Electrical Flows, Laplacian Matrices, and New Approaches to the Maximum Flow Problem

Aleksander Mądry
Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t

Task: Find a feasible s-t flow of max value

Value = net flow out of s

- No overflow on arcs: $0 \leq f(e) \leq u(e)$
- No leaks at all $v \neq s, t$

Max flow value $F^* = 10$
Breaking the $O(n^{3/2})$ barrier

Undirected graphs and approx. answers ($O(n^{3/2})$ barrier still holds here)

[M ‘10]: Crude approx. of max flow value in close to linear time

[CKMST ‘11]: (1-\(\varepsilon\))-approx. to max flow in $\tilde{O}(n^{4/3}\varepsilon^{-3})$ time

[LSR ‘13, S ‘13, KLOS ‘14]: (1-\(\varepsilon\))-approx. in close to linear time

But: What about the directed and exact setting?

[M ‘13]: Exact $\tilde{O}(n^{10/7})=\tilde{O}(n^{1.43})$-time alg.

(n = # of vertices, $\tilde{O}()$ hides polylog factors)
Breaking the $O(n^{3/2})$ barrier

Undirected graphs and approx. answers ($O(n^{3/2})$ barrier still holds here)

[M ‘10]: Crude approx. of max flow value in close to linear time

[CKMST ‘11]: (1-ε)-approx. to max flow in $\tilde{O}(n^{4/3}ε^{-3})$ time

[LSR ‘13, S ‘13, KLOS ‘14]: (1-ε)-approx. in close to linear time

But: What about the directed and exact setting?

[M ‘13]: Exact $\tilde{O}(n^{10/7})=\tilde{O}(n^{1.43})$-time alg.

Today

($n =$ # of vertices, $\tilde{O}()$ hides polylog factors)
From electrical flows to exact directed max flow

From now on: All capacities are 1, $m=O(n)$ and the value F^* of max flow is known
Why the progress on approx. undirected max flow does not apply to the exact directed case?

Tempting answer: Directed graphs are just different (for one, electrical flow is an undirected notion)

But: exact directed max flow reduces to exact undirected case

So, it is all about getting

Key obstacle: Gradient descent methods (like MWU) are inherently unable to deliver good enough accuracy
(Path-following) Interior-point method (IPM)
[Dikin ‘67, Karmarkar ‘84, Renegar ‘88,...]
A powerful framework for solving general LPs (and more)

LP: \[\min c^T x \]
\[\text{s.t. } Ax = b \]
\[x \geq 0 \]

Idea: Take care of “hard” constraints by adding a “barrier” to the objective

“easy” constraints (use projection)

“hard” constraints
Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar ‘84, Renegar ‘88,...]

A powerful framework for solving general LPs (and more)

\[
\text{LP}(\mu): \min c^T x - \mu \sum_i \log x_i \\
\text{s.t. } Ax = b \\
x \geq 0
\]

Idea: Take care of “hard” constraints by adding a “barrier” to the objective

Observe: The barrier term enforces \(x \geq 0 \) implicitly

Furthermore: for large \(\mu \), \(\text{LP}(\mu) \) is easy to solve and

\[
\text{LP}(\mu) \rightarrow \text{original LP, as } \mu \rightarrow 0^+
\]

Path-following routine:

→ Start with (near-)optimal solution to \(\text{LP}(\mu) \) for large \(\mu > 0 \)
→ Gradually reduce \(\mu \) while maintaining the (near-)optimal solution to current \(\text{LP}(\mu) \)
(Path-following) Interior-point method (IPM)

[Dikin ‘67, Karmarkar ’84, Renegar ’88,...]

