Fitting Tree Metrics with Minimum Disagreements

Evangelos Kipouridis

UNIVERSITÄT DES
SAARLANDES informatik

Any guess?

Any guess?

Darwin's notes

Tree of life

Tree of life

Tree of life

-3.5 Billion
 Today

Tree of life

-3.5 Billion
Today

Tree of life

-3.5 Billion
Today

Tree of life

First to discuss tree reconstruction

They're the same picture...

They're the same picture...

They're the same picture...

Hmm...
15 million years?

Reconstruct from distance matrix

Reconstruct from distance matrix

If, due to noise, no matching tree?

Reconstruct from distance matrix

If, due to noise,
no matching tree?
Minimize disagreements!

Reconstruct from distance matrix

If, due to noise, no matching tree?

Minimize disagreements!

Can also minimize total error, max error, L2 error...

The Alew llork Times

TRILOBITES

A Battle Is Raging in the Tree of

 LifeWhich came first, the sponge or the comb jelly?

Scientists Have Found the First Branch on the Tree of Life

What we know...

APX - Hard

What we know...

APX - Hard

O(1) approximation for ultrametrics (structured trees) - even under mild constraints

What we know...

APX - Hard

O(1) approximation for ultrametrics (structured trees) - even under mild constraints

- What about unstructured trees?

Structuring the unstructured

OPT

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

OPT

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

$\operatorname{Input}(\alpha, u)=12$, but $\operatorname{OPT}(\alpha, u)=8$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

$\operatorname{Input}(\alpha, u)=12$, but $\operatorname{OPT}(\alpha, u)=8$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

$\operatorname{Input}(\alpha, v)=6$, but $\operatorname{OPT}(\alpha, v)=7$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

$\operatorname{Input}(\alpha, v)=6$, but $\operatorname{OPT}(\alpha, v)=7$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

Now for all u we know depth(u).
$\operatorname{depth}(u)=\operatorname{OPT}^{\prime}(\alpha, u)=\operatorname{Input}(\alpha, u)$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

Now for all u we know depth(u).
$\operatorname{depth}(\mathrm{u})=\operatorname{OPT}(\mathrm{a}, \mathrm{u})=\operatorname{Input}(\mathrm{a}, \mathrm{u})$
How much did we pay?

- We moved exactly $D(\alpha)$ nodes, each introduced at most ($n-1$) disagreements.
- $\quad D\left(O P T^{\prime}\right) \leq D(O P T)+D(\alpha)(n-1)$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

$$
D(O P T)=\frac{1}{2} \sum_{u} D(u)
$$

$D()$ denotes disagreements in OPT

Structuring the unstructured

 $D\left(O P T^{\prime}\right) \leq D(O P T)+D(\alpha)(n-1)$ a minimizes disagreements1) Find a root.
2) Find depths of leaves.

$$
D(O P T)=\frac{1}{2} \sum_{u} D(u)
$$

$D()$ denotes disagreements in OPT

Structuring the unstructured

 $D\left(O P T^{\prime}\right) \leq D(O P T)+D(\alpha)(n-1)$ a minimizes disagreements1) Find a root.
2) Find depths of leaves.

$$
\begin{aligned}
D(O P T) & =\frac{1}{2} \sum_{u} D(u) \\
& \geq \frac{1}{2} \cdot n \cdot D(\alpha)
\end{aligned}
$$

Structuring the unstructured

$D()$ denotes disagreements in OPT $D\left(O P T^{\prime}\right) \leq D(O P T)+D(\alpha)(n-1)$ a minimizes disagreements

1) Find a root.
2) Find depths of leaves.

$$
\begin{aligned}
D(O P T) & =\frac{1}{2} \sum_{u} D(u) \\
& \geq \frac{1}{2} \cdot n \cdot D(\alpha)
\end{aligned}
$$

$$
D(\alpha) \leq 2 D(O P T) / n
$$

Structuring the unstructured

1) Find a root.
2) Find depths of leaves.

$\mathrm{D}(\mathrm{OPT}) \leq 3 \mathrm{D}(\mathrm{OPT})$

$D(\alpha) \leq 2 D(O P T) / n$

Where do we stand?

Where do we stand?

\square

Where do we stand?

\square

Where do we stand?

$?$

Reduce to ultrametric (all leaves same depth)

Reduce to ultrametric (all leaves same depth)

Reduce to ultrametric (all leaves same depth)

So... who is the "Oldest Sister"?

Was it the sponge or the comb jelly that diverged first?

So... who is the "Oldest Sister"?

Was it the sponge or the comb jelly that diverged first?

