## Fair Representation Clustering

Instructor: Yury Makarychev, TTIC

## $k$-means and $k$-medians

Given a set of points $X$ in a metric space
Partition $X$ into $k$ clusters $C_{1}, \ldots, C_{k}$ and find a center $c_{i}$ for each $C_{i}$ so as to minimize

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{u \in C_{i}} d\left(u, c_{i}\right) \quad(k \text {-medians }) \\
& \sum_{i=1}^{k} \sum_{u \in C_{i}} d\left(u, c_{i}\right)^{2} \quad(k \text {-means })
\end{aligned}
$$

## fair representation clustering

## Given:

- a set of points $X$ and a distance function $d$ on $X$.
- each point belongs to one of the groups $G_{1}, \ldots, G_{\ell} \subset X$
- parameters $\alpha_{i}$ and $\beta_{i}$ for each group $i$

Fair representation:
A clustering $C_{1}, \ldots, C_{k}$ has fair representation if

$$
\alpha_{j}\left|C_{i}\right| \leq\left|C_{i} \cap G_{j}\right| \leq \beta_{j}\left|C_{i}\right|
$$

Goal: Find a fair representation clustering that minimizes the $k$-median or $k$-means objective.

## Plan for Today

Equal representation
[Chierichetti, Kumar, Lattanzi, Vassilvitskii '17] $\ell=2$
[Böhm, Fazzone, Leonardi, Schwiegelshohn '21] $\ell>2$
General representation requirements (pseudoapproximation with a constant additive violation)
[Bera, Chakrabarty, Flores, and Negahbani '19]
[Bercea, Groß, Khuller, Kumar, Rösner, Schmidt, and Schmidt ' 18
True approximation for constant $l$
[Dai, M, Vakilian '22]

## Gqual Representation

Consider an important special case when

$$
\alpha_{j}=\beta_{j}=1 / \ell
$$

We want to ensure that each cluster has the same number of points from each group.

Important: $C_{1}, \ldots, C_{k}$ don't have to be Voronoi clusters

Based on
[Chierichetti, Kumar, Lattanzi, Vassilvitskii '17] $\ell=2$
[Böhm, Fazzone, Leonardi, Schwiegelshohn '21] $\ell>2$

## Ideo [Chierichetti et al]

Partition the dataset into $t=n / \ell$ sets $F_{1}, \ldots, F_{t}$ called fairlets such that each $F_{i}$ has fair representation:
$F_{i}$ contains exactly one point from each $G_{i}$

## Ideo [Chierichetti et al]

Partition the dataset into $t=n / \ell$ sets $F_{1}, \ldots, F_{t}$ called fairlets such that each $F_{i}$ has fair representation:
$F_{i}$ contains exactly one point from each $G_{i}$


## Ideo [Chierichetti et al]

$F_{i}$ contains exactly one point from each $G_{i}$
Assign fairlets to clusters $C_{1}, \ldots, C_{k}$.


## Why?

! The obtained clustering has fair representation
It's possible to obtain the optimal solution in this way.


## Meta-algorithm

- Find a fairlet decomposition
- Choose a representative $y_{i}$ in each fairlet $F_{i}$
- Run a standard algorithm to cluster $Y=\left\{y_{1}, \ldots, y_{t}\right\}$



## Meto-algorithm

- Find a fairlet decomposition
- Choose a representative $y_{i}$ in each fairlet $F_{i}$
- Run a standard algorithm to cluster $Y=\left\{y_{1}, \ldots, y_{t}\right\}$



## Meto-algorithm

- Find a fairlet decomposition
- Choose a representative $y_{i}$ in each fairlet $F_{i}$
- Run a standard algorithm to cluster $Y=\left\{y_{1}, \ldots, y_{t}\right\}$



## Meto-algorithm

- Find a fairlet decomposition
- Choose a representative $y_{i}$ in each fairlet $F_{i}$
- Run a standard algorithm to cluster $Y=\left\{y_{1}, \ldots, y_{t}\right\}$



## Core Lemmas and Definitions

Define the cost of the fairlet decomposition $F_{i}$ with representatives $Y=\left\{y_{i}\right\}$ as:

$$
\text { fairlet }(F, Y)=\sum_{i=1}^{t} \sum_{u \in F_{i}} d\left(u, y_{i}\right)
$$



The cost of clustering $C_{1}, \ldots, C_{k}$ with centers $c_{1}, \ldots, c_{k}$ of a set $S$ is

$$
\operatorname{cost}\left(S, C_{i}, c_{i}\right) \equiv \operatorname{cost}(S)=\sum_{i} \sum_{u \in C_{i} \cap Y} d\left(u, c_{i}\right)
$$

