Primal-Dual Algorithms for Online Optimization: Lecture 2

Seffi Naor
Computer Science Dept.
Technion
Haifa, Israel
Contents

• Packing problems
 • Routing
 • Load balancing

• General covering/packing results

• More applications
Online Virtual Circuit Routing

Network graph $G = (V, E)$
capacity function $u: E \rightarrow \mathbb{Z}^+$

Requests: $r_i = (s_i, t_i)$

- **Problem:** Connect s_i to t_i by a path, or reject the request.
- Reserve one unit of bandwidth along the path.
- **No re-routing is allowed.**
- **Load:** ratio between reserved edge bandwidth and edge capacity.
- **Goal:** Maximize the total throughput.
Routing – Linear Program

\[y(r_i, p) = \text{Amount of bandwidth allocated for } r_i \text{ on path } p \]

\[P(r_i) \text{ - Available paths to serve request } r_i \]

\[
\max \sum_{r_i} \sum_{p \in P(r_i)} y(r_i, p)
\]

s.t:

For each \(r_i \):

\[
\sum_{p \in P(r_i)} y(r_i, p) \leq 1
\]

For each edge \(e \):

\[
\sum_{r_i} \sum_{p \in P(r_i) \mid e \in p} y(r_i, p) \leq u(e)
\]
Routing – Linear Program

P: Primal Covering

\[
\min \sum_{e \in E} u(e)x(e) + \sum_{i} z(r_i)
\]

\[\forall r_i, p \in P(r_i) : \sum_{e \in p} x(e) + z(r_i) \geq 1\]

D: Dual Packing

\[
\max \sum_{i} \sum_{p \in P(r_i)} y(r_i, p)
\]

\[\forall r_i \sum_{p \in P(r_i)} y(r_i, p) \leq 1\]

\[\forall e : \sum_{r_i} \sum_{p \in P(r_i) | e \in p} y(r_i, p) \leq u(e)\]

Online setting:

- **Dual:** new columns arrive one by one.
- **Requirement:** each dual constraint is satisfied.
- **Monotonicity:** variables can only be increased.
Routing – Algorithm 1

P: Primal Covering

\[
\min \sum_{e \in E} u(e)x(e) + \sum_{i \in I} z(r_i)
\]

\(\forall r_i, p \in P(r_i):\)

\[
\sum_{e \in p} x(e) + z(r_i) \geq 1
\]

Initially \(x(e) \leftarrow 0\)

When new request arrives, if \(\exists p \in P(r_i), \sum_{e \in p} x(e) < 1:\)

- \(z(r_i) \leftarrow 1\)
- \(\forall e \in p: x(e) \leftarrow x(e) \left(1 + \frac{1}{u(e)}\right) + \frac{1}{n \cdot u(e)}\)
- \(y(r_i, p) \leftarrow 1\)

D: Dual Packing

\[
\max \sum_{r_i} \sum_{p \in P(r_i)} y(r_i, p)
\]

\(\forall r_i\)

\[
\sum_{p \in P(r_i)} y(r_i, p) \leq 1
\]

\(\forall e:\)

\[
\sum_{r_i} \sum_{p \in P(r_i) | e \in p} y(r_i, p) \leq u(e)
\]
Analysis of Algorithm 1

Proof of competitive factor:
1. Primal solution is feasible.
2. In each iteration, $\Delta P \leq 3\Delta D$.
3. Dual is (almost) feasible.

Conclusions: We will see later.

