Algorithmic Challenges of Big Data

Yurii Nesterov, CORE/INMA (UCL)

August 13-15, 2014

Max Planck Institute

Yu. Nesterov Huge-scale optimization by CD-methods 1/25

Outline

Lecture 1: Huge-Scale Optimization by Coordinate Updates

- Problems with sparse data
- Implementation of coordinate moves
- Worst-case efficiency bounds
- Page-rank problem (Google problem)
- Numerical experiments

Lecture 2: Subgradient methods for Huge-Scale Optimization Problems

Lecture 3: Finding primal-dual solutions of Huge-Scale Problems

Reason for success: intelligent use of *problem structure*

Exercises 1,2: Training on implementation details, and the second second

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10^{3}
Medium-size	A^{-1}	$10^3 - 10^4$	$n^3 ightarrow n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 ightarrow n$	Gigabyte:	10^{9}
Huge-scale	x + y	$10^8 - 10^{12}$	$n \to \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

- Internet (New)
- Telecommunications (New)
- Finite-element schemes (Old)
- PDE, Weather prediction (Old)

Main hope: Sparsity.

- Take a very old optimization method.
- Explain why it is very bad.
- Prove that (sometimes) it is very good.
- Check this by numerical experiments.

NB: This will work for two other lectures too.

Problem: $\min_{x \in \mathbb{R}^n} f(x)$ (*f* is convex and differentiable).

Coordinate relaxation algorithm

For $k \ge 0$ iterate

1 Choose active coordinate i_k .

2 Update
$$x_{k+1} = x_k - h_k \nabla_{i_k} f(x_k) e_{i_k}$$
 ensuring $f(x_{k+1}) \leq f(x_k)$.
(e_i is *i*th coordinate vector in \mathbb{R}^n .)

Main advantage: Very simple implementation.

< ∃ →

- **1** Cyclic moves. (Difficult to analyze.)
- **2** Random choice of coordinate (Why?)
- **B** Choose coordinate with the maximal directional derivative.

Complexity estimate: assume

 $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|, \quad x, y \in \mathbb{R}^n.$ Let us choose $h_k = \frac{1}{L}$. Then

$$f(x_k) - f(x_{k+1}) \geq \frac{1}{2L} |\nabla_{i_k} f(x_k)|^2 \geq \frac{1}{2nL} ||\nabla f(x_k)||^2$$
$$\geq \frac{1}{2nLR^2} (f(x_k) - f^*)^2.$$

Hence, $f(x_k) - f^* \leq \frac{2nLR^2}{k}, k \geq 1$. (For pure GM, drop n.) This was the only known theoretical result known for CDM!

< A >

Criticism

Theoretical justification:

- Complexity bounds are not known for the most of the schemes.
- The only justified scheme needs computation of the whole gradient. (Why don't use GM?)

Computational complexity:

- Fast differentiation: if function is defined by a sequence of operations, then $C(\nabla f) \leq 4C(f)$.
- Can we do anything without computing the function's values?

Result: CDM were almost out of computational practice during decades.

Let $E \in \mathbb{R}^{n \times n}$ be an incidence matrix of a graph. Denote $e = (1, \dots, 1)^T$ and

$$\bar{E} = E \cdot \operatorname{diag} \left(E^T e \right)^{-1}.$$

Thus, $\overline{E}^T e = e$. Our problem is as follows:

Find
$$x^* \ge 0$$
: $\bar{E}x^* = x^*$.

Optimization formulation:

$$f(x) \stackrel{\text{def}}{=} \frac{1}{2} \|\bar{E}x - x\|^2 + \frac{\gamma}{2} [\langle e, x \rangle - 1]^2 \rightarrow \min_{x \in \mathbb{R}^n}$$

Huge-scale problems

Main features

- The size is very big $(n \ge 10^7)$.
- The data is distributed in space.
- The requested parts of data are not always <u>available</u>.
- The data is changing in <u>time</u>.

Consequences

Simplest operations are expensive or infeasible:

- Update of the full vector of variables.
- Matrix-vector multiplication.
- Computation of the objective function's value, etc.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Let us look at the gradient of the objective:

$$\nabla_i f(x) = \langle a_i, g(x) \rangle + \gamma[\langle e, x \rangle - 1], \ i = 1, \dots, n,$$

$$g(x) = \bar{E}x - x \in R^n, \quad (\bar{E} = (a_1, \dots, a_n)).$$

Main observations:

• The coordinate move $x_{+} = x - h_i \nabla_i f(x) e_i$ needs $O(p_i)$ a.o. $(p_i \text{ is the number of nonzero elements in } a_i.)$

•
$$d_i \stackrel{\text{def}}{=} \text{diag} \left(\nabla^2 f \stackrel{\text{def}}{=} \bar{E}^T \bar{E} + \gamma e e^T \right)_i = \gamma + \frac{1}{p_i} \text{ are available.}$$

We can use them for choosing the step sizes $(h_i = \frac{1}{d_i})$.

