ADFOCS 2014 Algorithmic challenges of Big Data for Optimization Exercises, Wednesday, August 13, 2014

1. For primal norm $||x||, x \in \mathbb{R}^n$, the dual norm is defined as $||g||_* = \max_x \{\langle s, x \rangle : ||x|| \le 1\}$. Compute the dual norm for the standard l_p -norms $||x||_p = \left[\sum_{i=1}^n |x^{(i)}|^p\right]^{1/p}$ with $p \in [1, \infty]$. Why other values of p are not interesting?

2. Differentiable function f(x) is called convex on \mathbb{R}^n , if

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle, \quad x, y \in R^n.$$

It has Lipschitz continuous gradient if $\|\nabla f(x) - f(y)\|_* \leq L \|x - y\|$, $x, y \in \mathbb{R}^n$. Prove two inequalities:

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}L ||y - x||^2, \quad x, y \in \mathbb{R}^n,$$
 (1)

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_*^2, \quad x, y \in \mathbb{R}^n,$$
(2)

Can we say that (2) is a necessary and sufficient condition for convex functions, which have Lipschitz-continuous gradient with constant L?

3. Function f(x) is called *strongly convex* with respect to the norm $\|\cdot\|$ if

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}\sigma ||y - x||^2, \quad x, y \in \mathbb{R}^n,$$

where the convexity parameter $\sigma > 0$. Prove that the problem of minimizing a strongly convex function on convex set always has a unique solution.

4. Prove that twice differentiable convex function is strongly convex on \mathbb{R}^n if and only if

$$\langle \nabla f(x)h,h \rangle \ge \sigma \|h\|^2, \quad x,h \in \mathbb{R}^n.$$
 (3)

What is the value of convexity parameter of function $d(x) = \frac{1}{2} ||x||_2^2$?

5. Prove that a positive definite matrix G satisfies inequality $\langle Gh, h \rangle \geq \sigma \|h\|^2$ for all $h \in \mathbb{R}^n$ if and only if

$$\langle G^{-1}s, s \rangle \leq \frac{1}{\sigma} \|s\|_*^2, \quad s \in \mathbb{R}^n.$$

$$\tag{4}$$

6. Prove that strongly convex function f satisfies inequality

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2\sigma} \| \nabla f(x) - \nabla f(y) \|_*^2, \quad x, y \in \mathbb{R}^n.$$
(5)