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Algorithmic Graph Theory:
Shaping our understanding
of algorithms since 1950s

But: Our graph toolkit is still far from being complete



Challenge I: Tackling the complexity of core problems

Shortest path/Reachability

problems

Many central questions
IS resisting progress
for a long time

J

Matchings/Assignment tasks

Network Flows

Possible reason: Our approaches to them did not change
much over the last couple of decades



Challenge Il : Dealing with massive graphs

“Big graph” regime:
- Asymptotics matters — (“O(n?) won’t cut it”)
Algorithms can be dirty, but have to be REALLY fast
-> Parallelism/distributed aspects increasingly important

Emerging mindset: What can we do in nearly-linear time?
“nearly-linear time” = new P

Problem: Traditional techniques seem inadequate here
- New type of approaches needed



Grand goal: Forging the next generation of tools
to speed up graph algorithms
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. . linear systemes,...
Combinatorial methods y )

(trees, paths, partitions, Convex opt. primitives
matchings, routings,...) (gradient-descent, interior-
point methods,...)

Underlying theme: Merging
combinatorial and continuous methods

Interestingly: The same new tools apply to
both classic and new challenges



Our plan for this week:
Illustrate this theme on an example
of a single problem

Problem: Maximum flow

Underlying approach:
Relate combinatorial structure of a graph to
linear-algebraic properties of associated matrices



Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)




. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Max flow value
F*=10

no overﬂow on arcs. no Ieaks at a|| V¢S,t J
0 < f(e) < u(e)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)




Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

F*=10

Max flow value J

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)




Why is this a good problem to study?

Max flow is a fundamental
optimization problem

e Extensively studied since 1930s (classic ‘textbook problem’)
e Surprisingly diverse set of applications
e Very influential in development of (graph) algorithms

_ Graph partitioning .
Transportation (Clustering) Scheduling,

(Route planning) Assignment problems

N

Connectivity Computer Vision
Analysis < Max Flow > (Image segmentation)



What is known about Max Flow?
A LOT of previous work

NETWORK
L




What is known about Max Flow?

| | NETWORK
A (very) rough history outline FIOWS

[Dantzig ‘51] O(mn2U)

[Ford Fulkerson ’56] O(mn U)

[Dinitz ’70] O(mn?)

[Dinitz ‘70] [Edmonds Karp ’72] O(m?n)

[Dinitz ‘73] [Edmonds Karp ’72] O(m?2log U)

[Dinitz ‘73] [Gabow ’85] O(mnlog U)

[Goldber Rao "98] O(m min(m?/2,n2/3) log U)

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures, e.g., bipartite matching questions

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)



What is known about Max Flow?

. _ NETWORK
A (very) rough history outline FIOWS
[Dantzig ‘51] O(n3)
[Ford Fulkerson ’56] O(n?)
[Dinitz ’70] O(n3)
[Dinitz ‘70] [Edmonds Karp ’72] O(n3)
[Dinitz ‘73] [Edmonds Karp ’72] O(n2)
[Dinitz ‘73] [Gabow ’85] O(n2)
[Goldber Rao ’98] O(n3/2)

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures, e.g., bipartite matching questions

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)



What is known about Max Flow?
Emerging barrier: 0O(n3/2)

[Even Tarjan ’75, Karzanov ‘73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly
more general settings, but no improvement

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)



Breaking the O(n3/2) barrier

Undirected graphs and approx. answers (O(n3/2) barrier still holds here)

[M “10]: Crude approx. of max flow value in close to linear time

[CKMIST “11]: (1-€)-approx. to max flow in O(n*/3€3) time

[LSR’13, S 13, KLOS ‘14]: (1-€)-approx. in close to linear time

But: What about the directed and exact setting?

(v “13): Exact O(n1%7)=0(n*-*3)-time alg.

~7

This week (n = # of vertices, O() hides polylog factors)



Previous approach



Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ
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Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ

Advantage: Simple,
purely combinatorial
and greedy (flow is
built path-by-path)

Problem:
Very difficult to analyze

Naive impl

Unclear how to get
(Snaugme a further speed-up via this route path)

Sophisticated implementation and arguments:
0(n3/2) time [Karzanov ‘73] [Even Tarjan ‘75]



Beyond augmenting paths



New approach:
Bring linear-algebraic techniques into play

Idea: Probe the global flow structure
of the graph by solving linear systems

How to relate flow structure to linear algebra?
(And why should it even help?)