A powerful framework for solving general LPs (and more)

LP(μ): \(\min c^T x - \mu \sum_i \log x_i \)

s.t. \(Ax = b \)

\(x \geq 0 \)

Idea: Take care of “hard” constraints by adding a “barrier” to the objective

Observe: The barrier term enforces \(x \geq 0 \) implicitly

Path-following routine:

\(\rightarrow \) Maintain (near-)optimal solution

\(\rightarrow \) Repeat:

Set \(\mu' = (1-\delta)\mu \) and use Newton’s method to compute from \(x \)

(near-)optimal solution to \(\text{LP}(\mu') \)

Based on second-order approx.

\[f(x+y) \approx f(x) + y^T \nabla f(x) + y^T H_f(x)y \]

+ projection on \(\ker(A) \)

Key point: Choosing step size \(\delta \) sufficiently small ensures \(x \) is close to optimum for \(\text{LP}(\mu') \) \(\rightarrow \) Newton’s method convergence very rapid
Path-following routine:

→ Start with (near-)optimal solution to LP(μ) for large μ>0

→ Gradually reduce μ (via Newton’s method) while maintaining the (near-)optimal solution to current LP(μ)

$\mathbf{P}_A = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$

\mathbf{x}_c – analytic center

central path = optimal solutions to LP(μ) for all μ>0
Can we use IPM to get a faster max flow alg.?

Conventional wisdom: This will be too slow!

→ Each *Newton's step* = solving a linear system $O(n^\omega) = O(n^{2.373})$ time (prohibitive!)

But: When solving *flow problems* – only $\tilde{O}(m)$ time [DS ‘08]

Fundamental question: What is the number of iterations?

[Renegar ‘88]: $O(m^{1/2} \log \varepsilon^{-1})$

Unfortunately: This gives only an $\tilde{O}(m^{3/2})$-time algorithm

Improve the $O(m^{1/2})$ bound?
Although believed to be very suboptimal, its improvement is a major challenge
The Max Flow algorithm

(Self-contained, but can be seen as a variation on IPM)
From Max Flow to Min-cost Flow

Reduce **max flow** to **uncapacitated min-cost σ-flow problem**
From Max Flow to Min-cost Flow

Reduce **max flow** to uncapacitated min-cost σ-flow problem
From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost σ-flow problem

Result: Feasibility \rightarrow Optimization $+$ special structure
Solving Min-Cost Max Flow Instance

- Primal solution: σ-flow f
 (feasibility: all f_e are ≥ 0)

- Dual solution: embedding y into real line
 (feasibility: all slacks s_e are ≥ 0)

“No arc is too stretched”

Our approach is **primal-dual**
Solving Min-Cost Max Flow Instance

Our approach is **primal-dual**

→ **Primal** solution: σ-flow f
 (feasibility: all f_e are ≥ 0)

→ **Dual** solution: embedding y into real line
 (feasibility: all slacks s_e are ≥ 0)

"No arc is too stretched"
Solving Min-Cost Max Flow Instance

Our Goal:
Get \((f,y)\) with small duality gap \(\Sigma e f_e s_e\)

Our Approach: Iteratively improve maintained solution while enforcing an additional constraint

Centrality:
\[f_e s_e \approx \mu, \text{ for all } e \]
(with \(\mu\) being progressively smaller)

“Make all arcs have similar contribution to the duality gap”
(Maintaining centrality = following the central path)
Taking an Improvement Step

So far, our approach is fairly standard

Crucial Question:
How to improve the quality of maintained solution?

Key Ingredient:
Use electrical flows
Taking an Improvement Step

Let \((f,y)\) be a (centered) primal-dual solution

Key step: Compute electrical \(\sigma\)-flow \(f^+\) with \(r_e := s_e / f_e\)

Primal improvement: Set \(f' := (1-\delta)f + \delta f^+\)

Dual improvement: Use voltages \(\varphi\) inducing \(f^+\) (via Ohm’s Law)
Set \(y' := y + \delta(1-\delta)^{-1} \varphi\)

Can show: When terms quadratic in \(\delta\) are ignored

\[f_e' s_e' \approx (1-\delta) \mu = \mu' \]

for each \(e\)

(i.e., **duality gap** decreases by \((1-\delta)\) and **centrality** is preserved)

How big \(\delta\) can we take to have this approx. hold?
Lowerbounding δ

Can show: δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f_e^+|/f_e$

$|\rho|_4$ measures how different f^+ and f are

How to bound $|\rho|_4$?

