Fitting Tree Metrics with Minimum Disagreements

Evangelos Kipouridis

UNIVERSITÄT DES SAARLANDES

Any guess?

The betwee A + B. ching Eng & celetion. E + B. The finat prediction, B + D rather preater distriction Then genne would be formed. - bienny celetion

Any guess?

Darwin's notes

First to discuss tree reconstruction

They're the same picture...

They're the same picture...

They're the same picture...

Hmm... 15 million years?

If, due to noise, no matching tree?

If, due to noise, no matching tree?

Minimize disagreements!

If, due to noise, no matching tree?

Minimize disagreements!

Can also minimize total error, max error, L2 error...

The New York Times

TRILOBITES

A Battle Is Raging in the Tree of Life

Which came first, the sponge or the comb jelly?

Something had to diverge from the trunk eventually.

What we know...

APX - Hard

What we know...

APX - Hard

O(1) approximation for ultrametrics (structured trees) - even under mild constraints

What we know...

APX - Hard

O(1) approximation for ultrametrics (structured trees) - even under mild constraints

- What about unstructured trees?

- 1) Find a root.
- 2) Find depths of leaves.

- 1) Find a root.
- 2) Find depths of leaves.

- 1) Find a root.
- 2) Find depths of leaves.

- 1) Find a root.
- 2) Find depths of leaves.

- 1) Find a root.
- 2) Find depths of leaves.

- 1) Find a root.
- 2) Find depths of leaves.

Input(α ,u) = 12, but OPT(α ,u) = 8

- 1) Find a root.
- 2) Find depths of leaves.

Input(α ,u) = 12, but OPT(α ,u) = 8

- 1) Find a root.
- 2) Find depths of leaves.

Input(α ,v) = 6, but OPT(α ,v) = 7

- 1) Find a root.
- 2) Find depths of leaves.

Input(α ,v) = 6, but OPT(α ,v) = 7

- 1) Find a root.
- 2) Find depths of leaves.

Now for all u we know depth(u). depth(u) = OPT'(α ,u) = Input(α ,u)

- 1) Find a root.
- 2) Find depths of leaves.

Now for all u we know depth(u). depth(u) = OPT(α ,u) = Input(α ,u)

How much did we pay?

- We moved exactly D(α) nodes, each introduced at most (n-1) disagreements.
- $D(OPT') \le D(OPT) + D(\alpha) (n-1)$

- 1) Find a root.
- 2) Find depths of leaves.

 $D(OPT) = \frac{1}{2}\sum D(u)$ 11

D() denotes disagreements in OPT D(OPT') \leq D(OPT) + D(α) (n-1)

- 1) Find a root.
- 2) Find depths of leaves.

 $D(OPT) = \frac{1}{2}\sum D(u)$ 11

D() denotes disagreements in OPT D(OPT') \leq D(OPT) + D(α) (n-1) α minimizes disagreements

- 1) Find a root.
- 2) Find depths of leaves.

$$D(OPT) = \frac{1}{2} \sum_{u} D(u)$$
$$\geq \frac{1}{2} \cdot n \cdot D(\alpha)$$

D() denotes disagreements in OPT D(OPT') \leq D(OPT) + D(α) (n-1) α minimizes disagreements

- 1) Find a root.
- 2) Find depths of leaves.

$$D(OPT) = \frac{1}{2} \sum_{u} D(u)$$
$$\geq \frac{1}{2} \cdot n \cdot D(\alpha)$$

 $D(\alpha) \le 2D(OPT)/n$

D() denotes disagreements in OPT D(OPT') \leq D(OPT) + D(α) (n-1) α minimizes disagreements

- 1) Find a root.
- 2) Find depths of leaves.

 $D(OPT') \le D(OPT) + D(\alpha) (n-1)$

$D(OPT') \leq 3D(OPT)$

 $D(\alpha) \leq 2D(OPT)/n^2$

Reduce to ultrametric (all leaves same depth)

Reduce to ultrametric (all leaves same depth)

Reduce to ultrametric (all leaves same depth)

So... who is the "Oldest Sister"?

Was it the sponge or the comb jelly that diverged first?

So... who is the "Oldest Sister"?

Was it the sponge or the comb jelly that diverged first?

