Advanced Course on the Foundations of Computer Science 2014 Note on Multiplicative-Weights Update

Lecturer: Aleksander Madry

Recall that in our setup $\varepsilon \leq \frac{1}{2}$ and we maintain weights w_{e}^{t} for all e that evolve as follows

$$
\begin{align*}
w_{e}^{0} & =1 \tag{1}\\
w_{e}^{t} & =w_{e}^{t-1}\left(1+\frac{\varepsilon}{\rho}\left|f_{e}^{t}\right|\right) \tag{2}
\end{align*}
$$

where f^{t} is such that

$$
\begin{equation*}
\sum_{e} w_{e}^{t-1}\left|f_{e}^{t}\right| \leq \sum_{e} w_{e}^{t-1} \tag{3}
\end{equation*}
$$

for each t. (For simplicity, we assumed here that the worst-case overflow in each flow f^{t} is always ρ.)
Let us define our potential $\mu_{t}:=\sum_{e} w_{e}^{t}$. Observe that $\mu_{0}=m$.
Lemma 1 For each $t \geq 1$,

$$
\mu_{t} \leq \mu_{t-1} \exp \left(\frac{\varepsilon}{\rho}\right)
$$

In particular, $\mu_{t} \leq m \exp \left(\frac{\varepsilon}{\rho} \cdot t\right)$.
Proof Note that by (2) and the condition (3)
$\mu_{t}=\sum_{e} w_{e}^{t}=\sum_{e} w_{e}^{t-1}\left(1+\frac{\varepsilon}{\rho}\left|f_{e}^{t}\right|\right)=\sum_{e} w_{e}^{t-1}+\frac{\varepsilon}{\rho} \sum_{e} w_{e}^{t-1}\left|f_{e}^{t}\right| \leq \sum_{e} w_{e}^{t-1}\left(1+\frac{\varepsilon}{\rho}\right) \leq \mu_{t-1} \exp \left(\frac{\varepsilon}{\rho}\right)$,
where the last inequality follows as $(1+x) \leq e^{x}$, for all $x \geq 0$.
Combining these inequalities for all $t^{\prime} \leq t$ and using the fact that $\mu_{0}=m$ gives us that also

$$
\mu_{t} \leq m \exp \left(\frac{\varepsilon}{\rho} \cdot t\right)
$$

as desired.

Lemma 2 For any edge e,

$$
w_{e}^{t} \geq \exp \left((1-\varepsilon) \frac{\varepsilon}{\rho} \sum_{t^{\prime} \leq t}\left|f_{e}^{t^{\prime}}\right|\right)
$$

Proof By (2),

$$
w_{e}^{t}=w_{e}^{t-1}\left(1+\frac{\varepsilon}{\rho}\left|f_{e}^{t}\right|\right) \geq w_{e}^{t-1} \exp \left((1-\varepsilon) \frac{\varepsilon}{\rho}\left|f_{e}^{t}\right|\right)
$$

where we used the fact that $(1+x) \geq \exp ((1-x) x)$, whenever $0 \leq x \leq \frac{1}{2}$. (Observe that by definition of $\rho, \frac{\varepsilon}{\rho}\left|f_{e}^{t}\right| \leq \varepsilon \leq \frac{1}{2}$, so we can indeed apply this fact ${ }^{1}$)
Again, combining the inequality proved above for all $t^{\prime} \leq t$ and recalling that $w_{e}^{0}=1$, gives us the lemma.

[^0]Now, to conclude the analysis of the multiplicative-weights update method (which we already did in the lecture), we note that, for any fixed edge e, trivially

$$
w_{e}^{N} \leq \mu_{N}
$$

where N is the number of iterations of our multiplicative-weights update routine.
Using Lemmas 1 and 2, we obtain

$$
\exp \left((1-\varepsilon) \frac{\varepsilon}{\rho} \sum_{t^{\prime} \leq N}\left|f_{e}^{t^{\prime}}\right|\right) \leq w_{e}^{N} \leq \mu_{N} \leq m \exp \left(\frac{\varepsilon}{\rho} \cdot N\right)
$$

Taking a logarithm of both side and multiplying them by $\frac{\rho}{(1-\varepsilon) \varepsilon N}$ gives us

$$
\frac{\sum_{t^{\prime} \leq N}\left|f_{e}^{t^{\prime}}\right|}{N} \leq \frac{\rho \log m}{(1-\varepsilon) \varepsilon N}+\frac{1}{1-\varepsilon}
$$

Observe that the amount of flow on the edge e in our final solution $\bar{f}:=\frac{\sum_{t \leq N} f^{t}}{N}$ can be bounded by

$$
\left|\bar{f}_{e}\right|=\left|\frac{\sum_{t \leq N} f_{e}^{t}}{N}\right| \leq \frac{\sum_{t \leq N}\left|f_{e}^{t}\right|}{N}
$$

So, combining two above inequalities we can see that whenever

$$
N \geq \frac{\rho \log m}{(1-\varepsilon) \varepsilon^{2}}
$$

we have that

$$
\left|\bar{f}_{e}\right| \leq \frac{\rho \log m}{(1-\varepsilon) \varepsilon N}+\frac{1}{1-\varepsilon} \leq 1+O(\varepsilon)
$$

which is what we wanted to show. (We also used here the fact that $\frac{1}{(1-x)} \leq 1+O(x)$, whenever $x \leq \frac{1}{2}$.)

[^0]: ${ }^{1}$ This is the crucial (and only) place where our normalization of the multiplicative update by ρ plays role.