Idea: Bound $|\rho|_2 \geq |\rho|_4$ instead
Lowerbounding δ

Can show:
\(\delta^{-1} \) is bounded by \(O(|\rho|_4) \)
where \(\rho_e := |f_e^+|/f_e \)

\(|\rho|_4 \) measures how different \(f^+ \) and \(f \) are

How to bound \(|\rho|_2 \)?
\((|\rho|_2 \geq |\rho|_4) \)

Centrality:
Tying \(|\rho|_2 \) to \(E(f^+) \)
\[f_e s_e \approx \mu \rightarrow r_e = s_e/f_e \approx \mu/(f_e)^2 \]
\[\downarrow \]
\[E(f^+) \approx \mu (|\rho|_2)^2 \]
Lowerbounding δ

Can show: δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f_e^+|/f_e$

How to bound $|\rho|_2$? ($|\rho|_2 \geq |\rho|_4$)

Centrality: Tying $|\rho|_2$ to $E(f^+)$

$f_e s_e \approx \mu \rightarrow r_e = s_e/f_e \approx \mu/(f_e)^2$

$E(f^+) = \Sigma_e r_e (f_e^+)^2 \approx \Sigma_e \mu (f_e^+/f_e)^2 = \mu \Sigma_e (\rho_e)^2 = \mu (|\rho|_2)^2$

So, we can focus on bounding $E(f^+)$
Lowerbounding δ

Can show: δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f^+_e|/f_e$.

How to bound $|\rho|_2$? ($|\rho|_2 \geq |\rho|_4$)

How to bound $E(f^+)$? ($E(f^+) \approx \mu (|\rho|_2)^2$)

Idea: Use energy-bounding argument we used in the undirected case.

Claim: $E(f^+) \leq \mu m$

Proof: Note that $E(f) = \sum_e r_e (f_e)^2 \approx \sum_e \mu (f_e/f_e)^2$.
Lowerbounding δ

Can show:

δ^{-1} is bounded by $O(|\rho|_4)$

where $\rho_e := |f_e^+|/f_e$

$|\rho|_4$ measures how different f^+ and f are

How to bound $|\rho|_2$?

$|\rho|_2 \geq |\rho|_4$

How to bound $E(f^+)$?

$(E(f^+)) \approx \mu (|\rho|_2^2)$

Idea: Use energy-bounding argument we used in the undirected case

Claim: $E(f^+) \leq \mu m$

Proof: Note that $E(f) = \sum_o r_o (f_o)^2 \approx \mu \sum_o (f_o/f_e)^2 = \mu \sum_o 1 = \mu m$

Result: Bounding $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq (E(f^+)/\mu)^{1/2} \leq m^{1/2}$

$E(f^+) \leq E(f) \approx \mu m$

This recovers the canonical $O(m^{1/2})$-iterations bound for general IPMs and gives the $\tilde{O}(m^{3/2} \log U)$ algorithm
Going beyond $\Omega(m^{1/2})$ barrier

Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$

Essentially tight in our framework
Going beyond $\Omega(m^{1/2})$ barrier

Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$

When does $|\rho|_4 \approx |\rho|_2$?

This part we need to improve
Going beyond $\Omega(m^{1/2})$ barrier

Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$

When does $|\rho|_4 \approx |\rho|_2$?

Answer: If most of the norm of ρ is focused on only a few coordinates.

Translated to our setting: $|\rho|_4 \approx |\rho|_2$ if most of the energy of f^+ is contributed by only a few arcs.

Can this happen? Unfortunately, yes.

Contributes most of the energy

$\approx n^{1/2}$
Going beyond $\Omega(m^{1/2})$ barrier

Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$

When does $|\rho|_4 \approx |\rho|_2$?

Answer: If most of the norm of ρ is focused on only a few coordinates.

Translated to our setting: $|\rho|_4 \approx |\rho|_2$ if most of the energy of f^+ is contributed by only a few arcs.

Can this happen? Unfortunately, yes (in principle, tight)

This is the only part where unit-capacity assumption is needed.

Method: Very careful perturbation of the solution + certain preconditioning.
Going beyond $\Omega(m^{1/2})$ barrier

Problematic case: When most of the energy of f^+ is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!
Going beyond $\Omega(m^{1/2})$ barrier

Problematic case: When most of the energy of f^+ is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!

