Fair Representation Clustering

Instructor: Yury Makarychev, TTIC

Max Planck ADFOCS 2023

k-means and k-medians

Given a set of points X in a metric space Partition X into k clusters C_1, \ldots, C_k and find a center c_i for each C_i so as to minimize

$$\sum_{i=1}^{k} \sum_{u \in C_{i}} d(u, c_{i}) \quad (k\text{-medians})$$

$$\sum_{i=1}^{k} \sum_{u \in C_{i}} d(u, c_{i})^{2} \quad (k\text{-means})$$

Fair representation clustering

Given:

- a set of points X and a distance function d on X.
- each point belongs to one of the groups $G_1,\ldots,G_\ell\subset X$
- parameters $lpha_i$ and eta_i for each group i

Fair representation:

A clustering C_1, \ldots, C_k has fair representation if

$$\alpha_j |C_i| \le |C_i \cap G_j| \le \beta_j |C_i|$$

Goal: Find a fair representation clustering that minimizes the k-median or k-means objective.

Plan for Today

Equal representation

[Chierichetti, Kumar, Lattanzi, Vassilvitskii '17] $\ell = 2$

[Böhm, Fazzone, Leonardi, Schwiegelshohn '21] $\ell > 2$

General representation requirements (pseudoapproximation with a constant additive violation)

[Bera, Chakrabarty, Flores, and Negahbani '19] [Bercea, Groß, Khuller, Kumar, Rösner, Schmidt, and Schmidt '18

True approximation for constant ℓ [Dai, M, Vakilian '22]

Equal Representation

Consider an important special case when

$$\alpha_j = \beta_j = 1/\ell$$

We want to ensure that each cluster has the same number of points from each group.

Important: C_1, \ldots, C_k don't have to be Voronoi clusters

Based on [Chierichetti, Kumar, Lattanzi, Vassilvitskii '17] $\ell = 2$ [Böhm, Fazzone, Leonardi, Schwiegelshohn '21] $\ell > 2$

Idea [Chierichetti et al]

Partition the dataset into $t = n/\ell$ sets $F_1, ..., F_t$ called fairlets such that each F_i has fair representation:

 F_i contains exactly one point from each G_i

Idea [Chierichetti et al]

Partition the dataset into $t = n/\ell$ sets $F_1, ..., F_t$ called fairlets such that each F_i has fair representation:

 F_i contains exactly one point from each G_i

Idea [Chierichetti et al]

 F_i contains exactly one point from each G_i

Assign fairlets to clusters C_1, \ldots, C_k .

! The obtained clustering has fair representation

It's possible to obtain the optimal solution in this way.

- Find a fairlet decomposition
- Choose a representative y_i in each fairlet F_i
- Run a standard algorithm to cluster $Y = \{y_1, \dots, y_t\}$

- Find a fairlet decomposition
- Choose a representative y_i in each fairlet F_i
- Run a standard algorithm to cluster $Y = \{y_1, \dots, y_t\}$

- Find a fairlet decomposition
- Choose a representative y_i in each fairlet F_i
- Run a standard algorithm to cluster $Y = \{y_1, \dots, y_t\}$

- Find a fairlet decomposition
- Choose a representative y_i in each fairlet F_i
- Run a standard algorithm to cluster $Y = \{y_1, \dots, y_t\}$

Core Lemmas and Definitions

Define the cost of the fairlet decomposition F_i with representatives $Y = \{y_i\}$ as:

fairlet(*F*, *Y*) =
$$\sum_{i=1}^{t} \sum_{u \in F_i} d(u, y_i)$$

The cost of clustering C_1, \ldots, C_k with centers C_1, \ldots, C_k of a set S is

$$\operatorname{cost}(S, C_i, c_i) \equiv \operatorname{cost}(S) = \sum_i \sum_{u \in C_i \cap Y} d(u, c_i)$$

Core Lemmas and Definitions

Lemma 1: Consider a fairlet decomposition F_i with representatives Y. Let C_1, \ldots, C_k be a clustering of Y with centers C_i . Extend it to X. Then

$cost(X) \le \ell \cdot cost(Y) + fairlet(F, Y)$

Proof: for $u \in F_i \subseteq C_j$

 $d(u,c_j) \leq d(u,y_i) + d(y_i,c_j)$

 C_i^* is the optimal fair clustering

Core Lemmas and Definitions

Lemma 2: There exists a fairlet decomposition F_1, \ldots, F_t with representatives $Y = G_{j^*}$ for some j^* s.t.

