Negative-Weight Single-Source Shortest Paths

Danupon Nanongkai

MPI for Informatics

Single-Source Shortest Paths (SSSP)

- Input: Directed weighted graph G = (V, E, w), source s ∈ V
 Integer weights
- <u>Output</u>: distances dist(s, v) from s to every $v \in V$

<u>Notations</u>
m = E , n= V
W is s.t. $w(e) \ge -W \ \forall e \in E$
dist(u, v)=length of shortest uv-path
$ ilde{O}$ hides polylog n

Textbook algorithms

Dijkstra

- Near-linear time $(O(m + n \log n) \text{ time})$
- Restricted to nonnegative edge weights.

Bellman-Ford

- Work with negative weights
- Far from near-linear time (O(mn) time)

<u>Research question</u>: Fast algorithm for negative-weight SSSP?

History (m=#of edges, n=# vertices, w(e) $\geq -W$)

Classic (50s): O(mn) [Shimbel'55, Ford'56, Bellman'58, Moore'59]

Scaling techniques (80s-90s): $O(m\sqrt{n}\log W)$ Gabow'85 ($mn^{3/4}\log n$), Gabow-Tarjan'89 ($mn^{1/2}\log(nW)$), Goldberg'95 ($mn^{1/2}\log(W)$)

Special cases:

O(m) time for planar graphs [Fakcharoenphol-Rao'06, Mozes-Wulff-Nilsen'10] $\tilde{O}(n^{4/3} \log W)$ time for bounded-genus & minor-free graphs [Wulff-Nilsen'11]

Continuous Optimization + Dynamic Alg: $m^{4/3+o(1)} \log W$, $\tilde{O}(m + n^{1.5} \log W)$

• Cohen, Madry, Sankowski, Vladu'17 ($(m^{10/7+o(1)} \log W)$, Axiotis, Madry, Vlady, 2020 ($m^{4/3+o(1)} \log W$), van den Brand, Lee, N, Peng, Saranurak, Sidford, Song, Wang 2020 ($m + n^{1.5} \log W$)

Our results (m=#of edges, n=# vertices, w(e) $\geq -W$)

(2022) $O(m \log^8(n) \log(W))$ time in expectation (without optimizing log⁸ term) Bernstein, Nanongkai, Wulff-Nilsen: Negative-Weight Single-Source Shortest Paths in Near-linear Time.

(2023) $O(m \log^2(n) \log(nW) \log\log(n))$ time in expectation

Bringmann, Cassis, Fischer: Negative-Weight Single-Source Shortest Paths in Near-Linear Time: Now Faster!

Codable. Teachable. Efficient in parallel, distributed, ... [Ashvinkumar et al. 2023]

<u>Related result</u>: Min-cost flow in $m^{1+o(1)}log(W)$ time [Chen et al. 2022]

- Generalizes Negative SSSP, Bipartite matching, etc.
- Different techniques e.g. continuous optimization & dynamic data structures

Key Tool: Low-Diameter Decomposition (LDD)

Definition of LDD(G,D)

<u>Input</u>: Directed graph G = (V, E, w) with non-negative integer edge weight w and a positive integer D

<u>Output</u>: $E_{Rem} \subseteq E$ such that

- 1. each SCCs of $G \setminus E_{rem}$ has "weak diameter" O(D)
 - i.e. for u, v in the same SCC, $dist_{G}(u, v) = O(D)$ & $dist_{G}(v, u) = O(D)$

2.
$$\forall e \in E, \Pr[e \in E_{rem}] = O\left(\frac{w(e) \cdot (\log n)^2}{D} + n^{-8}\right).$$

<u>Runtime</u>: $\tilde{O}(m)$ in expectation.

<u>Remarks</u>: Probabilities may **not** be independent. E_{rem} is called E_{sep} in the previous version

SCC = strongly-connected component

Example (1)

G = undirected path ($v_1, v_2, ..., v_n$)

Getting LDD(G, D):

- randomly select $i \in [1, D]$
- add edges $(v_i, v_{i+1}), (v_{i+D}, v_{i+D+1}), (v_{i+2D}, v_{i+2D+1}), \dots$ to E_{rem}

Example (2)

G = directed cycle ($v_1, v_2, ..., v_n$)

<u>Getting LDD(G, D):</u> randomly add one edge to E_{rem}

 \rightarrow Each node becomes an SCC

Algorithm FastLDD(G, D) // See explanation below

1. $G_0 \leftarrow G$. $E_{rem} \leftarrow \emptyset$ and $n \leftarrow |V(G)|$. // n does not change in the steps below.

