Electrical Flows, Laplacian Matrices, and New Approaches to the Maximum Flow Problem

Aleksander Mądry

Graphs are everywhere

Algorithmic Graph Theory:

Shaping our understanding of algorithms since 1950s

But: Our graph toolkit is still far from being complete

Challenge I: Tackling the complexity of core problems

Shortest path/Reachability problems

Matchings/Assignment tasks

Many central questions is resisting progress for a long time

Network Flows

Possible reason: Our approaches to them did not change much over the last couple of decades

Challenge II: Dealing with massive graphs

- "Big graph" regime:
 - → Asymptotics matters ("O(n²) won't cut it")

 Algorithms can be dirty, but have to be REALLY fast
 - → Parallelism/distributed aspects increasingly important

Emerging mindset: What can we do in nearly-linear time?

"nearly-linear time" = new P

Problem: Traditional techniques seem inadequate here→ New type of approaches needed

Grand goal: Forging the next generation of tools to speed up graph algorithms

Linear-algebraic tools

(eigenvalues, electrical flows, linear systems,...)

Combinatorial methods

(trees, paths, partitions, matchings, routings,...)

Convex opt. primitives

(gradient-descent, interiorpoint methods,...)

Underlying theme: Merging combinatorial and continuous methods

Interestingly: The same new tools apply to both classic and new challenges

Our plan for this week:

Illustrate this theme on an example of a single problem

Problem: Maximum flow

Underlying approach:

Relate combinatorial structure of a graph to linear-algebraic properties of associated matrices

Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t

Think: arcs = roads capacities = # of lanes s/t = origin/destination

Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Maximum flow problem

value = net flow out of s

Input: Directed graph G, integer capacities u_e, source s and sink t

Think: arcs = roads capacities = # of lanes s/t = origin/destination

Max flow value F*=10

no overflow on arcs: $0 \le f(e) \le u(e)$

no leaks at all v≠s,t

Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t

Think: arcs = roads capacities = # of lanes s/t = origin/destination

Max flow value F*=10

Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Why is this a good problem to study?

Max flow is a fundamental optimization problem

- Extensively studied since 1930s (classic 'textbook problem')
- Surprisingly diverse set of applications
- Very influential in development of (graph) algorithms

A **LOT** of previous work

A (very) rough history outline

[Dantzig '51]
[Ford Fulkerson '56]
[Dinitz '70]
[Dinitz '70] [Edmonds Karp '72]
[Dinitz '73] [Edmonds Karp '72]
[Dinitz '73] [Gabow '85]
[Goldber Rao '98]

O(mn² U)
O(mn U)
O(mn²)
O(m²n)
O(m² log U)
O(mn log U)
Õ(m min(m^{1/2},n^{2/3}) log U)

Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures, e.g., bipartite matching questions

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

A (very) rough history outline

[Dantzig '51]	O(n ³)
[Ford Fulkerson '56]	O(n ²)
[Dinitz '70]	O(n ³)
[Dinitz '70] [Edmonds Karp '72]	O(n ³)
[Dinitz '73] [Edmonds Karp '72]	Õ(n²)
[Dinitz '73] [Gabow '85]	Õ(n²)
[Goldber Rao '98]	Õ(n ^{3/2})

Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures, e.g., bipartite matching questions

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Emerging barrier: $O(n^{3/2})$

[Even Tarjan '75, Karzanov '73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly more general settings, but **no improvement**

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Breaking the O(n^{3/2}) barrier

Undirected graphs and approx. answers (O(n^{3/2}) barrier still holds here)

[M '10]: Crude approx. of max flow value in close to linear time

[CKMST '11]: (1- ϵ)-approx. to max flow in $\tilde{O}(n^{4/3}\epsilon^{-3})$ time

[LSR '13, S '13, KLOS '14]: (1- ϵ)-approx. in close to linear time

But: What about the **directed** and **exact** setting?

[M '13]: Exact $\tilde{O}(n^{10/7})=\tilde{O}(n^{1.43})$ -time alg.

