Algorithmic Challenges of Big Data

Yurii Nesterov, CORE/INMA (UCL)

August 13-15, 2014

Max Planck Institute

Yu. Nesterov Huge-scale optimization by CD-methods 1/25



Outline

Lecture 1: Huge-Scale Optimization by Coordinate Updates

Problems with sparse data

Implementation of coordinate moves

|

|

m Worst-case efficiency bounds

m Page-rank problem (Google problem)
|

Numerical experiments

Lecture 2: Subgradient methods for Huge-Scale Optimization
Problems

Lecture 3: Finding primal-dual solutions of Huge-Scale
Problems

Reason for success: intelligent use of problem structure

Exercises 1,2: Training on implementation details
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Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory

Small-size All 10 — 10> n* - n® Kilobyte: 10°
Medium-size At 103 —10* n® = n? Megabyte: 10°
Large-scale Az 10°—10" n? —n Gigabyte: 10°
Huge-scale T4y 10° —10? n — logn Terabyte: 10'?

Sources of Huge-Scale problems

m Internet (New)

m Telecommunications (New)

m Finite-element schemes (Old)

m PDE, Weather prediction (Old)

Main hope: Sparsity.



Our plans for today

Take a very old optimization method.

Explain why it is very bad.

Prove that (sometimes) it is very good.

m Check this by numerical experiments.

NB: This will work for two other lectures too.
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Very old optimization idea: Coordinate Search

Problem: m}%l f(z) (f is convex and differentiable).
TER™

Coordinate relaxation algorithm
For k£ > 0 iterate

Choose active coordinate 7.

B Update zj41 =z — hi Vi, f(zr)e;, ensuring

f(@ry1) < flzg)-

(e; is th coordinate vector in R".)

Main advantage: Very simple implementation.
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Possible strategies

Cyclic moves. (Difficult to analyze.)
B Random choice of coordinate (Why?)

Choose coordinate with the maximal directional derivative.

Complexity estimate: assume
IVf(@) = VWl < Lllz—yll, zyeRr"
Let us choose hy = % Then

far) = flaee) 2 gzl Vi S @)l = 5V ()]?
> gurre (flan) = 52

Hence, f(zx) — f* < %, k> 1. (For pure GM, drop n.)

This was the only known theoretical result known for CDM!
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Criticism

Theoretical justification:
m Complexity bounds are not known for the most of the
schemes.

m The only justified scheme needs computation of the
whole gradient. (Why don’t use GM?)

Computational complexity:

m Fast differentiation: if function is defined by a sequence of
operations, then C'(V f) < 4C(f).

m Can we do anything without computing the function’s
values?

Result: CDM were almost out of computational practice
during decades.
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Google problem

Let E € R™™ be an incidence matrix of a graph. Denote
e=(1,....,1)T and

E = E-diag (ETe)™!
Thus, ETe = e. Our problem is as follows:
Find z* >0: Ex* = z*.
Optimization formulation:

def 1 2 ~ 2 .
E 5 -1
f@) = glliBe —a|” + 3l{e,2) =17 —  min
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Huge-scale problems

Main features

m The size is very big (n > 107).
m The data is distributed in space.
m The requested parts of data are not always available.

m The data is changing in time.

Consequences

Simplest operations are expensive or infeasible:
m Update of the full vector of variables.
m Matrix-vector multiplication.

m Computation of the objective function’s value, etc.
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Structure of the Google Problem

Let us look at the gradient of the objective:

Vif(x) = {ai,g(x)) +7lle;x) = 1], i=1,...,m,

g(x) = Ex—x€eR", (E=(ay,...,a,)).

Main observations:

m The coordinate move x4 = x — h;V; f(z)e; needs O(p;) a.o.
(pi is the number of nonzero elements in a;.)
md; def diag <V2f ©r BT R + ’yeeT> =7+ 1% are available.
7 1

We can use them for choosing the step sizes (h; = d%)

Reasonable coordinate choice strategy? Random!

Yu. Nesterov Huge-scale optimization by CD-methods 10/25



Random coordinate descent methods (RCDM)

min f (x), (f is convex and differentiable)
z€ER

n n
Let us decompose the space: RY = ® R%, N =Y n;,
i=1 i=1

Iy = (Uy,...,U,) € RV*N U, ¢ RNX™i
z = (O, 2T = S U@, 20 e R,
=1

Partial gradient of f(z) in ) is f/(z) = UI'Vf(z) € R™.

For R™, we fix norms [|z||¢;), HSH’(’;) = ||fﬂ[|la)i1<s’h>'
(=
def

If h(s) is the optimal solution, then s, = HSH’{Z) - h(s).
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Main inequalities

Main Assumption:

1fi(z + Uili) = f{(@)I[f) < Lillhillgy, hi€ ™, i=1,...,n.
Then

f(x+Uihi) < f(z) + (fj(x), hi) + %Hhil@)a z € RN, hi € R™.

Define the coordinate steps: T;(z) e

ZL‘—L%Uifi’(w)*. Then,
@)= 1) = (1@l =1

Proof: Minimize the upper bound.
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Random coordinate choice

We need a special random counter R, « € [0, 1]:

-1
Prob[i] = piY) = Lo. [Z L;"] L i=1,....n.
=1

Note: Ry generates uniform distribution.

Method RCDM (v, xg)
For k£ > 0 iterate:
1) Choose i = Rq-

2) Update zg41 = Tj, (z).
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Complexity bounds for RCDM

We need to introduce the following norms for z, g € RN:
n . 1/2 n ' 271/2
lel = | £ 20e00)| lolls =[S 2 (1900,)°]

After k iterations, RCDM («,xp) generates random output zy,
which depends on &, = {ig,...,ix}. Denote ¢, = E¢, , f(xr).