Our approach then: Keep removing high-energy edges

To show this works: Used the energy of the electrical flow as a potential function

- Energy can only increase and obeys global upper bound
- Each time removal happens \rightarrow energy increases by a lot

Problems: In our framework, arc removal is too drastic and the energy of f^+ is highly non-monotone
Going beyond $\Omega(m^{1/2})$ barrier

How to deal with these problems?

→ Enforce a **stronger** condition than just that $|\rho|_4$ is small ("smoothness": restrict energy contributions of arc subsets)

Key fact: f^+ smooth \rightarrow energy does not change too much (so, energy becomes a good potential function again)

→ To enforce this, keep **stretching** the offending arcs (stretch = increase length by s_e - this doubles the resistance $r_e = s_e/f_e$)

As long as s_e is small for stretched arcs, the resulting perturbation of lengths can be corrected at the end

Remaining question: How to handle arcs with large s_e?
Going beyond $\Omega(m^{1/2})$ barrier

Observation: As $f_es_e \approx \mu$, large $s_e \rightarrow$ small flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high effective resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.
Going beyond $\Omega(m^{1/2})$ barrier

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow$ small flow f_e
and thus $r_e = s_e / f_e \approx \mu / f_e^2$ is pretty large

→ **For such arcs:** contributing a lot of energy implies high **effective** resistance

Idea: Precondition (f, y) so as no arc has too high effect. resist.

![Auxiliary star graph](image)
Going beyond $\Omega(m^{1/2})$ barrier

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow$ small flow f_e and thus $r_e = s_e / f_e \approx \mu / f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high effective resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

Can show: After doing that, no arc with large s_e contributes significant portion of energy

Furthermore: The flow routed over auxiliary arcs is small enough that it can be rerouted without destroying our overall progress

Putting these two techniques together + some work: $\tilde{O}(m^{3/7})$-iterations convergence follows
Conclusions and the Bigger Picture
Maximum Flows and Electrical Flows

Elect. flows + IPMs \rightarrow A powerful new approach to max flow

Can this lead to a nearly-linear time algorithm for the exact directed max flow?

We seem to have the “critical mass” of ideas

Elect. flows = next generation of “spectral” tools?

- Better “spectral” graph partitioning,
- Algorithmic grasp of random walks,
- ...
Grand challenge: Can we make algorithmic graph theory run in nearly-linear time?

New “recipe”: Fast alg. for **combinatorial** problems via **linear-algebraic** tools + **continuous opt.** methods

How about applying this framework to other graph problems that “got stuck” at $O(n^{3/2})$? (min-cost flow, general matchings, negative-lengths shortest path...)

Second-order/IPM-like methods: the next frontier for fast (graph) algorithms?
Max Flow and Interior-Point Methods

Contributing back: Max flow and electrical flows as a lens for analyzing general IPMs?

Our techniques can be lifted to the general LP setting

We can solve any LP within $\tilde{O}(m^{3/7}L)$ iterations

But: this involves perturbing of this LP

Some (seemingly) new elements of our approach:
• Better grasp of ℓ_2 vs. ℓ_4 interplay wrt the step size δ
• Perturbing the central path when needed
• Usage of non-local convergence arguments

Can this lead to breaking the $\Omega(m^{1/2})$ barrier for all LPs?

[Lee Sidford ‘14]: $\tilde{O}(\text{rank}(A)^{1/2})$ iteration bound
Unifying the landscape of algorithmic graph theory

Research on graph algorithms is quite fragmented.

Can we establish a more unified picture of the field?

Complexity theory for sub-quadratic time algorithms?

Which graph problems can be efficiently reduced to other problems?
Study of “max flow”-hardness/completeness?
Bridging the Combinatorial and the Continuous

paths, trees, partitions, routings, matchings, data structures... \[\rightarrow \] matrices, eigenvalues, linear systems, gradients, convex sets...

Powerful approach: Exploiting the interplay of the two worlds

Some other early “success stories” of this approach:
- Spectral graph theory aka the “eigenvalue connection”
- Fast SDD/Laplacian system solvers
- Graph sparsification, random spanning tree generation

...and this is just the beginning!
Thank you

Questions?