This week

 $(n = # of vertices, \tilde{O}())$ hides polylog factors)

Previous approach

[Ford Fulkerson '56]

[Ford Fulkerson '56]

[Ford Fulkerson '56]

[Ford Fulkerson '56]

[Ford Fulkerson '56]

Basic idea: Repeatedly find s-t paths in the residual graph

Advantage: Simple, purely combinatorial and greedy (flow is built path-by-path)

Problem:

Very difficult to analyze

Naïve impl

(≤ **n** augme

Unclear how to get a further speed-up via this route path)

Sophisticated implementation and arguments:

 $O(n^{3/2})$ time [Karzanov '73] [Even Tarjan '75]

Beyond augmenting paths

New approach:

Bring linear-algebraic techniques into play

Idea: Probe the **global flow structure** of the graph by **solving linear systems**

How to relate **flow structure** to **linear algebra**? (And why should it even help?)

Key object: Electrical flows

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t

Recipe for elec. flow:

1) Treat edges as resistors

Electrical flows (Take I)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e

Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t

resistance r_e

Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

Electrical flows (Take II)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e

(Another) recipe for electrical flow (of value F):

(Another) recipe for electrical flow (of value F):

Find vertex potentials ϕ_v such that setting, for all (u,v)

$$f_{(u,v)} \leftarrow (\phi_v - \phi_u)/r_{(u,v)}$$
 (Ohm's law)

gives a valid s-t flow of value F

Electrical flows (Take III)

Input: Undirected graph G, resistances r_e, source s and sink t

Principle of least energy

Electrical flow of value F:

The unique minimizer of the energy

$$E(f) = \Sigma_e r_e f(e)^2$$

among all s-t flows f of value F

Electrical flows = ℓ_2 -minimization

How to compute an electrical flow? Input: Graph G=(V,E),

Solve a linear system!

Input: Graph G=(V,E), resistances r_e, source s and sink t, value F=1

Wlog as elect. flow are invariant under scaling

How to compute an electrical flow? Input: Graph G=(V,E),

Solve a linear system!

Input: Graph G=(V,E)
resistances r_e,
source s and sink t,
value F=1

Observe: It suffices to compute **vertex potentials** ϕ_v

Ohm's law: If ϕ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Here:

- \rightarrow f is an |E|-dim vector with |f_e| giving the amount of flow on e and sign(f_e) encoding its direction (wrt edge orientation)
- \rightarrow R is an |E|×|E| diagonal matrix with $R_{ee} = r_{e}$
- \rightarrow B is an $|V| \times |E|$ matrix with e-th column, for e=(v,u), having
- -1 (resp. +1) at its v-th (resp. u-th) coordinate and 0 everywhere else

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:

|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:

|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:

$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix}$$

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:

|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix}$$

$$R^{-1}B^{T}$$

$$f = \begin{bmatrix} -0.5 \\ 2 \\ 4 \\ 1 \\ -1 \\ -0.3 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Recall: φ induces an electrical flow f iff

f is a valid **s-t** flow

(i.e., satisfies flow conservation constraints)

Equivalently: φ induces an electrical flow f iff

$$B f = \chi_{s,t}$$

where $\chi_{s,t}$ has a 1 at t, -1 at s and 0s everywhere else

Note: (Bf), is the excess/deficit of f at v

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Recall: φ induces an electrical flow iff

f is a valid **s-t** flow

(i.e., satisfies flow conservation constraints)

Equivalently: φ induces an electrical flow **f** iff

$$B f = \chi_{s,t}$$

 $B f = \chi_{s,t}$ where $\chi_{s,t}$ has a 1 at t, -1 at s and 0 s everywhere else

Note: (Bf), is the excess/deficit of fat v

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Putting it together: φ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix} \xrightarrow{R^{-1}B^{\mathsf{T}}} f = \begin{bmatrix} -0.5 \\ 2 \\ 4 \\ 1 \\ -1 \\ -0.3 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

$$|V| = 5, |E| = 6, \text{ all edges oriented } (v_i, v_j) \text{ with } i < j \qquad \chi_{s,t}$$

$$|I|$$

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix} \xrightarrow{R^{-1}B^{T}} f = \begin{bmatrix} -0.5 \\ 2 \\ 4 \\ 1 \\ -0.3 \end{bmatrix} \xrightarrow{B} \begin{bmatrix} -1.5 \\ -5.5 \\ 5 \\ 3.3 \\ -1.3 \end{bmatrix} \neq \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

