1. For primal norm $\|x\|, x \in R^{n}$, the dual norm is defined as $\|g\|_{*}=\max _{x}\{\langle s, x\rangle:\|x\| \leq 1\}$. Compute the dual norm for the standard l_{p}-norms $\|x\|_{p}=\left[\sum_{i=1}^{n}\left|x^{(i)}\right|^{p}\right]^{1 / p}$ with $p \in[1, \infty]$. Why other values of p are not interesting?
2. Differentiable function $f(x)$ is called convex on R^{n}, if

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \quad x, y \in R^{n} .
$$

It has Lipschitz continuous gradient if $\|\nabla f(x)-f(y)\|_{*} \leq L\|x-y\|, x, y \in R^{n}$. Prove two inequalities:

$$
\begin{gather*}
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} L\|y-x\|^{2}, \quad x, y \in R^{n}, \tag{1}\\
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{*}^{2}, \quad x, y \in R^{n} \tag{2}
\end{gather*}
$$

Can we say that (2) is a necessary and sufficient condition for convex functions, which have Lipschitz-continuous gradient with constant L ?
3. Function $f(x)$ is called strongly convex with respect to the norm $\|\cdot\|$ if

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} \sigma\|y-x\|^{2}, \quad x, y \in R^{n}
$$

where the convexity parameter $\sigma>0$. Prove that the problem of minimizing a strongly convex function on convex set always has a unique solution.
4. Prove that twice differentiable convex function is strongly convex on R^{n} if and only if

$$
\begin{equation*}
\langle\nabla f(x) h, h\rangle \geq \sigma\|h\|^{2}, \quad x, h \in R^{n} . \tag{3}
\end{equation*}
$$

What is the value of convexity parameter of function $d(x)=\frac{1}{2}\|x\|_{2}^{2}$?
5. Prove that a positive definite matrix G satisfies inequality $\langle G h, h\rangle \geq \sigma\|h\|^{2}$ for all $h \in R^{n}$ if and only if

$$
\begin{equation*}
\left\langle G^{-1} s, s\right\rangle \leq \frac{1}{\sigma}\|s\|_{*}^{2}, \quad s \in R^{n} \tag{4}
\end{equation*}
$$

6. Prove that strongly convex function f satisfies inequality

$$
\begin{equation*}
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 \sigma}\|\nabla f(x)-\nabla f(y)\|_{*}^{2}, \quad x, y \in R^{n} \tag{5}
\end{equation*}
$$

