EPFL

Exercise Set 1

These problems are taken from various sources. Problems marked * are more difficult but also more fun :). If you are done early, find me and discuss; there are always more problems.

k-Center

1 Another 2-approximation for k-center. Let r be the optimum radius and consider the following algorithm for the k center problem.

While there is a remaining (input) point, select it as a center and remove all points within distance $2 r$.

Argue that you must select at most k balls (and thus at most k centers).
2 Prove that it is NP-hard to approximate the k-center problem within a factor less than 2.
Hint: Use a reduction from the NP-complete dominating set problem. In the dominating set problem, we are given a graph $G=(V, E)$ and an integer k, and we must decide if there exists a set $S \subseteq V$ of size k such that each vertex is either in S or adjacent to a vertex in S.

k-Means

3 In this exercise, you prove the missing "part" of the analysis of k-means ++ seeding. That is, prove the lemma

If some centers T have already been chosen by k-means ++ and $Z \in C_{i}$ is added next, then

$$
\mathbb{E}\left[\operatorname{cost}\left(C_{i}, T \cup\{Z\}\right) \mid T,\left\{Z \in C_{i}\right\}\right] \leq 8 \cdot \operatorname{cost}\left(C_{i}, z_{i}\right)
$$

where $z_{i}=\operatorname{mean}\left(C_{i}\right)$.
Hint: see Lemma 6 in the excellent notes by Dasgupta: https://cseweb.ucsd.edu/dasgupta/291geom/kmeans.pdf

4 Consider the "bad" instance for k-means ++ :

- We have k balls each of radius 1 and n / k points.
- The balls have pairwise distance $\Delta \gg 1$.

In contrast to k-means ++ , show that both Greedy k-Means ++ and and D^{α} sampling with say $\alpha=4$ give a constant-factor approximation algorithm for these instances when Δ tends to infinity.
$\left(^{*}\right)$ Prove the above statement for smaller Δ.
$5\left(^{*}\right)$ Give $\omega(\log k)$ lower bounds for D^{α} sampling with say $\alpha=4$ and Greedy k-Means ++ with a large parameter t.

Preparation for tomorrow

6 Consider an undirected graph $G=(V, E)$ and let $s \neq t \in V$. Show that there is an s, t-cut of value at most the optimal value of the following program

$$
\begin{aligned}
\operatorname{minimize} & \sum_{\{u, v\} \in E}\left|x_{u}-x_{v}\right| \\
\text { subject to } & x_{s}=0, x_{t}=1, \text { and } x_{v} \in[0,1] \text { for every } v \in V
\end{aligned}
$$

The above program can be made linear by introducing a variable y_{e} for each edge and minimizing $\sum_{e \in E} y_{e}$ and adding the constraints that $y_{e} \geq x_{u}-x_{v}$ and $y_{e} \geq x_{v}-x_{u}$ for every $e=\{u, v\} \in E$.

Hint: Show that the expected value of the following randomized rounding equals the value of the linear program. Select θ uniformly at random from $[0,1]$ and output the cut $S=\left\{v \in V: x_{v} \leq \theta\right\}$.