 $\mathbf{X}_{s,t}$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

$$B = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

$$\phi = \begin{bmatrix}
0.8 \\
0 \\
0.2 \\
1.2 \\
0.6
\end{bmatrix}$$

 $\chi_{s,t}$

 $\begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

$$B = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

|V|=5, |E|=6, all edges oriented (v_i,v_j) with i< j

$$\varphi = \begin{bmatrix} 0.8 \\ 0 \\ 0.2 \\ 1.2 \\ 0.6 \end{bmatrix} \xrightarrow{R^{-1}B^{T}} f = \begin{bmatrix} -0.4 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{s,t} \\ \mathbf{II} \\ \begin{bmatrix} \mathbf{0} \\ -\mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Putting it together: φ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

 $\chi_{s,t}$

$$\begin{vmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{vmatrix}$$

Bottom line:

Bad news: Solving a linear system can take $O(n^{\omega})=O(n^{2.373})$ (Prohibitive!)

Key observation:

BR-1**B**^T is the **Laplacian** matrix **L** of the underlying graph

Electrical flow computation

Solving a Laplacian system

Bad news: Solving a linear system can take $O(n^{\omega})=O(n^{2.373})$ (Prohibitive!)

Key observation:

BR⁻¹**B**^T is the **Laplacian** matrix **L** of the underlying graph

Bottom line:

Bad news: Solving a linear system can take $O(n^{\omega})=O(n^{2.373})$

(Prohibitive!)

Key observation:

BR⁻¹**B**^T is the **Laplacian** matrix **L** of the underlying graph

How to utilize it?

Result: Electrical flow is a nearly-linear time primitive

From electrical flows to undirected max flow

[CKMST '11]

Assume: F* known (via binary search)

→ Treat edges as resistors of resistance 1

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value **F***

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)
- → To fix that: Increase resistances on the overflowing edges

 Repeat (hope: it doesn't happen too often)

Surprisingly: This approach can be made work!

Tomorrow: Will discuss how to fill the blanks

Addendum: A Glimpse of Spectral Graph Theory

Spectral graph theory: Understanding graphs via eigenvalues and eigenvectors of associated matrices

Central object: Laplacian matrix of a graph G=(V,E,w)

Equivalently:

$$L_{uv} = \begin{cases} -w_{uv} & \text{if } (u,v) \text{ in } E \\ deg(v) & \text{if } u=v \\ 0 & \text{otherwise} \end{cases}$$

Spectral graph theory: Understanding graphs via eigenvalues and eigenvectors of associated matrices

Example:

Observe:

$$L = \Sigma_e w_e L^e$$

Laplacian of a graph (V, {e})

Laplacian as a quadratic form:

$$x^{T} L x = \Sigma_{e} w_{e} x^{T} L^{e} x = \Sigma_{e} w_{e} (x_{u} - x_{v})^{2}$$

Spectrum of a Laplacian

Laplacian is an n×n symmetric matrix.

→ It has as **n real eigenvalues** $\lambda_1 \le \lambda_2 \le ... \le \lambda_n$ with corresponding (orthogonal) **eigenvectors** $\mathbf{v}^1, \mathbf{v}^2, ..., \mathbf{v}^n$ s.t.

$$\mathbf{L} \mathbf{v}^{i} = \lambda_{i} \mathbf{v}^{i}$$

Can show: $\lambda_1 = 0$ and $v^1 = (1,...,1)$

These objects tell us a lot about the graph! (And we can compute each λ_i and v^i in nearly-linear time)

Most important eigenvalue: λ_2

Fact: $\lambda_2=0$ iff **G** is disconnected

(More generally: $\lambda_k=0$ iff G has at least k connected components)

Can we make this connect

Total weight e? of cut edges

Cut conductance:

$$\Phi(C) = \frac{w(C)}{\deg(C)}$$

Total weighted degree (of the "smaller" side)

Fact: $\lambda_2=0$ iff **G** is disconnected

(More generally: $\lambda_k=0$ iff G has at least k connected components)

Can we make this connection quantitative?