 $\ell \cdot \operatorname{cost}(Y, C_i^*, c_i^*) \le OPT$ fairlet(*F*, *Y*) $\le 2OPT$

Further the fairlet decomposition is consistent with the clustering: each F_i lies entirely in some C_i^* .

- 1. Each C_i^* has $|C_i^*|/\ell$ elements from each group. Partition it into $|C_i^*|/\ell$ fairlets arbitrarily.
- 2. Choose *j* uniformly at random from $\{1, ..., \ell\}$.

- 1. Each C_i^* has $|C_i^*|/\ell$ elements from each group. Partition it into $|C_i^*|/\ell$ fairlets arbitrarily.
- 2. Choose *j* uniformly at random from $\{1, ..., \ell\}$.

- 1. Each C_i^* has $|C_i^*|/\ell$ elements from each group. Partition it into $|C_i^*|/\ell$ fairlets arbitrarily.
- 2. Choose *j* uniformly at random from $\{1, ..., \ell\}$.

Denote the center u is assigned to in the optimal solution by $c^*(u)$. Then

$$\mathbb{E}\operatorname{cost}(Y) = \frac{1}{\ell} \sum_{j} \operatorname{cost}(G_{j}) = \frac{1}{\ell} \sum_{j} \sum_{u \in G_{j}} d(u, c^{*}(u)) = \frac{OPT}{\ell}$$

⇒ For some
$$j^*$$
 and $Y = E_{j^*}$:
 $cost(Y) \le \frac{OPT}{\ell}$

Lemma 2: There exists a fairlet decomposition F_1, \ldots, F_k with representatives $Y = G_{j^*}$ for some j^* s.t.

 $\stackrel{\bullet}{\Rightarrow} \ell \cdot \operatorname{cost}(Y, C_i^*, c_i^*) \leq OPT$ $fairlet(F, Y) \leq 2OPT$

Lemma 2: There exists a fairlet decomposition F_1, \ldots, F_k with representatives $Y = G_{j^*}$ for some j^* s.t.

 $\ell \cdot \operatorname{cost}(Y, C_i^*, c_i^*) \le OPT$ $\Rightarrow \quad \operatorname{fairlet}(F, Y) \le 2OPT$

$$fairlet(F,Y) = \sum_{i=1}^{t} \sum_{u \in F_i} d(u, y_i)$$

$$\leq \sum_{i=1}^{t} \sum_{u \in F_i} d(u, c^*(y_i)) + d(y_i, c^*(y_i))$$

$$= \sum_{i=1}^{t} \sum_{u \in F_i} d(u, c^*(u)) + d(y_i, c^*(y_i))$$

$$= OPT + \ell \cdot \operatorname{cost}(Y) \leq 2 OPT$$

QED

Algorithm

Lemma 2: For some j^* , $Y = G_j$ and fairlet decomposition F:

$$\ell \cdot \operatorname{cost}(Y, C_i^*, c_i^*) \le OPT$$

fairlet(F, Y) $\le 2OPT$

Algorithm Overview

- guess j^* and let $Y = G_{j^*}$
- let C_1, \ldots, C_k be an approx. optimal clustering for Y
 - let $\{F_i\}$ be an optimal choice of fairlets for Y
 - extend the clustering to fairlets

Algorithm

Use an α approx. algorithm for standard k-medians

Lemma 2: For some j^* , $Y = G_j$ and fairlet decomposition F:

$$\ell \cdot \operatorname{cost}(Y, C_i^{ALG}, c_i^{ALG}) \le \alpha \cdot OPT$$

fairlet(*F*, *Y*) $\le 2OPT$

Algorithm Overview

- guess j^* and let $Y = G_{j^*}$
- let C_1, \ldots, C_k be an approx. optimal clustering for Y
 - let $\{F_i\}$ be an optimal choice of fairlets for Y
 - extend the clustering to fairlets

Algorithm

Lemma 2: For some j^* , $Y = G_j$ and fairlet decomposition F:

$$\ell \cdot \operatorname{cost}(Y, C_i^{ALG}, c_i^{ALG}) \le \alpha \cdot OPT$$
$$\operatorname{fairlet}(F^{ALG}, Y) \le 2OPT$$