## Core Lemmas and Definitions

Lemma 1: Consider a fairlet decomposition $F_{i}$ with representatives $Y$. Let $C_{1}, \ldots, C_{k}$ be a clustering of $Y$ with centers $c_{i}$. Extend it to $X$. Then

$$
\operatorname{cost}(X) \leq \ell \cdot \operatorname{cost}(Y)+\operatorname{fairlet}(F, Y)
$$

Proof: for $u \in F_{i} \subseteq C_{j}$

$$
d\left(u, c_{j}\right) \leq d\left(u, y_{i}\right)+d\left(y_{i}, c_{j}\right)
$$



## Core Lemmas and Definitions

Lemma 2: There exists a fairlet decomposition $F_{1}, \ldots, F_{t}$ with representatives $Y=G_{j^{*}}$ for some $j^{*}$ s.t.

$$
\begin{gathered}
\ell \cdot \operatorname{cost}\left(Y, C_{i}^{*}, c_{i}^{*}\right) \leq O P T \\
\text { fairlet }(F, Y) \leq 2 O P T
\end{gathered}
$$

Further the fairlet decomposition is consistent with the clustering: each $F_{i}$ lies entirely in some $C_{j}^{*}$.

1. Each $C_{i}^{*}$ has $\left|C_{i}^{*}\right| / \ell$ elements from each group. Partition it into $\left|C_{i}^{*}\right| / \ell$ fairlets arbitrarily.
2. Choose $j$ uniformly at random from $\{1, \ldots, \ell\}$.
3. Let $Y=G_{j}$.

4. Each $C_{i}^{*}$ has $\left|C_{i}^{*}\right| / \ell$ elements from each group. Partition it into $\left|C_{i}^{*}\right| / \ell$ fairlets arbitrarily.
5. Choose $j$ uniformly at random from $\{1, \ldots, \ell\}$.
6. Let $Y=G_{j}$.

7. Each $C_{i}^{*}$ has $\left|C_{i}^{*}\right| / \ell$ elements from each group. Partition it into $\left|C_{i}^{*}\right| / \ell$ fairlets arbitrarily.
8. Choose $j$ uniformly at random from $\{1, \ldots, \ell\}$.
9. Let $Y=G_{j}$.

_ cost of fairlets

## Proof of Lemma 2

Denote the center $u$ is assigned to in the optimal solution by $c^{*}(u)$. Then

$$
\mathbb{E} \operatorname{cost}(Y)=\frac{1}{\ell} \sum_{j} \operatorname{cost}\left(G_{j}\right)=\frac{1}{\ell} \sum_{j} \sum_{u \in G_{j}} d\left(u, c^{*}(u)\right)=\frac{O P T}{\ell}
$$

$\Rightarrow$ For some $j^{*}$ and $Y=E_{j^{*}}$ :

$$
\operatorname{cost}(Y) \leq \frac{O P T}{\ell}
$$

## Proof of Lemma 2

Lemma 2: There exists a fairlet decomposition $F_{1}, \ldots, F_{k}$ with representatives $Y=G_{j^{*}}$ for some $j^{*}$ s.t.

$$
\begin{gathered}
\Rightarrow \ell \cdot \operatorname{cost}\left(Y, C_{i}^{*}, c_{i}^{*}\right) \leq O P T \\
\quad \text { fairlet }(F, Y) \leq 2 O P T
\end{gathered}
$$

## Proof of Lemma 2

Lemma 2: There exists a fairlet decomposition $F_{1}, \ldots, F_{k}$ with representatives $Y=G_{j^{*}}$ for some $j^{*}$ s.t.

$$
\begin{gathered}
\ell \cdot \operatorname{cost}\left(Y, C_{i}^{*}, c_{i}^{*}\right) \leq O P T \\
\text { fairlet }(F, Y) \leq 2 O P T
\end{gathered}
$$

## Proof of Lemma 2

$$
\begin{aligned}
\operatorname{fairlet}(F, Y) & =\sum_{i=1}^{t} \sum_{u \in F_{i}} d\left(u, y_{i}\right) \\
& \leq \sum_{i=1}^{t} \sum_{u \in F_{i}} d\left(u, c^{*}\left(y_{i}\right)\right)+d\left(y_{i}, c^{*}\left(y_{i}\right)\right) \\
& =\sum_{i=1}^{t} \sum_{u \in F_{i}} d\left(u, c^{*}(u)\right)+d\left(y_{i}, c^{*}\left(y_{i}\right)\right) \\
& =O P T+\ell \cdot \operatorname{cost}(Y) \leq 2 O P T
\end{aligned}
$$