Graph conductance:

$$\Phi_{G} = \min_{C} \frac{w(C)}{\deg(C)}$$

 Φ_{G} large

→ **G** is well connected

 Φ_{G} small

→ G has a "bottlenecking" cut

For a **normalized** Laplacian
$$\mathcal{L} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$$

 $\lambda_2/2 \le \Phi_G \le 2 \lambda_2^{\frac{1}{2}}$
[Cheeger '70, Alon-Milman '85]

For a normalized Laplacian
$$\mathcal{L} = D^{-1/2} L D^{-1/2}$$

$$\lambda_2/2 \le \Phi_G \le 2 \lambda_2^{1/2}$$
 [Cheeger '70, Alon-Milman '85]

A cut C with $\Phi(C) \le 2 \lambda_2^{\frac{1}{2}}$ can be found in **nearly-linear time**

- \rightarrow Gives an $O(λ_2^{-1/2})$ -approx. to $Φ_G$ (Computing $Φ_G$ is NP-hard)
- \rightarrow Great when λ_2 is large, i.e., **G** is well-connected, but pretty poor for small λ_2

For a normalized Laplacian
$$\mathcal{L} = D^{-1/2} L D^{-1/2}$$

$$\lambda_2/2 \le \Phi_G \le 2 \lambda_2^{1/2}$$
 [Cheeger '70, Alon-Milman '85]

A cut C with $\Phi(C) \le 2 \lambda_2^{\frac{1}{2}}$ can be found in **nearly-linear time**

- \rightarrow Gives an $O(λ_2^{-1/2})$ -approx. to $Φ_G$ (Computing $Φ_G$ is NP-hard)
- \rightarrow Great when λ_2 is large, i.e., **G** is well-connected, but pretty poor for small λ_2

Unfortunately: The $\lambda_2^{1/2}$ vs. λ_2 gap is unavoidable

λ_2 and random walks

Paint spilling process:

- → Start with all paint at s
- → For each vertex:
 - Split the paint in half:
 - one half stays put
 - distribute the rest (evenly)
 among the neighbors

λ_2 and random walks

Paint spilling process:

- → Start with all paint at s
- → For each vertex:
 - Split the paint in half:
 - one half stays put
 - distribute the rest (evenly)
 among the neighbors
- → Repeat

λ_2 and random walks

Paint spilling process:

- → Start with all paint at s
- → For each vertex:

 Split the paint in half:
 - one half stays put
 - distribute the rest (evenly)
 among the neighbors
- → Repeat

This diffusive process corresponds to a (lazy) random walk and shows up everywhere

Fact: Paint distribution always* converges to a stationary distribution π with $\pi_v \sim \text{deg}(v)$

But: How fast is this convergence?

Theorem: The convergence rate is $\Theta(\lambda_2^{-1})$

Beyond λ_2 ?

→ Looking at the higher order eigenvalues

For any
$$k \ge 2$$
,
 $\Phi_G \le O(k) \lambda_2 / \lambda_k^{1/2}$

[LOT'12, KLLOT'13]

→ Electrical graph theory: Using electrical flows

Key quantity: Effective resistance (between **s** and **t**)

$$R_{st} = \chi_{st}^T L^+ \chi_{st}$$

Vector with **1** at **t**, **-1** at **s** and **0**s everywhere else

Pseudo-inverse of the Laplacian

Beyond λ_2 ?

→ Looking at the higher order eigenvalues

For any
$$k \ge 2$$
,
$$\Phi_G \le O(k) \lambda_2/\lambda_k^{1/2}$$
 [LOT'12, KLLOT'13]

→ Electrical graph theory: Using electrical flows

Key quantity: Effective resistance (between **s** and **t**)

$$R_{st} = \chi_{st}^T L^+ \chi_{st}$$

Note: Effective resistance depends on the whole spectrum of L [SS '08]: We can (approx.) compute all resistances in nearly-linear time

Electrical flows show up in many contexts:

- → Behavior of random walks (commute time, PageRank,...)
- → Graph sparsification
- → Sampling random spanning trees
- → Maximum flow problem

Where else can we use them?

Thank you

Tomorrow: Computing an approx. max flow in undirected graphs using electrical flows