Algorithm Overview

- guess j^* and let $Y = G_{j^*}$
- let C_1, \ldots, C_k be an approx. optimal clustering for Y
- let $\{F_i\}$ be an optimal choice of fairlets for Y
 - extend the clustering to fairlets

Finding fairlets: Min Cost Matching

Summary of the Algorithm

We have,

$$\ell \cdot \operatorname{cost}(Y, C_i^{ALG}, c_i^{ALG}) \le \alpha \cdot OPT$$
$$\operatorname{fairlet}(F^{ALG}, Y) \le 2OPT$$

Thus,

 $\operatorname{cost}(X, C^{ALG}) \leq \ell \cdot \operatorname{cost}(Y) + \operatorname{fairlet}(F^{ALG}, Y)$ $\leq \alpha \cdot OPT + 2OPT = (\alpha + 2)OPT$

General Setting

[Bera, Chakrabarty, Flores, and Negahbani '19] [Bercea, Groß, Khuller, Kumar, Rösner, Schmidt, and Schmidt '18]

Solve k-medians subject to general fairness constraints:

$$\alpha_j |C_i| \le |C_i \cap G_j| \le \beta_j |C_i|$$

No polynomial-time true approximation algorithms are known for arbitrary ℓ (which may depend on n).

Bera et al. & Bercea et al.:

Find a solution that only slightly violates the fair representation constraints!

 $\alpha_j |C_i| - \mathcal{O}(1) \le |C_i \cap G_j| \le \beta_j |C_i| + \mathcal{O}(1)$

Reduce the number of locations

Goal 1: Reduce the number of locations to k. Solve standard k-medians and move each point t

Solve standard k-medians and move each point to the closest center.

Reduce the number of locations

Goal 1: Reduce the number of locations to k. Solve standard k-medians and move each point to the

closest center.

Reduce the number of locations

Goal 1: Reduce the number of locations to k. Solve standard k-medians and move each point to the closest center.

The current clustering is not fair!

Reduce the number of locations to k

The total distance travelled by all points is

Reduce the number of locations to k $\Rightarrow |\operatorname{cost}_{\operatorname{orig}}(C_1, \dots, C_k) - \operatorname{cost}_{\operatorname{new}}(C_1, \dots, C_k)| \leq O(OPT)$ $\Rightarrow A \beta$ approximation for the new instance gives an $O(\beta)$ approximation to the original one.

Reassignment Problem

Goal 2: Solve the obtained instance: reassign x_{abj} vertices of color j from center a to center b, so that the obtained clustering clustering is fair.

LP Relaxation

Let q_{aj} be the number of points of color j at center a.

$$\begin{array}{l} \text{minimize } \sum_{a,b\in[k],j\in[\ell]} d_{ab} x_{abj} \\ & \sum_{b} x_{abj} = q_{aj} & \forall a,j \\ & \alpha_j \sum_{a,j'} x_{abj'} \leq \sum_{a} x_{abj} \leq \beta_j \sum_{a,j'} x_{abj'} & \forall b,j \\ & x_{abj} \geq 0 & \forall a,b,j \end{array}$$

Solve this LP and find a fractional solution x_{abj} .

$\label{eq:loss} \ensuremath{\mathsf{lp}}\xspace{-1mu} \ensuremath{$

 \bigotimes Solution x_{abj} is not necessarily integral.

Goal: Find a "similar" integral solution f_{abj} .

Want: solution f assigns to each center b approximately the same number of points of each color j as x does.

$\label{eq:loss} \ensuremath{\mathsf{lp}}\xspace{-1mu} \ensuremath{$

Solution x_{abj} is not necessarily integral. Goal: Find a "similar" integral solution f_{abj} . Want: solution f assigns to each center b approximately the same number of points of each color j as x does.

According to *x*:

 $\begin{array}{ll} \sum_{a,j'} x_{abj'} & \text{centers are assigned to center } b \\ \sum_a x_{abj} & \text{centers of color } j \text{ are assigned to } b \end{array}$

These numbers are not necessarily integers.

Fractional → Integral

According to the LP solution:

 $\sum_{a,j'} x_{abj'}$ centers are assigned to center b $\sum_a x_{abj}$ centers of color j are assigned to b

Let

$$l_b = \left[\sum_{a,j'} x_{abj'}\right] \text{ and } u_b = \left[\sum_{a,j'} x_{abj'}\right]$$
$$l_{bj} = \left[\sum_a x_{abj}\right] \text{ and } u_{bj} = \left[\sum_a x_{abj}\right]$$

Goal: find a solution with cluster C_b of size $|C_b| \in [l_b, u_b]$ and $|C_b \cap G_j| \in [l_{bj}, u_{bj}]$.

