EFX Exists for Three Agents

H. Akrami¹ N. Alon³ J. Garg² K. Mehlhorn¹ B. Chaudhury² R. Mehta²

C Saarland Informatics Campus

My Co-Authors

Given

- Set [n] of n agents.
- Set *M* of *m* **indivisible** goods, e.g., a car, a house, a toothbrush.
- Valuations $v_i : 2^M \to \mathbb{R}_{\geq 0}$ for every agent *i*. $v_i(\emptyset) = 0$ and $v_i(A) \le v_i(B)$ for $A \subseteq B$.
- **Find**: A fair partition $X = \langle X_1, X_2, \dots, X_n \rangle$ of *M*.

Problem is ubiquitous: Split an estate, divorce settlements, splitting rent, ...

X is fair iff for all pairs *i* and *j* we have $v_i(X_j) \le v_i(X_i)$, i.e., every agent likes their own bundle at least as much as any other bundle.

This is too much to ask for: Consider two agents having positive valuation towards a single good.

Relaxation: Envy-Freeness upto One Good (EF1) [Budish'11]

X is fair iff for all *i* and *j*, $v_i(X_j \setminus \{g\}) \le v_i(X_i)$ for some $g \in X_j$.

An EF1-allocation always exists.

Hypothetical dialogue after an inheritance settlement: Brother, I envy you because you are getting a house, a TV set, and a toothbrush.

This is OK, because my envy disappears if I discount the house.

EF1 is an unsatisfactory notion.

Relaxation: Envy-Freeness upto One Good (EF1) [Budish'11]

X is fair iff for all *i* and *j*, $v_i(X_j \setminus \{g\}) \le v_i(X_i)$ for some $g \in X_j$.

An EF1-allocation always exists.

Hypothetical dialogue after an inheritance settlement: Brother, I envy you because you are getting a house, a TV set, and a toothbrush.

This is OK, because my envy disappears if I discount the house.

EF1 is an unsatisfactory notion.

Relaxation: Envy Freeness up to any Good (EFX) [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang '16.]

X is fair iff for all *i* and *j*, $v_i(X_j \setminus g) \le v_i(X_i)$ for every $g \in X_j$.

Hypothetical dialogue: Brother, I envy you because you are getting a house, a TV set, and a toothbrush.

This is OK, because my envy disappears if I discount the toothbrush.

For two agents, there is always an EFX-allocation (Plaut/Roughgarden).

For three agents and additive valuations, there is always an EFX-allocation (Chaudhury/Garg/M, EC '20 and JACM '23)

For three agents, two general valuations, and one additive valuation, there is always an EFX-allocation (Akrami/Alon/Chaudhury/Garg/M/Metha, EC '23)

For three agents and three general valuations and four or more agents and additive valuations, the question is open.

For two agents, there is always an EFX-allocation (Plaut/Roughgarden).

For three agents and additive valuations, there is always an EFX-allocation (Chaudhury/Garg/M, EC '20 and JACM '23)

For three agents, two general valuations, and one additive valuation, there is always an EFX-allocation (Akrami/Alon/Chaudhury/Garg/M/Metha, EC '23)

For three agents and three general valuations and four or more agents and additive valuations, the question is open.

For two agents, there is always an EFX-allocation (Plaut/Roughgarden).

For three agents and additive valuations, there is always an EFX-allocation (Chaudhury/Garg/M, EC '20 and JACM '23)

For three agents, two general valuations, and one additive valuation, there is always an EFX-allocation (Akrami/Alon/Chaudhury/Garg/M/Metha, EC '23)

For three agents and three general valuations and four or more agents and additive valuations, the question is open.

For two agents, there is always an EFX-allocation (Plaut/Roughgarden).

For three agents and additive valuations, there is always an EFX-allocation (Chaudhury/Garg/M, EC '20 and JACM '23)

For three agents, two general valuations, and one additive valuation, there is always an EFX-allocation (Akrami/Alon/Chaudhury/Garg/M/Metha, EC '23)

For three agents and three general valuations and four or more agents and additive valuations, the question is open.

