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Outline

Lecture 1: Huge-Scale Optimization by Coordinate Updates

Problems with sparse data

Implementation of coordinate moves

Worst-case efficiency bounds

Page-rank problem (Google problem)

Numerical experiments

Lecture 2: Subgradient methods for Huge-Scale Optimization
Problems

Lecture 3: Finding primal-dual solutions of Huge-Scale
Problems

Reason for success: intelligent use of problem structure

Exercises 1,2: Training on implementation details
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Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory

Small-size All 100 − 102 n4 → n3 Kilobyte: 103

Medium-size A−1 103 − 104 n3 → n2 Megabyte: 106

Large-scale Ax 105 − 107 n2 → n Gigabyte: 109

Huge-scale x+ y 108 − 1012 n→ log n Terabyte: 1012

Sources of Huge-Scale problems

Internet (New)

Telecommunications (New)

Finite-element schemes (Old)

PDE, Weather prediction (Old)

Main hope: Sparsity.
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Our plans for today

Take a very old optimization method.

Explain why it is very bad.

Prove that (sometimes) it is very good.

Check this by numerical experiments.

NB: This will work for two other lectures too.
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Very old optimization idea: Coordinate Search

Problem: min
x∈Rn

f(x) (f is convex and differentiable).

Coordinate relaxation algorithm

For k ≥ 0 iterate

1 Choose active coordinate ik.

2 Update xk+1 = xk − hk∇ikf(xk)eik ensuring
f(xk+1) ≤ f(xk).
(ei is ith coordinate vector in Rn.)

Main advantage: Very simple implementation.
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Possible strategies

1 Cyclic moves. (Difficult to analyze.)

2 Random choice of coordinate (Why?)

3 Choose coordinate with the maximal directional derivative.

Complexity estimate: assume
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, x, y ∈ Rn.

Let us choose hk = 1
L . Then

f(xk)− f(xk+1) ≥ 1
2L |∇ikf(xk)|2 ≥ 1

2nL‖∇f(xk)‖2

≥ 1
2nLR2 (f(xk)− f∗)2.

Hence, f(xk)− f∗ ≤ 2nLR2

k , k ≥ 1. (For pure GM, drop n.)

This was the only known theoretical result known for CDM!
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Criticism

Theoretical justification:

Complexity bounds are not known for the most of the
schemes.

The only justified scheme needs computation of the
whole gradient. (Why don’t use GM?)

Computational complexity:

Fast differentiation: if function is defined by a sequence of
operations, then C(∇f) ≤ 4C(f).

Can we do anything without computing the function’s
values?

Result: CDM were almost out of computational practice
during decades.
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Google problem

Let E ∈ Rn×n be an incidence matrix of a graph. Denote
e = (1, . . . , 1)T and

Ē = E · diag (ET e)−1.

Thus, ĒT e = e. Our problem is as follows:

Find x∗ ≥ 0 : Ēx∗ = x∗.

Optimization formulation:

f(x)
def
= 1

2‖Ēx− x‖
2 + γ

2 [〈e, x〉 − 1]2 → min
x∈Rn
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Huge-scale problems

Main features

The size is very big (n ≥ 107).

The data is distributed in space.

The requested parts of data are not always available.

The data is changing in time.

Consequences

Simplest operations are expensive or infeasible:

Update of the full vector of variables.

Matrix-vector multiplication.

Computation of the objective function’s value, etc.
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Structure of the Google Problem

Let us look at the gradient of the objective:

∇if(x) = 〈ai, g(x)〉+ γ[〈e, x〉 − 1], i = 1, . . . , n,

g(x) = Ēx− x ∈ Rn, (Ē = (a1, . . . , an)).

Main observations:

The coordinate move x+ = x− hi∇if(x)ei needs O(pi) a.o.
(pi is the number of nonzero elements in ai.)

di
def
= diag

(
∇2f

def
= ĒT Ē + γeeT

)
i

= γ + 1
pi

are available.

We can use them for choosing the step sizes (hi = 1
di

).

Reasonable coordinate choice strategy? Random!
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Random coordinate descent methods (RCDM)

min
x∈RN

f(x), (f is convex and differentiable)

Let us decompose the space: RN =
n⊗
i=1

Rni , N =
n∑
i=1

ni,

IN = (U1, . . . , Un) ∈ RN×N , Ui ∈ RN×ni ,

x = (x(1), . . . , x(n))T =
n∑
i=1

Uix
(i), x(i) ∈ Rni .

