Consider the standard LP relaxation for the standard variant of the k median problem:

$$
\begin{gathered}
\min \sum_{u, v} d(u, v) x_{u v} \\
\sum_{v} x_{u v}=1 \\
\sum_{u} y_{v} \leq k \\
x_{u v} \leq y_{v} \\
x_{u v} \geq 0, y_{v} \geq 0
\end{gathered}
$$

Problem 1 Let x, y be an optimal LP solution. Prove that $x_{u u}=y_{u}$ for every u.

Problem 2 Assume that (1) $y_{u} \geq 1 / 2$ for all u and (2) every u has a unique closest point u^{\prime} other than u.

- Show that $|X| \leq 2 k$.
- Prove that $x_{u u^{\prime}}=1-y_{u}$ and $x_{u v}=0$ for all $v \notin\left\{u, u^{\prime}\right\}$.

Problem 3 Let C^{*} be an optimal set of centers and $O P T$ be the cost of the optimal clustering. For every u, define Δ_{u} as follows: Δ_{u} is the smallest Δ such that $|B(u, \Delta / 2)| \cdot \Delta / 2 \geq O P T$. Prove that $d\left(u, C^{*}\right) \leq \Delta_{u}$ for all u. Conclude that we can add constraint $x_{u v}=0$ if $d(u, v)>\Delta_{u}$ to the LP.