Key object: Electrical flows



. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

Recipe for elec. flow:
1) Treat edges as
resistors
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. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /




. Input: Undirected graph G,
Electrical flows (Take 1) " oo f P

source s and sink t

resistance r,

(Another) recipe for electrical flow (of value F):




Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F




. Input: Undirected graph G,
Electrical flows (Take II) resistances‘f, P

source s and sink t

Principle of least energy

Electrical flow of value F:
The unigue minimizer of the energy

E(f) =2, r_f(e)?

among all s-t flows f of value F

Electrical flows = {,-minimization



How to compute an electrical flow? Input: Graph G=(V,E),
resistancesr,,

source s and sink t,
value F=1

/

Wilog as elect. flow are
invariant under scaling

Solve a linear system!



How to compute an electrical flow? Input: Graph G=(V,E),
resistancesr,,

source s and sink t,

Solve a linear system!
value F=1

Observe: It suffices to compute vertex potentials ¢,

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢

is the corresponding flow

Here:
- fis an |E|-dim vector with |f,| giving the amount of flow on e

and sign(f,) encoding its direction (wrt edge orientation)
-> Ris an |E| x| E| diagonal matrix with R, =,
- Bisan |V|x|E| matrix with e-th column, for e=(v,u), having
-1 (resp. +1) at its v-th (resp. u-th) coordinate and 0 everywhere else



How to compute an electrical flow?

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢

is the corresponding flow

Example:
1 -1 0 0 0 O
1 0 -1 -1 0 0
B=| 0 0 1 0 -1 0
0 1 0 1 0 -1
O 0 0 O 1 1
|V|=5, |E|=6, all edges oriented (v;,v;) with i<j 2 000 0 0O
0100 0O
0 01 0 0 O
R= 10003 00
0 000 2 O
0O 000 0 3




How to compute an electrical flow?

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢

is the corresponding flow

Example:
1 -1 0oJofj o o
1 0 -13-13 O 0
B=| 0 0 1]o0]-1 o0
0O 1 0}1 0o -1
0O 0 07O 1 1
|V|=5, |E|=6, all edges oriented (v;,v;) with i<j 2 000 0 0O
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How to compute an electrical flow?

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢

is the corresponding flow

Example:
1 -1 0 0 0 O
1 0 -1 -1 0 O
B=| 0 0 1 0 -1 o0
0 1 0 1 0 -1
0 0 0 0 1 1
|V|=5, |E|=6, all edges oriented (v;,v;) with i<j 2 000 0 0O
o 0100 00
2 0010 00
1 R= 10003 00
®=15 0000 2 0
: 0000 0 3




How to compute an electrical flow?

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢

is the corresponding flow

Example:
1 -1 0 0 0 O
1 0 -1 -1 0 0
B=|0 0 1 0o -1 o
0 1 0 1 0 -1
0 0 0 0 1 1
|V|=5, |E|=6, all edges oriented (v;,v;) with i<j 2 000 0 0O
- 0.5 0100 0 0
2 5 0010 0 0
1 RBT A R= (0003 0 o
=15 ) - 1 0000 2 0
4 1 0000 0 3
2 -0.3 '




How to compute an electrical flow?

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢
is the corresponding flow

Recall: ¢ induces an electrical flow f iff

fis a valid s-t flow
(i.e., satisfies flow conservation constraints)
Equivalently: ¢ induces an electrical flow f iff

Bf=x,,
where X,,has a1latt, -1atsand Os everywhere else

Note: (Bf), is the excess/deficit of f at v



How to compute an electrical flow?

Ohm'’s law: If ¢ is an (| V]|-dim) vector of vertex potentials then
f=RIBT ¢

is the correspondi\ng flow

Recall: ¢ induces an electrical flow ¥ iff

fis a valid s-t flo
(i.e., satisfies flow conservatioh constraints)
Equivalently: ¢ induces an electrical fflow f iff

Bf=)(5,t

where X;,hasa 1l att,-1atsand@s everywhere else

Note: (Bf), is the exgess/deficit of ffat v

Putting it togethier: ¢ induceg an electrical flow iff

BRIB" ¢ = X t



How to compute an electrical flow?

