  on each e Random Player: flips a biased  $\pm 1$  "coin"  $Z_e$  with  $\mathbb{E}[Z_e] = \varepsilon \cdot 1 + (1 - \varepsilon) \cdot (-1) = 2\varepsilon - 1 < 0$ 

SDP Player wins 😕 only if

 $OPT - SDP \ge 0$ 

 $Cost_2$  is large

 $f_e(x_e) + f_e^*(x_e) = 1$  if  $e \in E_R$ 

#### Formula for OPT - SDP

$$OPT - SDP = \sum_{e} f_e(x_e^*) - f(x_e)$$

#### If $e \notin E_R$ $f_e(x_e^*) - f_e(x_e) = -f_e(x_e) = -f_e^*(x_e) = Z_e f^*(x_e)$

If  $e \in E_R$   $f_e(x_e^*) - f_e(x_e) = 1 - f_e(x_e) = 1 - (1 - f_e^*(x_e))$  $= f_e^*(x_e) = Z_e f^*(x_e)$ 

 $f_e(x_e) + f_e^*(x_e) = 1$  if  $e \in E_R$ 

#### Formula for OPT - SDP

$$OPT - SDP = \sum_{e} Z_{e} f^{*}(x_{e})$$

#### If $e \notin E_R$ $f_e(x_e^*) - f_e(x_e) = -f_e(x_e) = -f_e^*(x_e) = Z_e f^*(x_e)$

If  $e \in E_R$   $f_e(x_e^*) - f_e(x_e) = 1 - f_e(x_e) = 1 - (1 - f_e^*(x_e))$  $= f_e^*(x_e) = Z_e f^*(x_e)$ 

 $f_e(x_e) + f_e^*(x_e) = 1$  if  $e \in E_R$ 

#### Upper Bound for Cost<sub>2</sub>

 $Cost_{2} = |\{e \in E_{R}: f_{e}(x_{e}) < 1 - \delta\}|$  $= |\{e \in E_{R}: f_{e}^{*}(x_{e}) > \delta\}| \le \sum_{e} \frac{f^{*}(x_{e})}{\delta}$ 

SDP Player: Places a bet  $bet_e \equiv f_e^*(x_e)$  on each e Random Player: flips a biased  $\pm 1$  "coin"  $Z_e$  with  $\mathbb{E}[Z_e] = \varepsilon \cdot 1 + (1 - \varepsilon) \cdot (-1) = 2\varepsilon - 1 < 0$ 

SDP Player wins 😕 only if

$$OPT - SDP = \sum_{e} f^{*}(x_{e}) \cdot Z_{e} \ge 0$$
$$Cost_{2} \le \frac{1}{\delta} \sum_{e} f^{*}(x_{e}) \text{ is large}$$

SDP Player wins only if

 $OPT - SDP = \sum_{e} f^{*}(x_{e}) \cdot Z_{e} \ge 0$  $Cost_{2} \le \frac{1}{\delta} \sum_{e} bet_{e} \text{ is large}$ 

But...

$$\mathbb{E}\left[\sum f^*(x_e) \cdot Z_e\right] = \sum_e (2\varepsilon - 1)f^*(x_e) = (2\varepsilon - 1)\sum_e f^*(x_e) < 0$$

Bernstein's Inequality:

 $\Pr(\sum f^*(x_e) \cdot Z_e \ge 0) = \exp(-\Omega(1 - 2\varepsilon)\sum_e f^*(x_e))$ 

is exponentially small when  $\sum_{e} f^{*}(x_{e})$  is large!

The probability that a given SDP solution wins is exponentially small  $\bigcirc$ .

In reality, we solve the SDP after – not before – edge labels are randomly perturbed. What shall we do about that?

# Random moves first & SDP second

Changing the order of moves may appear problematic: in a casino, if we were allowed to place a bet after we see where the ball lands, we could easily win!

If X could be any matrix with  $x_{uv} \in [0,1]$  then the SDP player could win by defining  $x_e$  so that

$$f_e^*(x_e) = \begin{cases} 0, \text{ if } Z_e = -1\\ 1, \text{ if } Z_e = 1 \end{cases}$$

Then,

$$\sum_{e} f^{*}(x_{e}) \cdot Z_{e} = \sum_{e:Z_{e}=1} c_{e} \approx \varepsilon c(E) > 0$$
$$\sum_{e} f^{*}(x_{e}) \approx \varepsilon c(E) \text{ is large}$$



## Random moves first & SDP second

We showed that every fixed "strategy"  $X = (x_{uv})$  wins with exponentially small probability

$$p = \exp(-P)$$

Union bound: the SDP player still looses w.h.p. if he chooses  $X = (x_{uv})$  from an exponentially large family of solutions  $|\mathcal{F}| = \exp(F)$  as long as

$$P \gg F$$

To conclude, we show that there exists a representative family of SDP solutions of size  $\exp(O(n \log^3 n))$ .