Initially $x(e) \leftarrow 0$

When new request arrives, if $\exists p \in P(r_i), \sum x(e) < 1$:
- $z(r_i) \leftarrow 1$
- $\forall e \in p: x(e) \leftarrow x(e) \left(1 + \frac{1}{u(e)}\right) + \frac{1}{n \cdot u(e)}$
- $y(r_i, p) \leftarrow 1$
Analysis of Algorithm 1

1. Primal solution is feasible.
 If $\forall p \in P(r_i), \sum_{e \in p} x(e) \geq 1$: the solution is feasible.
 Otherwise: we update $z(r_i) \leftarrow 1$

Initially $x(e) \leftarrow 0$
When new request arrives, if $\exists p \in P(r_i), \sum_{e \in p} x(e) < 1$:

- $z(r_i) \leftarrow 1$
- $\forall e \in p: \quad x(e) \leftarrow x(e) \left(1 + \frac{1}{u(e)}\right) + \frac{1}{n \cdot u(e)}$
- $y(r_i, p) \leftarrow 1$
Analysis of Algorithm 1

2. In each iteration: \(\Delta P \leq 3\Delta D \).

 If \(\forall p \in P(r_i): \sum_{e \in p} x(e) \geq 1 \) \(\Delta P = \Delta D = 0 \)

 Otherwise:

 \[\Delta D = 1 \]

 \[\Delta P = \sum_{e \in p} u(e) \Delta x(e) + z(r_i) \]

 \[= \sum_{e \in p} u(e) \left(\frac{x(e)}{u(e)} + \frac{1}{n \cdot u(e)} \right) + 1 \leq 3 \]

Initially \(x(e) \leftarrow 0 \)

When new request arrives, if \(\exists p \in P(r_i), \sum_{e \in p} x(e) < 1 \):

- \(z(r_i) \leftarrow 1 \)
- \(\forall e \in p : \ x(e) \leftarrow x(e) \left(1 + \frac{1}{u(e)} \right) + \frac{1}{n \cdot u(e)} \)
- \(y(r_i, p) \leftarrow 1 \)
Analysis of Algorithm 1

3. Dual is (almost) feasible.

We prove:

- For each e, after routing $u(e)O(\log n)$ on e, $x(e) \geq 1$
 - $x(e)$ is a sum of a geometric sequence
 - $x(e)_1 = 1/(nu(e))$, $q = 1+1/u(e)$

\Rightarrow After $u(e)O(\log n)$ requests:

$$x(e) = \frac{1}{n \cdot u(e)} \cdot \frac{\left(1 + \frac{1}{u(e)}\right)^{u(e)O(\log n)} - 1}{\left(1 + \frac{1}{u(e)}\right)^{-1}} = \frac{\left(1 + \frac{1}{u(e)}\right)^{u(e)O(\log n)} - 1}{n} \geq 1$$
Conclusions: Algorithm 1

- The algorithm is 3-competitive, since $\Delta P \leq 3 \Delta D$

- Edge capacities are violated by at most a factor of $O(\log n)$, since the dual is “almost” feasible.
Routing – Algorithm 2

P: Primal Covering

\[
\min \sum_{e \in E} u(e)x(e) + \sum_{r_i} z(r_i)
\]

\[\forall r_i, p \in P(r_i): \quad \sum_{e \in p} x(e) + z(r_i) \geq 1\]

Initially: \(\forall e, x(e) \leftarrow 0\)

For new request \(r_i\), if \(\exists p \in P(r_i), \quad \sum_{e \in p} x(e) < 1:\)

- \(z(r_i) \leftarrow 1\)
- \(\forall e \in p: \quad x(e) \leftarrow x(e) \cdot \exp \left(\frac{\ln(1+n)}{u(e)} \right) + \frac{1}{n} \left[\exp \left(\frac{\ln(1+n)}{u(e)} \right) - 1 \right]\)
- \(y(r_i, p) \leftarrow 1\)

D: Dual Packing

\[
\max \sum_{r_i} \sum_{p \in P(r_i)} y(r_i, p)
\]

\[\forall r_i \quad \sum_{p \in P(r_i)} y(r_i, p) \leq 1\]

\[\forall e: \quad \sum_{r_i} \sum_{p \in P(r_i) | e \in p} y(r_i, p) \leq u(e)\]
Proof of competitive factor:

1. Primal solution is feasible.
2. In each iteration, \(\Delta P \approx O(\log n) \Delta D \).
3. Dual is feasible.

Initially: \(\forall e, x(e) \leftarrow 0 \)

For new request \(r_i \), if \(\exists p \in P(r_i), \sum_{e \in p} x(e) < 1 \):

- \(z(r_i) \leftarrow 1 \)
- \(\forall e \in p: \ x(e) \leftarrow x(e) \cdot \exp \left(\frac{\ln(1+n)}{u(e)} \right) + \frac{1}{n} \left[\exp \left(\frac{\ln(1+n)}{u(e)} \right) - 1 \right] \)
- \(y(r_i, p) \leftarrow 1 \)
Analysis of Algorithm 2

1. Primal solution is feasible.

 If $\forall p \in P(r_i), \sum_{e \in p} x(e) \geq 1$: the solution is feasible.
 Otherwise: we update $z(r_i) \leftarrow 1$

Initially: $\forall e, x(e) \leftarrow 0$
For new request r_i, if $\exists p \in P(r_i), \sum_{e \in p} x(e) < 1$:

- $z(r_i) \leftarrow 1$
- $\forall e \in p : \ x(e) \leftarrow x(e) \cdot \exp \left(\frac{\ln(1+n)}{u(e)} \right) + \frac{1}{n} \left[\exp \left(\frac{\ln(1+n)}{u(e)} \right) - 1 \right]$
- $y(r_i, p) \leftarrow 1$
Analysis of Algorithm 2

2. Ratio between ΔP and ΔD: If $\forall p \in P(r_i): \sum_{e \in p} x(e) \geq 1$, $\Delta P = \Delta D = 0$

Otherwise: $\Delta D = 1$ and

$\Delta P = 1 + \sum_{e \in p} u(e) \left(x(e) \left[\exp \left(\frac{\ln(1 + n)}{u(e)} \right) - 1 \right] + \frac{1}{n} \left[\exp \left(\frac{\ln(1 + n)}{u(e)} \right) - 1 \right] \right)$

Initially: $\forall e, x(e) \leftarrow 0$

For new request r_i, if $\exists p \in P(r_i), \sum_{e \in p} x(e) < 1$:

- $z(r_i) \leftarrow 1$
- $\forall e \in p: x(e) \leftarrow x(e) \cdot \exp \left(\frac{\ln(1 + n)}{u(e)} \right) + \frac{1}{n} \left[\exp \left(\frac{\ln(1 + n)}{u(e)} \right) - 1 \right]$
- $y(r_i, p) \leftarrow 1$
Analysis of Algorithm 2

\[
\left(u(e) \cdot \left[\exp \left(\frac{\ln(1 + n)}{u(e)} \right) - 1 \right] \right) \quad \text{- monotonically decreasing}
\]

Therefore, \(\Delta P \) is at most:

\[
1 + \sum_{e \in P} u(e) \left(x(e) \left[\exp \left(\frac{\ln(1 + n)}{u(e)} \right) - 1 \right] + \frac{1}{n} \left[\exp \left(\frac{\ln(1 + n)}{u(e)} \right) - 1 \right] \right)
\]

\[
\leq 2 \left(u(\text{min}) \cdot \left[\exp \left(\frac{\ln(1 + n)}{u(\text{min})} \right) - 1 \right] \right) + 1
\]

since: \(z(r_i) = 1 \) and \(\sum_{e \in p} x(e) \leq 1 \)

Thus, \(\Delta P/\Delta D \leq 2 \left(u(\text{min}) \cdot \left[\exp \left(\frac{\ln(1 + n)}{u(\text{min})} \right) - 1 \right] \right) + 1 \)
Analysis of Algorithm 2

3. Dual is feasible. We prove:
 – For each e, after routing $u(e)$ requests, $x(e) \geq 1$
 $x(e)$ is a sum of a geometric sequence

 $$(x(e))_1 = \frac{1}{n} \left[\exp \left(\frac{\ln(1+n)}{u(e)} \right) - 1 \right] \quad \text{and} \quad q = \exp \left(\frac{\ln(1+n)}{u(e)} \right)$$