Putting it together: ¢ induces an electrical flow iff

BRIB" ¢ = Xs ¢

Example:

-1 -1 0 0
1 0 -1 -1
B=| 0 0 1 o0
0 1 0 1
0 0 0 O
|V|=5, |E|=6, all edges oriented (v;,v;) with i<j 2 0
. aal 0 1

-0.5
- 2 00
1 R1BT a R= 0 0
@o=|5 | ) f= . oG
4 1 00

L& 0.3

=R =)

©C © O = O O

© © W o oo

[

=R = )

o

S N © O C O

w o © O o O




How to compute an electrical flow?

Putting it together: ¢ induces an electrical flow iff

BRIB" ¢ = Xs ¢

Example: :
-1 -1 0 O
1 o -1 -1
B = 0O 0 1 O
O 1 0 1
O 0 o0 O
|V|=5, |E|=6, all edges oriented (vi,vj) with i<j Xs,t (o ¢
) ] I
- S P 0 1
-0.5
2 5 -1.5 0 0 0
1| RIBT . 5.5 -1 R= [0 o
@=1|5 ‘ f= ) ‘ 5 0 0 0
a4 3.3 1
-1 0 _ 0 0
'3 03 | -1.3 | 0 X

©C © O = O O

© © W o oo

S N © O C O

w O O o o O




How to compute an electrical flow?

Putting it together: ¢ induces an electrical flow iff

BRIB" ¢ = Xs ¢

Example: -
-1 -1 0 O
1 0 -1 -1
B = 0O 0 1 O
O 1 0 1
O 0 O O
|V|=5, |E|=6, all edges oriented (vi,vj) with i<j Xs,t (o ¢
I
- - I ! 0 1
0.8 0 0 0
0 -1 00
¢@=10.2 (1) 0 0
1.2
] 00
0.6 _ 0 | i

©C © O = O O

© © W o oo

S N © O C O

w o © O o O




How to compute an electrical flow?

Putting it together: ¢ induces an electrical flow iff

BRIB" ¢ = Xs ¢

Example: -
1 -1 0 O
1 0 -1 -1
B=| 0 0 1 o
0 1 0 1
0 0 0 O
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How to compute an electrical flow?

Putting it together: ¢ induces an electrical flow iff

BRIB" ¢ = Xs ¢

Example: -
-1 -1 0 0
1 0 -1 -1
B=|0 0 1 0
0 1 0 1
0 0 0 O
|V|=5, |E|=6, all edges oriented (vi,vj) with i<j Xs,t (o ¢
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. ° 0 1
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How to compute an electrical flow?

~ -

Electrical flow Solving a linear system
computation

Bad news: Solving a linear system can take O(n*)=0(n2-373)
(Prohibitive!)

Bottom line:

Key observation:
BR1BT is the Laplacian matrix L
of the underlying graph



How to compute an electrical flow?
Boi Laplacian =key object

of spectral graph theory
(will get back to this) - I I

Electrical flow Solving a Laplacian system
computation

Bad news: Solving a linear system can take O(n*)=0(n2-373)
(Prohibitive!)

Key observation:
BR1BT is the Laplacian matrix L
of the underlying graph



How to compute an electrical flow?

Bottom line:
Electrical flow Solving a Laplacian system
computation

Bad news: Solving a linear system can take O(n*)=0(n2-373)

o
Key observation: (Prohibitive!)

BR1BT is the Laplacian matrix L

i e
of the underlying graph How to utilize it:

Result: Electrical flow is a nearly-linear time primitive J




From electrical flows to

undirected max flow
[CKMST "11]



Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
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(This flow has no leaks, but can
overflow some edges)




Approx. undirected max flow
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

- To fix that: Increase resistances on the
overflowing edges
Repeat (hope: it doesn’t happen too often)

Surprisingly: This approach can be made work!