Partial gradient of f(x) in x(i) is f ′i(x) = UTi ∇f(x) ∈ Rni .
For Rni , we fix norms ‖x‖(i), ‖s‖∗(i) = max

‖h‖(i)=1
〈s, h〉.

If h(s) is the optimal solution, then s∗
def
= ‖s‖∗(i) · h(s).
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Main inequalities

Main Assumption:

‖f ′i(x+ Uihi)− f ′i(x)‖∗(i) ≤ Li‖hi‖(i), hi ∈ Rni , i = 1, . . . , n.

Then

f(x+ Uihi) ≤ f(x) + 〈f ′i(x), hi〉+ Li
2 ‖hi‖

2
(i), x ∈ RN , hi ∈ Rni .

Define the coordinate steps: Ti(x)
def
= x− 1

Li
Uif

′
i(x)∗. Then,

f(x)− f(Ti(x)) ≥ 1
2Li

(
‖f ′i(x)‖∗(i)

)2
, i = 1, . . . , n.

Proof: Minimize the upper bound.
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Random coordinate choice

We need a special random counter Rα, α ∈ [0, 1]:

Prob [i] = p
(i)
α = Lαi ·

[
n∑
j=1

Lαj

]−1
, i = 1, . . . , n.

Note: R0 generates uniform distribution.

Method RCDM(α, x0)

For k ≥ 0 iterate:

1) Choose ik = Rα.

2) Update xk+1 = Tik(xk).
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Complexity bounds for RCDM

We need to introduce the following norms for x, g ∈ RN :

‖x‖α =

[
n∑
i=1

Lα‖x(i)‖2(i)

]1/2
, ‖g‖∗α =

[
n∑
i=1

1
Lα

(
‖g(i)‖∗(i)

)2]1/2
.

After k iterations, RCDM(α, x0) generates random output xk,
which depends on ξk = {i0, . . . , ik}. Denote φk = Eξk−1

f(xk).

Theorem. For any k ≥ 1 we have

φk − f∗ ≤ 2
k ·

[
n∑
j=1

Lαj

]
·R2

1−α(x0),

where Rβ(x0) = max
x

{
max
x∗∈X∗

‖x− x∗‖β : f(x) ≤ f(x0)

}
.
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Interpretation I

1. α = 0. Then S0 = n, and we get

φk − f∗ ≤ 2n
k ·R

2
1(x0).

Note

We use the metric ‖x‖21 =
n∑
i=1

Li‖x(i)‖2(i).

For matrix with diagonal {Li}ni=1 its norm can reach n.

Hence, for GM we can guarantee the same bound.

But its cost of iteration is much higher!
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Interpretation II

2. α = 1
2 . Let ni = 1, i = 1, . . . , n. Denote

D∞(x0) = max
x

{
max
y∈X∗

max
1≤i≤n

|x(i) − y(i)| : f(x) ≤ f(x0)

}
.

Then, R2
1/2(x0) ≤ S1/2D

2
∞(x0), and we obtain

φk − f∗ ≤ 2
k ·
[
n∑
i=1

L
1/2
i

]2
·D2
∞(x0).

Note:

For the first order methods, the worst-case complexity of
minimizing over a box depends on n.

Since S1/2 can be bounded, RCDM can be applied in
situations where the usual GM fail.
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Interpretation III

3. α = 1. Let all norms ‖ · ‖(i) are standard Euclidean.
Then R0(x0) is the size of the initial level set, and

φk − f∗ ≤ 2
k ·
[
n∑
i=1

Li

]
·R2

0(x0) ≡ 2n
k ·
[
1
n

n∑
i=1

Li

]
·R2

0(x0).

Rate of convergence of GM can be estimated as

f(xk)− f∗ ≤
γ

k
R2

0(x0),

where γ satisfies condition f ′′(x) � γ · I, x ∈ RN .
Note: maximal eigenvalue of symmetric matrix can reach its
trace.

In the worst case, the rate of convergence of GM is the same as
that of RCDM .
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Minimizing strongly convex functions

Theorem. Let f(x) be strongly convex with respect to
‖ · ‖1−α with convexity parameter σ1−α > 0.
Then, for {xk} generated by RCDM(α, x0) we have

φk − φ∗ ≤
(

1− σ1−α
Sα

)k
(f(x0)− f∗).

Proof: Let xk be generated by RCDM after k iterations.
Let us estimate the expected result of the next iteration.

f(xk)− Eik(f(xk+1)) =
n∑
i=1

p
(i)
α · [f(xk)− f(Ti(xk))]

≥
n∑
i=1

p
(i)
α

2Li

(
‖f ′i(xk)‖∗(i)

)2
= 1

2Sα
(‖f ′(xk)‖∗1−α)2

≥ σ1−α
Sα

(f(xk)− f∗).