 \Rightarrow After $u(e)$ requests:

 $$x(e) = \frac{1}{n} \cdot \left(\exp \left(\frac{\ln(1+n)}{u(e)} \right) - 1 \right) \cdot \frac{\exp \left(\frac{u(e) \ln(1+n)}{u(e)} \right) - 1}{\exp \left(\frac{\ln(1+n)}{u(e)} \right) - 1}$$

 $$= \frac{1}{n} \cdot (1 + n - 1) \geq 1.$$
Conclusions: Algorithm 2

- \(O\left(u(\text{min}) \cdot \left[\exp\left(\frac{\ln(1+n)}{u(\text{min})}\right) - 1\right]\right)\) – competitive

- It does not violate capacity constraints

- If \(u(\text{min}) \geq \log n\) then,

\[
2 \left(u(\text{min}) \cdot \left[\exp\left(\frac{\ln(1+n)}{u(\text{min})}\right) - 1\right]\right) + 1 = O(\log n)
\]

- This result was obtained by [AAP, 1993]
Further Results: Routing

We saw a simple algorithm which is:
- **3-competitive** and violates capacities by $O(\log n)$ factor. Can be improved [Buchbinder, N., FOCS06] to:
 - **1-competitive** and violates capacities by $O(\log n)$ factor. **Non Trivial.**

Main ideas:
- Combination of ideas drawn from casting of previous routing algorithms within the primal-dual approach.
- Decomposition of the graph.
- Maintaining **several primal solutions** which are used to bound the dual solution, and for the routing decisions.
Further Results: Routing

Applications [Buchbinder, N, FOCS 06]:

• Can be used as “black box” for many objective functions and in many routing models:

 – Previous Settings [AAP93,APPFW94].
 – Maximizing throughput.
 – Minimizing load.
 – Achieving better global fairness results (Coordinate competitiveness).
Scheduling and Load Balancing

• Set of m machines

• Set of jobs

• Assigning a job to a machine incurs a load
Motivation and Objective

• Parallel processing of jobs on machines
• Assignments of packets to communication lines
• Distributing web cache files on web servers

Objective: minimize maximum load - makespan
Machine Scheduling Models

Identical machines:
- A job can be assigned to any machine, incurring the same load

Restricted assignment:
- A job can be assigned to only a subset of the machines
- The load of a job on all allowed machines is the same

Unrelated machines: [our focus]
- Job i on machine j has load $p(i,j)$
Online Model

Online setting:

• Jobs arrive one-by-one

• Upon arrival of each job:
 – reveals its load function
 – needs to be assigned to a machine

• Assignments of jobs to machines are irreversible
Example

\[t = 0 \]

\[\begin{array}{c}
M_1 \\
M_2
\end{array} \]

\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
Example

M_1

M_2
Example
Example

On-line solution
Example

On-line solution

Optimal solution

Diagram showing two machines, M_1 and M_2, with bars indicating the tasks assigned to each machine at different time steps.
Our Model

Unrelated machines:
• Job i on machine j has load $p(i,j)$

Linear program:
• we want to write a maximization program
• we assume that OPT’s max load α is known
• obtained by “doubling”:
 – it guarantees $\alpha \leq 2 \cdot (\text{OPT’s max load})$
Doubling

• Initially: $\alpha \leftarrow$ minimum load (known)
• Our online algorithm keeps the invariant:
 – either its max load $\leq \alpha \cdot$ (competitive ratio)
 – or it generates a certificate that $\text{OPT} > \alpha$ (“failure”)
• In case of failure:
 – $\alpha \leftarrow 2 \cdot \alpha$ ($\alpha \leq 2 \cdot \text{OPT}$ is maintained)
 – “forget” about previous assignments
 – assignments for different α-s are geometric:
 $[\alpha \cdot \text{(competitive ratio)} + 2 \alpha \cdot \text{(competitive ratio)} +
 4 \alpha \cdot \text{(competitive ratio)} + \ldots]$
 – loss incurred is at most a factor of 4
Setting up the Linear Program (2)