## Grothendieck Inequality

#### Given:

- vectors  $u_1, \dots, u_n$  and  $v_1, \dots, v_n$  with  $||u_i||, ||v_j|| \le 1$
- a matrix  $M=(m_{ij})$ There exist  $a_1,\ldots,a_n\in\{\pm1\}$  and  $b_1,\ldots,b_n\in\{\pm1\}$  s.t.

$$\sum_{ij} m_{ij} \langle u_i, v_j \rangle \leq K_G \sum_{ij} m_{ij} a_i b_j$$

where  $K_G < 1.7823$  is an absolute constant.

Let 
$$S = \left\{ ab^T = \begin{pmatrix} a_1b_1 & \cdots & a_nb_1 \\ \vdots & \ddots & \vdots \\ a_1b_n & \cdots & a_nb_n \end{pmatrix} : a_i, b_j \in \{\pm 1\} \right\}$$

For vectors  $u_1, ..., u_n$  and  $v_1, ..., v_n$  with  $||u_i||, ||v_j|| \le 1$ , we have for their Gram matrix:

$$G = \left( \left\langle u_i, v_j \right\rangle \right)_{ij} \in K_G \cdot \operatorname{conv}(S)$$

Let 
$$S = \left\{ ab^T = \begin{pmatrix} a_1b_1 & \cdots & a_nb_1 \\ \vdots & \ddots & \vdots \\ a_1b_n & \cdots & a_nb_n \end{pmatrix} : a_i, b_j \in \{\pm 1\} \right\}$$

If  $X \ge 0$  and diagonal entries  $x_{ii} \le 1$ , then  $X \in K_G \cdot \operatorname{conv}(S)$ 

Let 
$$S = \left\{ ab^T = \begin{pmatrix} a_1b_1 & \cdots & a_nb_1 \\ \vdots & \ddots & \vdots \\ a_1b_n & \cdots & a_nb_n \end{pmatrix} : a_i, b_j \in \{\pm 1\} \right\}$$

If  $X \ge 0$  and diagonal entries  $x_{ii} \le 1$ , then  $X \in K_G \cdot \operatorname{conv}(S)$ 

S has size  $|S| = 2^{2n}$ .

If  $X \ge 0$  and diagonal entries  $x_{ii} \le 1$ , then

 $X \in K_G \cdot \operatorname{conv}(S)$ 

S has size  $|S| = 2^{2n}$ . Approximate Carathéodory's Theorem [Maurey]: Every X is approximated by an average of  $k = O\left(\frac{\log n}{\gamma^2}\right)$  matrices<sup>\*</sup> from S with  $\ell_{\infty}$ -error  $\leq \gamma$ .

\* with repetitions

If  $X \ge 0$  and diagonal entries  $x_{ii} \le 1$ , then

 $X \in K_G \cdot \operatorname{conv}(S)$ 

S has size  $|S| = 2^{2n}$ .

Approximate Carathéodory's Theorem [Maurey]:

Every X is approximated by an average of 
$$k = O\left(\frac{\log n}{\gamma^2}\right)$$
 matrices<sup>\*</sup> from S with  $\ell_{\infty}$ -error  $\leq \gamma$ .

Let 
$$\mathbf{F} = \{\frac{M_1 + \dots + M_k}{k} : M_i \in F\}.$$

\* with repetitions

Let 
$$\mathbf{F} = \left\{ \frac{M_1 + \dots + M_k}{k} : M_i \in S \right\}$$
 where  $k = O\left(\frac{\log n}{\gamma^2}\right)$ 

Every feasible SDP solution X is approximated by a matrix  $M \in F$ :  $||X - M||_{\infty} \leq \gamma$ . We need  $\gamma = \frac{1}{\log n}$ .

There are 
$$|F| = |S|^k = 2^{O\left(\frac{n\log n}{\gamma^2}\right)} = \exp\left(O\left(n\log^3 n\right)\right)$$
  
such matrices.

#### We are done!

Only need to take care of the error term  $\gamma$ . This is a bit technical but not difficult step.