It remains to compute expectation in ξk−1.
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Confidence level of the answers

Note: We have proved that the expected values of random
f(xk) are good.

Can we guarantee anything after a single run?

Confidence level: Probability β ∈ (0, 1), that some
statement about random output is correct.
Main tool: Markov inequality (ξ, T > 0):

Prob [ξ ≥ T ] ≤ E(ξ)
T .

Our situation:

Prob [f(xk)− f∗ ≥ ε] ≤ 1
ε [φk − f

∗] ≤ 1− β.

We need φk − f∗ ≤ ε · (1− β). Too expensive for β → 1?
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Regularization technique

Consider fµ(x) = f(x) + µ
2‖x− x0‖

2
1−α. It is strongly convex.

Therefore, we can obtain φk − f∗µ ≤ ε · (1− β) in

O
(

1
µSα ln 1

ε·(1−β)

)
iterations.

Theorem. Define α = 1, µ = ε
4R2

0(x0)
, and choose

k ≥ 1 +
8S1R2

0(x0)
ε

[
ln

2S1R2
0(x0)
ε + ln 1

1−β

]
.

Let xk be generated by RCDM(1, x0) as applied to fµ. Then
Prob (f(xk)− f∗ ≤ ε) ≥ β.

Note: β = 1− 10−p ⇒ ln 10p = 2.3p.
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Extensions

1. Problems with constraints:

min
x∈Q

f(x),

where Q =
n⊗
i=1

Qi, Qi ⊆ Rni , i = 1, . . . , n, are closed and convex.

Define the constrained coordinate update:

u(i)(x) = arg min
u(i)∈Qi

[
〈f ′i(x), u(i) − x(i)〉+ Li

2 ‖u
(i) − x(i)‖2(i)

]
,

Ti(x) = x+ UTi (u(i) − x(i)), i = 1, . . . , n.

Then
f(x)− f(Ti(x)) ≥ Li

2 ‖u
(i) − x(i)‖2(i), i = 1, . . . , n.
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Uniform coordinate decent method with constraints

For k ≥ 0 iterate:

1) Choose randomly ik by uniform distribution on {1 . . . n}.

2) Update xk+1 = Tik(xk).

Theorem. For any k ≥ 0 we have

φk − f∗ ≤ n
n+k ·

[
1
2R

2
1(x0) + f(x0)− f∗

]
.

If f is strongly convex in ‖ · ‖1 with constant σ, then

φk − f∗ ≤
(

1− 2σ
n(1+σ)

)k
·
(
1
2R

2
1(x0) + f(x0)− f∗

)
.
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Implementation details: Random Counter

Given the values Li, i = 1, . . . , n, generate efficiently random

i ∈ {1, . . . , n} with probabilities Prob [i = k] = Lk/
n∑
j=1

Lj .

Solution: a) Trivial ⇒ O(n) operations.

b) Assume n = 2p. Define p+ 1 vectors Sk ∈ R2p−k ,
k = 0, . . . , p:

S
(i)
0 = Li, i = 1, . . . , n.

S
(i)
k = S

(2i)
k−1 + S

(2i−1)
k−1 , i = 1, . . . , 2p−k, k = 1, . . . , p.

Algorithm: Make the choice in p steps, from top to bottom.

If the element i of Sk is chosen, then choose in Sk−1 either

2i or 2i− 1 in accordance to probabilities
S
(2i)
k−1

S
(i)
k

or
S
(2i−1)
k−1

S
(i)
k

.

Difference: for n = 220 > 106 we have p = log2 n = 20.
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Numerical experiments: Google problem

f(x)
def
= 1

2‖Ēx− x‖
2 + γ

2 [〈e, x〉 − 1]2 → min
x∈Rn

,

where γ > 0 is a penalty parameter, the norm is Euclidean.
Termination criterion: ‖Ēx− x‖(2) ≤ ε · ‖x‖(2) with
ε = 0.01.
Computer: Notebook Pentium-4 1.6GHz.

n p γ k Time (sec)

65536 10 1
n 47 7.41

10 1√
n

65 10.5

262144 10 1
n 47 42.7

10 1√
n

72 76.5

1048576 10 1
n 49 247

10 1√
n

82 486

NB: Moderate growth of computational time.
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Conclusion

1. We presented a technique for solving huge-scale smooth
optimization problems with simple constraints.

2. Data can be distributed in space.

3. Data can be changing in time.

Next lecture: Huge-scale nonsmooth optimization problems.
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