Given: an *S*-*t* flow network with edge capacities C_e , costs d_e and a parameter *F*.

Goal: Send F units of flows from s to t subject to capacity constraints so as to minimize $\sum_e d_e f_e$.

Note: There exists an integral optimal flow as long as all c_e and F are integral! It can be found in poly time.

Given: an *S*-*t* flow network with edge capacities C_e and lower bounds l_e , and costs d_e .

Goal: Send flow from s to t subject to capacity and lower bound constraints so as to minimize $\sum_e d_e f_e$.

Note: There exists an integral optimal flow as long as all c_e and l_e are integral! It can be found in poly time.

Q: Is there a feasible flow?

 $f_{abj} = ?$

Fractional → Integral

$$l_b = \left[\sum_{a,j'} x_{abj'}\right] \quad \text{and} \\ l_{bj} = \left[\sum_a x_{abj}\right] \quad \text{and} \quad$$

 $u_b = \left[\sum_{a,j'} x_{abj'}\right]$ $u_{bj} = \left[\sum_a x_{abj}\right]$

We get integer
$$f_{abj}$$
 s.t.
 $\sum_b f_{abj} = q_{aj}$

$$\sum_{a} f_{abj} \in [l_{bj}, u_{bj}]$$

 $\sum_{aj'} f_{abj'} \in [l_b, u_b] \Rightarrow$ 15:40

Summary

We reassign f_{abj} points of color j from a to b.

• The cost of this solution is at most the cost of the LP

L

 $O(\alpha \cdot OPT)$

• Fairness constraints:

$$\sum_{a} f_{abj} \ge l_{bj} = \left| \sum_{a} x_{abj} \right| > \sum_{a} x_{abj} - 1 \ge \alpha_j \sum_{a,j'} x_{abj'} - 1$$
$$\ge \alpha_j l_b - 1 \ge \alpha_j (u_b - 1) - 1 \ge \alpha_j \sum_{aj'} f_{abj'} - 2$$

Solving Reassignment Exactly for fixed ℓ [Dai, M, Vakilian '22]

Assume that the number of groups ℓ is a small integer.

- Embed metric d_{uv} on $\{c_1, \dots, c_k\}$ into a distribution of dominating trees with distortion $O(\log k)$.
- Sample tree T from the distribution.
- Reassignment problem. Denote

$$x_{ab} = \begin{pmatrix} x_{ab1} \\ x_{ab2} \\ \vdots \\ x_{abj} \end{pmatrix} \quad \text{and} \quad q_a = \begin{pmatrix} q_{a1} \\ q_{a2} \\ \vdots \\ q_{aj} \end{pmatrix}$$

Total assignment to vertex a is

$$A_a = q_a + \sum_{c \neq a} x_{ca} - \sum_{b \neq a} x_{ab}$$

Fairness constraint:

$$\alpha_j \|A_a\|_1 \le A_{aj} \le \beta_j \|A_a\|_1$$

Cost: $\sum_{ab} d_T(a, b) \cdot \|x_{ab}\|_1$

Reroute the flow along the tree edges. Let f_{ej} be the net amount of flow of type j going down along edge e. f_{ej} may be positive or negative.

$$f_e = \begin{pmatrix} f_{e1} \\ \cdots \\ f_{e\ell} \end{pmatrix}$$

Total assignment to vertex a is

$$A_a = q_a + f_{p(a)a} - \sum_{b:p(b)=a} f_{ab}$$

Fairness constraint:

$$\alpha_j \|A_a\|_1 \le A_{aj} \le \beta_j \|A_a\|_1$$

Cost: $\sum_{(a,b)\in T} d(a,b) \cdot \|f_{ab}\|_1$

Dynamic Programming

Find flow $f_e \in \{-n, \dots, n\}^\ell$ so that

$$\alpha_j \|A_a\|_1 \le A_{aj} \le \beta_j \|A_a\|_1$$

for every a, where

$$A_a = q_a + f_{p(a)a} - \sum_{b:p(b)=a} f_{ab}$$

so as to minimize the total cost

$$\sum_{(a,b)\in T} d(a,b) \cdot \|f_{ab}\|_1$$

This can be done in time $n^{O(\ell)}$.