Theorem. For any k£ > 1 we have

T

> Lj

=1

¢k - f* < % : : R%_a(l.O)a

where Rg(zg) = m;?x{ max, |z —z|lg : flz) < f(mo)}.

T €
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Interpretation I

1. « =0. Then Sy =n, and we get
or—f* < 2 Ri(xo).
Note
n .
m We use the metric [|z]|? = > LiHa:(Z)H%Z.).
i=1

m For matrix with diagonal {L;}?_; its norm can reach n.

m Hence, for GM we can guarantee the same bound.

But its cost of iteration is much higher!
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Interpretation II

2. a:%. Let n; =1,72=1,...,n. Denote

Do (z9) = max {max max |z —y®|: f(z) < f(xo)} .

T yeX* 1<i<n

Then, R%/z(mo) < 81/2D2 (%0), and we obtain

" 2
o — < ;%[;L,m] - D3, (o).

Note:

m For the first order methods, the worst-case complexity of
minimizing over a box depends on n.

m Since S/, can be bounded, RCDM can be applied in
situations where the usual GM fail.
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Interpretation III

3. a=1. Letall norms | - ||; are standard Euclidean.
Then Ry(xg) is the size of the initial level set, and

or—f* < % [lelz] “Rj(x0) = 3 - [,lL Zle] - Rj(z0)-
Rate of convergence of GM can be estimated as
* Y 2
flow) ~ 1 < L R3(wo),

where v satisfies condition f”(x) <~ -1, v € RV.
Note: maximal eigenvalue of symmetric matrix can reach its
trace.

In the worst case, the rate of convergence of GM is the same as
that of RCDM.
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Minimizing strongly convex functions

Theorem. Let f(x) be strongly convex with respect to

| - [[1—a With convexity parameter oq_o > 0.
Then, for {z}} generated by RCDM («, zp) we have

)" (o) — 1.

Ol—a

¢k - ¢* < (1 - 7S,
Proof: Let xy be generated by RCDM after k iterations.

Let us estimate the expected result of the next iteration.

£4) = By (Flonen)) = 3o [F(@) = F(Tiwi)]
> S8 (I@oly) = (7@l
]

e (Fla) — ).

—~

f
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It remains to compute expectation in &,_1.




Confidence level of the answers

Note: We have proved that the expected values of random
f(zy) are good.
Can we guarantee anything after a single run?

Confidence level: Probability 3 € (0, 1), that some
statement about random output is correct.
Main tool: Markov inequality (£,7 > 0):

Prob[( > T] < %
Our situation:
Prob [f(zy) — f* >¢ <i[pp—f] < 1-8.

We need ¢, — f* <e-(1—p). Too expensive for § — 17
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Regularization technique

Consider f,(z) = f(z) + §l|@ — zol|T_,. It is strongly convex.
Therefore, we can obtain ¢ — f; <e- (1-75) in

0] (iSa In ﬁ) iterations.

Theorem. Definea=1, pu= and choose

4R2( 0)’

k> 1+

851 RZ(x0) 251 R2(z0) 1
1EOO|:1H 1600—‘-11'1@.

Let xj, be generated by RCDM (1, ) as applied to f,. Then
Prob (f(xg) — f* <€) > B.
Note: f=1—-10"?7 = Inl0? =2.3p.
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Extensions

1. Problems with constraints:

min - f(x),

where @) = ® Qi, Q; CR"™ i=1,...,n, are closed and convex.

Define the constralned coordinate update:

u(l)GQ
Ti(x) = 2+ U W® —z®), i=1,... n

f(x) = f(Ti(x) > Lt |u® - D2y, i=1..n
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Uniform coordinate decent method with constraints

For k > 0 iterate:
1) Choose randomly i by uniform distribution on {1...n}.

2) Update xp41 = Tj, (k).

Theorem. For any k& > 0 we have

ok —f* < - [3RYHwo) + f(wo) — f*].

If f is strongly convex in || - || with constant o, then
k
2 1
o —fr < <1 — n(lifw)) - (5R3(x0) + fxo) — f*) .



Implementation details: Random Counter

Given the values L;, i = 1,...,n, generate efficiently random
n
i€ {l,...,n} with probabilities Prob i = k] = Ly/ > L;.
j=1

Solution: a) Trivial = O(n) operations.
b) Assume n = 2P. Define p + 1 vectors Sy, € R ",
k=0,...,p:

S = Lji=1,...,n

S = S sPY =1 k=1,

Algorithm: Make the choice in p steps, from top to bottom.

m If the element i of S; is chosen, then choose in S;_7 either
(24) g(2i=1)

21 or 27 — 1 in accordance to probabilities 2=t or —=*
S(’L) SIE:Z)

Difference: for n = 220 > 105 we have p = log, n = 20.
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Numerical experiments: Google problem

f(@) € §1 Bz —a|? + l(e.x) — 12 min,
where v > 0 is a penalty parameter, the norm is Euclidean.
Termination criterion: |Ez — x| < e- [|z]/(2) with
e =0.01.

Computer: Notebook Pentium-4 1.6GHz.

n| p| ~v| k| Time (sec)
65536 | 10 | 1 [47 7.41
10 | = | 65 10.5

262144 [ 10 | % [47 42.7
10| = | 72 76.5
1048576 [ 10 | < |49 247
10| o= | 82 486

NB: Moderate growth of computational time.
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Conclusion

1. We presented a technique for solving huge-scale smooth
optimization problems with simple constraints.

2. Data can be distributed in space.

3. Data can be changing in time.

Next lecture: Huge-scale nonsmooth optimization problems.
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