- Normalized load of job j on machine i: $\tilde{p}(i, j) = \frac{p(i, j)}{\alpha}$

- Upon arrival of job j:
 - machine i is eligible if $\tilde{p}(i, j) \leq 1$
 - no such machine exists: announce failure!
 - clearly, OPT also cannot schedule with load $\leq \alpha$
Linear Program: fixed α

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\min \sum_j x(j) + \sum_i z(i)$</td>
<td>$\max \sum_i \sum_{j \in E(i)} y(i, j)$</td>
</tr>
<tr>
<td>subject to: $\forall i, j \in E(i): \tilde{p}(i, j)x(j) + z(i) \geq 1$</td>
<td>subject to: $\forall i:$ $\sum_{j \in E(i)} y(i, j) \leq 1$ $\forall j:$ $\sum_i \tilde{p}(i, j)y(i, j) \leq 1$</td>
</tr>
</tbody>
</table>

$y(i,j)$ – indicator for scheduling job i on machine j

Objective: maximize number of jobs scheduled

- If max load is correctly guessed, then all jobs can be scheduled!
Load Balancing Algorithm: fixed α

Initially: $x(j) \leftarrow \frac{1}{2m}$.

Upon arrival of job i:

1. If there is no machine j such that $\tilde{p}(i, j) \leq 1$, or there exists a machine with $x(j) > 1$, return “failure”. Otherwise:

 (a) Let $\ell \in E(i)$ be a machine minimizing $\tilde{p}(i, \ell)x(\ell)$.

 (b) Assign job i to machine ℓ: $y(i, \ell) \leftarrow 1$.

 (c) $z(i) \leftarrow 1 - \tilde{p}(i, \ell)x(\ell)$.

 (d) $x(\ell) \leftarrow x(\ell)(1 + \frac{\tilde{p}(i, \ell)}{2})$.

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\min \sum_j x(j) + \sum_i z(i)]</td>
<td>[\max \sum_i \sum_{j \in E(i)} y(i, j)]</td>
</tr>
<tr>
<td>subject to: $\forall i, j \in E(i): \tilde{p}(i, j)x(j) + z(i) \geq 1$</td>
<td>subject to: $\forall i$: $\sum_{j \in E(i)} y(i, j) \leq 1$</td>
</tr>
<tr>
<td>$\forall j$: $\sum_i \tilde{p}(i, j)y(i, j) \leq 1$</td>
<td>$\forall j$: $\sum_i \tilde{p}(i, j)y(i, j) \leq 1$</td>
</tr>
</tbody>
</table>
Analysis of Load Balancing Algorithm

We show:

• Load of assigned jobs on each machine is $O(\alpha \cdot \log m)$

• If algorithm returns failure: then there exists a primal solution of value $< N$ (# of jobs) – a certificate that $\text{OPT} > \alpha$

• Else: all jobs are scheduled with load $O(\alpha \cdot \log m)$
Bounding the Load on the Machines

- Since $\tilde{p}(i, j) \leq 1$, $x(j) \leq 3/2$

- Hence:

$$\frac{3}{2} \geq x(j) \geq \frac{1}{2m} \cdot \prod_{i \in j} \left(1 + \frac{\tilde{p}(i, j)}{2}\right) \geq \frac{1}{2m} \cdot \prod_{i \in j} \left(\frac{4}{3}\right)^{\tilde{p}(i, j)}$$

$$= \frac{1}{2m} \cdot \exp \left(\ln \left(\frac{4}{3}\right) \cdot \sum_{i \in j} \tilde{p}(i, j)\right)$$

- Simplifying:

$$\sum_{i \in j} \tilde{p}(i, j) \leq \frac{\ln(3m)}{\ln \left(\frac{4}{3}\right)} = O(\log m)$$