2. For each $v \in V$:

2.1 $k \leftarrow c \ln n$ for a big enough constant c.

2.2 $S \leftarrow \{s_1, s_2, \dots s_k\}$ where s_i is a random node in V for every i. (Possible: $s_i = s_j$ for some $i \neq j$.)

2.3 For each $s \in S$, compute $Ball_G^{in}(s,D)$ and $Ball_G^{out}(s,D)$ // O(mk) time

2.4 For each $v \in V$: // O(nk) time

- $\circ \; |Ball^{in}_G(v,D) \cap S| \leftarrow \{s \in S \mid v \in Ball^{out}_G(s,D)\}$
- $\begin{array}{l} \circ \; |Ball_G^{out}(v,D) \cap S| \leftarrow \{s \in S \mid v \in Ball_G^{in}(s,D)\} \\ \text{ 2.5 For every } v \in V \text{, if } |Ball_G^{in}(v,D) \cap S| \leq (0.6)k \text{, mark } v \text{ as in-light;} \\ \text{ else if } |Ball_G^{out}(v,D) \cap S| \leq (0.6)k \text{, mark } v \text{ as out-light.} \end{array}$

3. While G contains node v marked *-light for any $* \in \{in, out\}$:

3.1 Sample $R_v \sim Geom(p)$ for $p = \min\{1, 20 \log(n)/D\}$. If $R_v > D/2$, let $R_v = D/2$. 3.2 Compute $Ball^*_G(v, R_v)$. If $|Ball^*_G(v, R_v)| > 0.7n$, return $E_{rem} = E_{rem} \cup E(G)$ and terminate. // Claim: $Pr[terminate] \leq 1/n^{10}$ 3.3 $E'_{rem} \leftarrow LDD(G[Ball^*_G(v, R_v)], D)$. // Recurse 3.4 $E_{rem} \leftarrow E_{rem} \cup \partial Ball^*_G(v, R_v) \cup E'_{rem}$

 $3.4 \ G \leftarrow G \setminus Ball^*_G(v, R_v).$

- 4. Let v be any node in G. If $dist_{G_0}(v, u) > 2D$ or $dist_{G_0}(u, v) > 2D$ for any node u, return $E_{rem} = E_{rem} \cup E(G)$ and terminate. // Claim: $Pr[terminate] \le 1/n^{10}$
 - \circ (If $dist_{G_0}(v,u)\leq 2D$ and $dist_{G_0}(u,v)\leq 2D$, we can conclude that the weak diameter of G w.r.t. G_0 is $\leq 4D$.)

Our LDD algorithm

Return E_{rem}

Low-Diameter Decomposition!

The Design of Approximation Algorithms

Lecture note: https://bit.ly/3elW64i

Brief history of LDD

Undirected LDD: Many variants studied in many settings

e.g. [Awe85, AGLP89, AP92, ABCP92, LS93, Bar96, BGK+14, MPX13, PRS+18, FG19, CZ20, BPW20, FGdV21].

Highlights

- Distributed network synchronization [Awerbuch'85]
- Probabilistic tree embedding [Bartal'96]. Many lecture notes/books.

Directed LDD: Based on ball-carving technique [Linial-Saks'93, Bartal'96]

- Inefficient version in BGW'20.
- Only known applications: Dynamic directed SSSP [BGW'20], Negative SSSP.
- <u>Open</u>: More applications?

Using LDD to solve negative SSSP

Need:

- Basics: Price/potential function, solving negative SSSP on DAG
- Solving negative SSSP fast when there are not "many" negative weights
 - Fun exercise by combining Bellman-Ford and Dijkstra
- One crucial trick (see our talks on youtube)

Open

Electric car problem

- Battery can keep charge < B. Charge = $0 \rightarrow$ car dies
- Lose charge on some roads, gain on others
- Min charge to go from s to t = ?

Negative SSSP:

- Strongly polynomial better than O(mn) [Bellman-Ford]?
- Deterministic algorithms

Broader problems:

- Alternative algorithms for problems solvable by min-cost flow?
 - Simple Implementable/teachable?
- Beyond min-cost flow: non-bipartite matching, directed cut, vertex cut, disjoint spanning tree?

