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Recall that in our setup € < % and we maintain weights w! for all e that evolve as follows
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where f* is such that
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for each t. (For simplicity, we assumed here that the worst-case overflow in each flow f! is always p.)

Let us define our potential y; := >, wt. Observe that py = m.
Lemma 1 For eacht > 1,
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In particular, p; < mexp (% . t).

Proof Note that by and the condition
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where the last inequality follows as (1 + x) < €%, for all z > 0.

Combining these inequalities for all ¢ < ¢ and using the fact that pg = m gives us that also
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as desired. W

Lemma 2 For any edge e,
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where we used the fact that (14 z) > exp((1 — z)x), whenever 0 < z < 1. (Observe that by definition
of p, %|f§| <e< %7 so we can indeed apply this fact[[)

Again, combining the inequality proved above for all # < t and recalling that w? = 1, gives us the
lemma. H

1This is the crucial (and only) place where our normalization of the multiplicative update by p plays role.



Now, to conclude the analysis of the multiplicative-weights update method (which we already did in the
lecture), we note that, for any fixed edge e, trivially
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where N is the number of iterations of our multiplicative-weights update routine.
Using Lemmas [T] and 2| we obtain
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Taking a logarithm of both side and multiplying them by m gives us
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Observe that the amount of flow on the edge e in our final solution f := ZﬁvN ! can be bounded by
| e | St
N - N

So, combining two above inequalities we can see that whenever
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which is what we wanted to show. (We also used here the fact that ui—z) < 1+0(z), whenever z < 1.)