- Holds also in case of failure
The Primal Solution

Why is the primal solution feasible:

- consider constraint $\tilde{p}(i, j)x(j) + z(i) \geq 1$
- for each job i, $z(i) \leftarrow 1 - p(i, \ell)x(\ell)$, where ℓ minimizes $\tilde{p}(i, \ell)x(\ell)$
- thus, all primal constraints related to i are satisfied
- since $x(i)$ is increasing, constraints remain feasible

When assigning job i to machine ℓ: ($P = \sum_j x(j) + \sum_i z(i)$)

- $\Delta P = 1 - p(i, \ell)x(\ell) + \frac{p(i,\ell)x(\ell)}{2} = 1 - \frac{p(i,\ell)x(\ell)}{2}$
- $\Delta x(\ell) = \frac{p(i,\ell)x(\ell)}{2}$
The Primal Solution

- $\Delta P = 1 - \Delta x(\ell)$
- N - number of jobs
- $x(j)_{\text{init}} = \frac{1}{2m}$

Thus,

$$P = \sum_{j=1}^{m} x(j)_{\text{init}} + N - \sum_{j=1}^{m} (x(j) - x(j)_{\text{init}})$$

$$= 2 \cdot \sum_{j=1}^{m} x(j)_{\text{init}} + N - \sum_{j=1}^{m} x(j) = 1 + N - \sum_{j=1}^{m} x(j)$$

If $\exists x(j) > 1$, then $P < N$, failure! We have a certificate that $\text{OPT} > \alpha$
Online Primal-Dual Approach: Summary

• Can the **offline** problem be cast as a **linear covering/packing program**?

• Can the online process be described as:
 – **New rows appearing in a covering LP?**
 – **New columns appearing in a packing LP?**

Yes ??

• Upon arrival of a new request:
 – Update primal variables in a **multiplicative way**.
 – Update dual variables in an **additive way**.
Online Primal Dual Approach

Next Prove:
1. Primal solution is **feasible** (or nearly feasible).
2. In each round, $\Delta P \leq c \Delta D$.
3. Dual is **feasible** (or nearly feasible).

Got a **fractional** solution, but need an **integral** solution ??

- Randomized rounding techniques might work.
- Sometimes, even derandomization (e.g., method of conditional probabilities) can be applied online!
Online Primal-Dual Approach

Advantages:

1. **Generic** ideas and algorithms applicable to many online problems.

2. **Linear Program** helps detecting the difficulties of the online problem.

3. **General recipe** for the design and analysis of online algorithms.

4. No **potential function** appearing “out of nowhere”.

5. Competitiveness with respect to a **fractional optimal solution**.
General Covering/Packing Results

What can you expect to get?

• For a \{0,1\} covering/packing matrix:
 – Competitive ratio $O(\log D)$ [BN05]
 $(D \text{ – max number of non-zero entries in a constraint})$

Remarks:

• Fractional solutions.
• Number of constraints/variables can be exponential.
• There can be a tradeoff between the competitive ratio and the factor by which constraints are violated.
General Covering/Packing Results

- For a general covering/packing matrix \([BN05]\):

 Covering:
 - Competitive ratio \(O(\log n)\)

 \((n – \text{number of variables}).\)

 Packing:
 - Competitive ratio \(O(\log n + \log [a(\text{max})/a(\text{min})])\)

 \(a(\text{max}), a(\text{min}) – \text{maximum/minimum non-zero entry}\)

Remarks:

- Results are tight.
Further Results via P-D Approach

Covering Online Problems (Minimization):

- Dynamic TCP Acknowledgement
- Parking Permit Problem [Meyerson 05]

- Online Graph Covering Problems [AAABN04]:
 - Non-metric facility location
 - Generalized connectivity: pairs arrive online
 - Group Steiner: groups arrive online
 - Online multi-cut: (s,t)--pairs arrive online