QED

## Algorithm

Lemma 2: For some $j^{*}, Y=G_{j}$ and fairlet decomposition $F$ :

$$
\begin{aligned}
& \ell \cdot \operatorname{cost}\left(Y, C_{i}^{*}, c_{i}^{*}\right) \leq O P T \\
& \quad \text { fairlet }(F, Y) \leq 2 O P T
\end{aligned}
$$

## Algorithm Overview

- guess $j^{*}$ and let $Y=G_{j^{*}}$
- let $C_{1}, \ldots, C_{k}$ be an approx. optimal clustering for $Y$
- let $\left\{F_{i}\right\}$ be an optimal choice of fairlets for $Y$
- extend the clustering to fairlets


## Algorithm

Lemma 2: For some $j^{*}, Y=G_{j}$ and fairlet decomposition $F$ :

$$
\begin{gathered}
\ell \cdot \operatorname{cost}\left(Y, C_{i}^{A L G}, c_{i}^{A L G}\right) \leq \alpha \cdot O P T \\
\text { fairlet }(F, Y) \leq 2 O P T
\end{gathered}
$$

## Algorithm Overview

- guess $j^{*}$ and let $Y=G_{j^{*}}$
- let $C_{1}, \ldots, C_{k}$ be an approx. optimal clustering for $Y$
- let $\left\{F_{i}\right\}$ be an optimal choice of fairlets for $Y$
- extend the clustering to fairlets


## Algorithm

Find optimal fairlets $F^{A L G}$

Lemma 2: For some $j^{*}, Y=G_{j}$ and fairlet decomposition $F$ :

$$
\begin{gathered}
\ell \cdot \operatorname{cost}\left(Y, C_{i}^{A L G}, c_{i}^{A L G}\right) \leq \alpha \cdot O P T \\
\text { fairlet }\left(F^{A L G}, Y\right) \leq 2 O P T
\end{gathered}
$$

## Algorithm Overview

- guess $j^{*}$ and let $Y=G_{j^{*}}$
- let $C_{1}, \ldots, C_{k}$ be an approx. optimal clustering for $Y$
- let $\left\{F_{i}\right\}$ be an optimal choice of fairlets for $Y$
- extend the clustering to fairlets


## Finding foirlets: Min Cost Matching



## Summary of the Algorithm

We have,

$$
\begin{aligned}
& \ell \cdot \operatorname{cost}\left(Y, C_{i}^{A L G}, c_{i}^{A L G}\right) \leq \alpha \cdot O P T \\
& \text { fairlet }\left(F^{A L G}, Y\right) \leq 2 O P T
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{cost}\left(X, C^{A L G}\right) & \leq \ell \cdot \operatorname{cost}(Y)+\operatorname{fairlet}\left(F^{A L G}, Y\right) \\
& \leq \alpha \cdot O P T+2 O P T=(\alpha+2) O P T
\end{aligned}
$$

## General Setting <br> [Bera, Chakrabartu, flores, and Negahbani '19] <br> [Bercea, Groß, Khuller, Kumar, Rösner, Schmidt, and Schmidt '18]

Solve $k$-medians subject to general fairness constraints:

$$
\alpha_{j}\left|C_{i}\right| \leq\left|C_{i} \cap G_{j}\right| \leq \beta_{j}\left|C_{i}\right|
$$

No polynomial-time true approximation algorithms are known for arbitrary $\ell$ (which may depend on $n$ ). Bera et al. \& Bercea et al.:

Find a solution that only slightly violates the fair representation constraints!

$$
\alpha_{j}\left|C_{i}\right|-O(1) \leq\left|C_{i} \cap G_{j}\right| \leq \beta_{j}\left|C_{i}\right|+O(1)
$$

## Reduce the number of locations

Goal 1: Reduce the number of locations to $k$.
Solve standard $k$-medians and move each point to the closest center.


## Reduce the number of locations

Goal 1: Reduce the number of locations to $k$.
Solve standard $k$-medians and move each point to the closest center.


## Reduce the number of locations

Goal 1: Reduce the number of locations to $k$. Solve standard $k$-medians and move each point to the closest center.


The current clustering is not fair!