Tomorrow: Will discuss how to fill the blanks




Addendum: A Glimpse of
Spectral Graph Theory



Spectral graph theory: Understanding graphs via
eigenvalues and eigenvectors of associated matrices

Central object: Laplacian matrix of a graph G=(V,E,w)

Diagonal degree matrix Adjacency matrix
D, =deg(v)=2,w,, Ay = Wyy
Equivalently: - W, if (u,v) in E
L, = deg(v) if u=v

0 otherwise




Spectral graph theory: Understanding graphs via
eigenvalues and eigenvectors of associated matrices

Example:

Observe:

L=2_ w, L° «

3 -2 0 -1 O

-2 [6) -1 (3 o
0 -1 3 0 -2
-1 3 o (7) -3

O 0 -2 -3 5

Laplacian as a quadratic form:

Laplacian of
a graph (V, {e})

T - Tley = 2
X'Lx=2, w,x'Lex=2_ w,_(x,-x,)




Spectrum of a Laplacian

Laplacian is an nxn symmetric matrix.

- It has as n real eigenvalues A, <A, < ... < A, with
corresponding (orthogonal) eigenvectors v, Vv3,...,v"s.t.

Lvi=A Vv
Can show: A;=0andv!=(1,..,1)
These objects tell us a lot about the graph!

(And we can compute each A, and V' in nearly-linear time)

Most important eigenvalue: A,



A, and graph connectivity

Fact: A,=0iff G is disconnected J

(More generally: A,=0 iff G h~~ ~* '~~~* - ~~=nected components)

Can we make this connect Total weight 47
of cut edges

~

w(C)
deg(C) ,
™~ c\
Total weighted degree

(of the “smaller” side)

Cut conductance:

dD(C) =




A, and graph connectivity

Fact: A,=0iff G is disconnected J

(More generally: A,=0 iff G has at least k connected components)

Can we make this connection quantitative?

Graph conductance:

w(C)

D = min, deg(C)

J

N e -

D;large > Gis well connected
@d small - G has a “bottlenecking” cut



A, and graph connectivity

For a normalized Laplacian £ =D*L D*

Y
A/2SD <2,
[Cheeger ‘70, Alon-Milman ’85]



A, and graph connectivity

For a normalized Laplacian £ =D*L D*

Y
A/2sD <2,
[Cheeger ‘70, Alon-Milman ’85]

A cut C with @(C) < 2 A,” can be found in nearly-linear time
-> Gives an O(A,”)-approx. to @
(Computing @ is NP-hard)

—> Great when A, is large, i.e., G is well-connected,
but pretty poor for small A,



A, and graph connectivity

For a normalized Laplacian £ =D*L D*

Y
[Cheeger ‘70, Alon-Milman ’85]

A cut C with @(C) < 2 A,” can be found in nearly-linear time

-> Gives an O(A,”)-approx. to @
(Computing @ is NP-hard)

—> Great when A, is large, i.e., G is well-connected,
but pretty poor for small A,

Unfortunately: The A, vs. A, gap is unavoidable



A, and random walks

Paint spilling process:
—> Start with all paint at s
-> For each vertex:
Split the paint in half:
— one half stays put
— distribute the rest (evenly)
among the neighbors
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A, and random walks

Paint spilling process:
—> Start with all paint at s
-> For each vertex:
Split the paint in half:
— one half stays put
— distribute the rest (evenly)
among the neighbors
- Repeat

This diffusive process corresponds
to a (lazy) random walk
and shows up everywhere

Fact: Paint distribution always* converges to
a stationary distribution rtwith i, ~ deg(v)

But: How fast is this convergence?

Theorem: The convergence rate is O(A,?) J




Beyond A,?
- Looking at the higher order eigenvalues

Forany k 2 2,
@ < O(k) A,/A % [LOT‘12, KLLOT’13]

—> Electrical graph theory: Using electrical flows

Key quantity: Effective resistance (between s and t)
—y T+
Rs;yxst L st

Vector with1latt,-1ats
and 0s everywhere else

Pseudo-inverse
of the Laplacian



Beyond A,?

- Looking at the higher order eigenvalues

Forany k 2 2,
@ < O(k) A,/A % [LOT‘12, KLLOT’13]

—> Electrical graph theory: Using electrical flows

Key quantity: Effective resistance (between s and t)
R = Xst' L™ Xt

Note: Effective resistance depends on the whole spectrum of L
[SS ‘08]: We can (approx.) compute all resistances in nearly-linear time

Electrical flows show up in many contexts:
- Behavior of random walks (commute time, PageRank,...)

= Graph sparsification Where else can
- Sampling random spanning trees
- Maximum flow problem we use them?



Thank you

Tomorrow: Computing an approx. max flow
in undirected graphs using electrical flows



