
Negative-Weight
Single-Source Shortest Paths

Danupon Nanongkai
MPI for Informatics

Single-Source Shortest Paths (SSSP)

• Input: Directed weighted graph 𝐺 = (𝑉, 𝐸, 𝑤), source 𝑠 ∈ 𝑉
• Integer weights

• Output: distances 𝑑𝑖𝑠𝑡(𝑠, 𝑣) from 𝑠 to every 𝑣 ∈ 𝑉

outputinput Notations
m = |E|, n=|V|
W is s.t. 𝑤 𝑒 ≥ −𝑊 ∀𝑒 ∈ 𝐸
𝑑𝑖𝑠𝑡(𝑢, 𝑣)=length of shortest uv-path
2𝑂 hides polylog n

Textbook algorithms

Dijkstra
• Near-linear time (𝑂(𝑚 + 𝑛 log 𝑛) time)
• Restricted to nonnegative edge weights.

Bellman-Ford
• Work with negative weights
• Far from near-linear time (O(mn) time)

Research question: Fast algorithm for negative-weight SSSP?

History (m=#of edges, n=# vertices, w(e)≥ −𝑊)

Classic (50s): O(mn) [Shimbel’55, Ford’56, Bellman’58, Moore’59]

Scaling techniques (80s-90s): 𝑂(𝑚 𝑛 log𝑊)
Gabow’85 (𝑚𝑛!/# log 𝑛), Gabow-Tarjan’89 (𝑚𝑛$/% log(𝑛𝑊)), Goldberg’95 (𝑚𝑛$/% log(𝑊))

Special cases:
!𝑂(𝑚) time for planar graphs [Fakcharoenphol-Rao’06, Mozes-Wulff-Nilsen’10]
!𝑂(𝑛$/& log𝑊) time for bounded-genus & minor-free graphs [Wulff-Nilsen’11]

Continuous Optimization + Dynamic Alg: 𝑚)/+,-(.) log𝑊 , +𝑂(𝑚 + 𝑛..0 log𝑊)
• Cohen, Madry, Sankowski, Vladu’17 ((𝑚!"/$%&(!) log𝑊) , Axiotis, Madry, Vlady, 2020 (𝑚)/*%&(!) log𝑊), van den

Brand, Lee, N, Peng, Saranurak, Sidford, Song, Wang 2020 (𝑚 + 𝑛!., log𝑊)

Our results (m=#of edges, n=# vertices, w(e)≥ −𝑊)

(2022) 𝑂(𝑚 log1(𝑛) log(𝑊)) time in expectation (without optimizing log! term)

Bernstein, Nanongkai, Wulff-Nilsen: Negative-Weight Single-Source Shortest Paths in Near-linear Time.

(2023) 𝑂(𝑚 log2 𝑛 log 𝑛𝑊 𝑙𝑜𝑔𝑙𝑜𝑔(𝑛)) time in expectation
Bringmann, Cassis, Fischer: Negative-Weight Single-Source Shortest Paths in Near-Linear Time: Now Faster!

Codable. Teachable. Efficient in parallel, distributed, … [Ashvinkumar et al. 2023]

Related result: Min-cost flow in 𝑚.,- . 𝑙𝑜𝑔(𝑊) time [Chen et al. 2022]
• Generalizes Negative SSSP, Bipartite matching, etc.
• Different techniques – e.g. continuous optimization & dynamic data structures

Key Tool: Low-Diameter Decomposition (LDD)

Definition of LDD(G,D)

Input: Directed graph 𝐺 = (𝑉, 𝐸, 𝑤) with non-negative
integer edge weight 𝑤 and a positive integer 𝐷
Output: 𝐸!"# ⊆ 𝐸 such that
1. each SCCs of 𝐺 ∖ 𝐸$"# has “weak diameter” O(D)
• i.e. for 𝑢, 𝑣 in the same SCC, 𝑑𝑖𝑠𝑡:(𝑢, 𝑣) = 𝑂(𝐷) &
𝑑𝑖𝑠𝑡:(𝑣, 𝑢) = 𝑂(𝐷)

2. ∀𝑒 ∈ 𝐸, Pr[𝑒 ∈ 𝐸$"#] = 𝑂 % " ⋅ '() * !

+
+ 𝑛,- .

Runtime: A𝑂(𝑚) in expectation.

SCC = strongly-connected component

Remarks: Probabilities may not be independent. 𝐸012 is called 𝐸314 in the previous version

(SCC= Strongly connected component)

Example (1)

𝐺 = undirected path 𝑣., 𝑣/, … , 𝑣*

Getting LDD(G, D):
• randomly select 𝑖 ∈ [1, 𝐷]
• add edges 𝑣0 , 𝑣01. , 𝑣01+ , 𝑣01+1. , 𝑣01/+ , 𝑣01/+1. , … to 𝐸$"#

Example (2)

𝐺 = directed cycle 𝑣., 𝑣/, … , 𝑣*

Getting LDD(G, D): randomly add one edge to 𝐸$"#
à Each node becomes an SCC

Our LDD algorithm

skip

Brief history of LDD

Undirected LDD: Many variants studied in many settings
e.g. [Awe85, AGLP89, AP92, ABCP92, LS93, Bar96, BGK+14, MPX13, PRS+18, FG19, CZ20, BPW20, FGdV21].

Highlights
• Distributed network synchronization [Awerbuch’85]

• Probabilistic tree embedding [Bartal’96]. Many lecture notes/books.

Directed LDD: Based on ball-carving technique [Linial-Saks’93,Bartal’96]

• Inefficient version in BGW’20.
• Only known applications: Dynamic directed SSSP [BGW’20], Negative SSSP.
• Open: More applications?

Lecture note:
https://bit.ly/3elW64i

Low-Diameter
Decomposition!

https://bit.ly/3elW64i

Using LDD to solve negative SSSP

Need:
• Basics: Price/potential function, solving negative SSSP on DAG
• Solving negative SSSP fast when there are not “many” negative

weights
• Fun exercise – by combining Bellman-Ford and Dijkstra

• One crucial trick (see our talks on youtube)

Open
Electric car problem
• Battery can keep charge <B. Charge = 0 à car dies
• Lose charge on some roads, gain on others
• Min charge to go from s to t = ?

Negative SSSP:
• Strongly polynomial better than O(mn) [Bellman-Ford]?
• Deterministic algorithms

Broader problems:
• Alternative algorithms for problems solvable by min-cost flow?

• Simple - Implementable/teachable?

• Beyond min-cost flow: non-bipartite matching, directed cut, vertex cut, disjoint spanning
tree?