## Reduce the number of locations to $k$

The total distance travelled by all points is

$$
\alpha \cdot O P T_{\text {standard }} \leq \alpha \cdot O P T_{\text {fair }}
$$



## Reduce the number of locations to $k$

$\Rightarrow\left|\operatorname{cost}_{\text {orig }}\left(C_{1}, \ldots, C_{k}\right)-\operatorname{cost}_{\text {new }}\left(C_{1}, \ldots, C_{k}\right)\right| \leq O(O P T)$
$\Rightarrow \mathrm{A} \beta$ approximation for the new instance gives an $O(\beta)$ approximation to the original one.


## Reassignment Problem

Goal 2: Solve the obtained instance: reassign $x_{a b j}$ vertices of color $j$ from center $a$ to center $b$, so that the obtained clustering clustering is fair.


$$
\begin{aligned}
& x_{q s \odot}=1 \\
& x_{s p}=1 \\
& x_{r r \bullet}=2
\end{aligned}
$$

## LP Reloxation

Let $q_{a j}$ be the number of points of color $j$ at center $a$. minimize $\sum_{a, b \in[k], j \in[\ell]} d_{a b} x_{a b j}$

$$
\begin{array}{ll}
\sum_{b} x_{a b j}=q_{a j} & \forall a, j \\
\alpha_{j} \sum_{a, j^{\prime}} x_{a b j^{\prime}} \leq \sum_{a} x_{a b j} \leq \beta_{j} \sum_{a, j^{\prime}} x_{a b j^{\prime}} & \forall b, j \\
x_{a b j} \geq 0 & \forall a, b, j
\end{array}
$$

Solve this LP and find a fractional solution $x_{a b j}$.

## LP Refractional $\rightarrow$ Integrallaxation

(2) Solution $x_{a b j}$ is not necessarily integral.

Goal: Find a "similar" integral solution $f_{a b j}$.
Want: solution $f$ assigns to each center $b$ approximately the same number of points of each color $j$ as $x$ does.

## LP Refractional $\rightarrow$ Integrallaxation

(2) Solution $x_{a b j}$ is not necessarily integral.

Goal: Find a "similar" integral solution $f_{a b j}$.
Want: solution $f$ assigns to each center $b$ approximately the same number of points of each color $j$ as $x$ does.

According to $x$ :

$$
\begin{array}{ll}
\sum_{a, j^{\prime}} x_{a b j^{\prime}} & \text { centers are assigned to center } b \\
\sum_{a} x_{a b j} & \text { centers of color } j \text { are assigned to } b
\end{array}
$$

These numbers are not necessarily integers.

## fractional $\rightarrow$ Integral

According to the LP solution:

$$
\sum_{a, j^{\prime}} x_{a b j^{\prime}} \quad \text { centers are assigned to center } b
$$

$\sum_{a} x_{a b j}$ centers of color $j$ are assigned to $b$
Let

$$
\begin{aligned}
& l_{b}=\left\lfloor\sum_{a, j^{\prime}} x_{a b j^{\prime}}\right\rfloor \quad \text { and } u_{b}=\left\lceil\sum_{a, j^{\prime}} x_{a b j^{\prime}}\right\rceil \\
& l_{b j}=\left\lfloor\sum_{a} x_{a b j}\right\rfloor \quad \text { and } u_{b j}=\left\lceil\sum_{a} x_{a b j}\right\rceil
\end{aligned}
$$

Goal: find a solution with cluster $C_{b}$ of size $\left|C_{b}\right| \in\left[l_{b}, u_{b}\right]$ and $\left|C_{b} \cap G_{j}\right| \in\left[l_{b j}, u_{b j}\right]$.

## Minimum Cost $s$ - $t$ flow

Given: an $s$ - $t$ flow network with edge capacities $c_{e}$, costs $d_{e}$ and a parameter $F$.
Goal: Send $F$ units of flows from $s$ to $t$ subject to capacity constraints so as to minimize $\sum_{e} d_{e} f_{e}$.


Note: There exists an integral optimal flow as long as all $c_{e}$ and $F$ are integral! It can be found in poly time.

## Minimum Cost $s$ - $t$ flow

Given: an $s$ - $t$ flow network with edge capacities $c_{e}$ and lower bounds $l_{e}$, and costs $d_{e}$.
Goal: Send flow from $s$ to $t$ subject to capacity and lower bound constraints so as to minimize $\sum_{e} d_{e} f_{e}$.


Note: There exists an integral optimal flow as long as all $c_{e}$ and $l_{e}$ are integral! It can be found in poly time.

## Minimum Cost $s$ - $t$ flow



## Minimum Cost $s$ - $t$ flow



## Q: Is there a feasible flow?



## fractional $\rightarrow$ Integral



$$
\begin{array}{lll}
l_{b}=\left\lfloor\sum_{a, j^{\prime}} x_{a b j^{\prime}}\right\rfloor & \text { and } & u_{b}=\left\lceil\sum_{a, j^{\prime}} x_{a b j^{\prime}}\right\rceil \\
l_{b j}=\left\lfloor\sum_{a} x_{a b j}\right\rfloor & \text { and } & u_{b j}=\left\lceil\sum_{a} x_{a b j}\right\rceil
\end{array}
$$

We get integer $f_{a b j}$ s.t.

$$
\sum_{b} f_{a b j}=q_{a j}
$$


$\sum_{a} f_{a b j} \in\left[l_{b j}, u_{b j}\right]$

$\sum_{a j^{\prime}} f_{a b j^{\prime}} \in\left[l_{b}, u_{b}\right]$

## Summary

We reassign $f_{a b j}$ points of color $j$ from $a$ to $b$.

- The cost of this solution is at most the cost of the LP

$$
O(\alpha \cdot O P T)
$$

- Fairness constraints:

$$
\begin{aligned}
& \sum_{a} f_{a b j} \geq l_{b j}=\left[\sum_{a} x_{a b j}\right]>\sum_{a} x_{a b j}-1 \geq \alpha_{j} \sum_{a, j^{\prime}} x_{a b j^{\prime}}-1 \\
& \geq \alpha_{j} l_{b}-1 \geq \alpha_{j}\left(u_{b}-1\right)-1 \geq \alpha_{j} \sum_{a j^{\prime}} f_{a b j^{\prime}}-2
\end{aligned}
$$

## Solving Reassignment Exactly for fixed $\ell$ [Dai, M, Vakilion '22]

Assume that the number of groups $l$ is a small integer.

- Embed metric $d_{u v}$ on $\left\{c_{1}, \ldots, c_{k}\right\}$ into a distribution of dominating trees with distortion $O(\log k)$.
- Sample tree $T$ from the distribution.
- Reassignment problem. Denote

$$
x_{a b}=\left(\begin{array}{c}
x_{a b 1} \\
x_{a b 2} \\
\vdots \\
x_{a b j}
\end{array}\right) \quad \text { and } \quad q_{a}=\left(\begin{array}{c}
q_{a 1} \\
q_{a 2} \\
\vdots \\
q_{a j}
\end{array}\right)
$$



Total assignment to vertex $a$ is

$$
A_{a}=q_{a}+\sum_{c \neq a} x_{c a}-\sum_{b \neq a} x_{a b}
$$

Fairness constraint:

$$
\alpha_{j}\left\|A_{a}\right\|_{1} \leq A_{a j} \leq \beta_{j}\left\|A_{a}\right\|_{1}
$$

Cost: $\sum_{a b} d_{T}(a, b) \cdot\left\|x_{a b}\right\|_{1}$


Reroute the flow along the tree edges. Let $f_{e j}$ be the net amount of flow of type $j$ going down along edge $e$. $f_{e j}$ may be positive or negative.

$$
f_{e}=\left(\begin{array}{c}
f_{e 1} \\
\cdots \\
f_{e \ell}
\end{array}\right)
$$



Total assignment to vertex $a$ is

$$
A_{a}=q_{a}+f_{p(a) a}-\sum_{b: p(b)=a} f_{a b}
$$

Fairness constraint:

$$
\alpha_{j}\left\|A_{a}\right\|_{1} \leq A_{a j} \leq \beta_{j}\left\|A_{a}\right\|_{1}
$$

Cost: $\sum_{(a, b) \in T} d(a, b) \cdot\left\|f_{a b}\right\|_{1}$

## Dunnamic Programming

Find flow $f_{e} \in\{-n, \ldots, n\}^{\ell}$ so that

$$
\alpha_{j}\left\|A_{a}\right\|_{1} \leq A_{a j} \leq \beta_{j}\left\|A_{a}\right\|_{1}
$$

for every $a$, where

$$
A_{a}=q_{a}+f_{p(a) a}-\sum_{b: p(b)=a} f_{a b}
$$

so as to minimize the total cost

$$
\sum_{(a, b) \in T} d(a, b) \cdot\left\|f_{a b}\right\|_{1}
$$

This can be done in time $n^{O(\ell)}$.