Reasonable coordinate choice strategy? <u>Random!</u>

 $\min_{x \in \mathbb{R}^N} f(x), \quad (f \text{ is convex and differentiable})$

Let us decompose the space: $R^N = \bigotimes_{i=1}^n R^{n_i}, \ N = \sum_{i=1}^n n_i,$

$$I_N = (U_1, \dots, U_n) \in R^{N \times N}, \quad U_i \in R^{N \times n_i}, x = (x^{(1)}, \dots, x^{(n)})^T = \sum_{i=1}^n U_i x^{(i)}, \quad x^{(i)} \in R^{n_i}.$$

Partial gradient of f(x) in $x^{(i)}$ is $f'_i(x) = U_i^T \nabla f(x) \in \mathbb{R}^{n_i}$. For \mathbb{R}^{n_i} , we fix norms $||x||_{(i)}$, $||s||_{(i)}^* = \max_{\|h\|_{(i)}=1} \langle s, h \rangle$. If h(s) is the optimal solution, then $s_* \stackrel{\text{def}}{=} ||s||_{(i)}^* \cdot h(s)$.

Main Assumption:

$$\|f'_i(x+U_ih_i) - f'_i(x)\|^*_{(i)} \le L_i \|h_i\|_{(i)}, \quad h_i \in \mathbb{R}^{n_i}, \ i = 1, \dots, n.$$

Then

$$f(x + U_i h_i) \le f(x) + \langle f'_i(x), h_i \rangle + \frac{L_i}{2} ||h_i||_{(i)}^2, \quad x \in \mathbb{R}^N, \ h_i \in \mathbb{R}^{n_i}.$$

Define the coordinate steps: $T_i(x) \stackrel{\text{def}}{=} x - \frac{1}{L_i} U_i f'_i(x)_*$. Then,

$$f(x) - f(T_i(x)) \ge \frac{1}{2L_i} \left(\|f'_i(x)\|^*_{(i)} \right)^2, \quad i = 1, \dots, n.$$

Proof: Minimize the upper bound.

We need a special random counter $\mathcal{R}_{\alpha}, \alpha \in [0, 1]$:

Prob
$$[i] = p_{\alpha}^{(i)} = L_i^{\alpha} \cdot \left[\sum_{j=1}^n L_j^{\alpha}\right]^{-1}, \quad i = 1, \dots, n.$$

Note: \mathcal{R}_0 generates uniform distribution.

```
Method RCDM(\alpha, x_0)
For k \ge 0 iterate:
1) Choose i_k = \mathcal{R}_{\alpha}.
2) Update x_{k+1} = T_{i_k}(x_k).
```

We need to introduce the following norms for $x, g \in \mathbb{R}^N$:

$$\|x\|_{\alpha} = \left[\sum_{i=1}^{n} L^{\alpha} \|x^{(i)}\|_{(i)}^{2}\right]^{1/2}, \quad \|g\|_{\alpha}^{*} = \left[\sum_{i=1}^{n} \frac{1}{L^{\alpha}} \left(\|g^{(i)}\|_{(i)}^{*}\right)^{2}\right]^{1/2}$$

After k iterations, $RCDM(\alpha, x_0)$ generates random output x_k , which depends on $\xi_k = \{i_0, \ldots, i_k\}$. Denote $\phi_k = E_{\xi_{k-1}}f(x_k)$.

Theorem. For any $k \ge 1$ we have

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{j=1}^n L_j^{\alpha}\right] \cdot R_{1-\alpha}^2(x_0),$$

where
$$R_{\beta}(x_0) = \max_{x} \left\{ \max_{x_* \in X^*} \|x - x_*\|_{\beta} : f(x) \le f(x_0) \right\}.$$

- ∢ ⊒ →

1. $\alpha = 0$. Then $S_0 = n$, and we get

$$\phi_k - f^* \leq \frac{2n}{k} \cdot R_1^2(x_0).$$

Note

- We use the metric $||x||_1^2 = \sum_{i=1}^n L_i ||x^{(i)}||_{(i)}^2$.
- For matrix with diagonal $\{L_i\}_{i=1}^n$ its norm can reach n.
- Hence, for GM we can guarantee the same bound.
 But its cost of iteration is much higher!

伺下 イヨト イヨト

Interpretation II

2.
$$\alpha = \frac{1}{2}$$
. Let $n_i = 1, i = 1, \dots, n$. Denote
 $D_{\infty}(x_0) = \max_x \left\{ \max_{y \in X^*} \max_{1 \le i \le n} |x^{(i)} - y^{(i)}| : f(x) \le f(x_0) \right\}.$

Then, $R_{1/2}^2(x_0) \le S_{1/2} D_{\infty}^2(x_0)$, and we obtain

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{i=1}^n L_i^{1/2}\right]^2 \cdot D_{\infty}^2(x_0).$$

Note:

- For the first order methods, the worst-case complexity of minimizing over a box depends on *n*.
- Since $S_{1/2}$ can be bounded, RCDM can be applied in situations where the usual GM fail.

3. $\alpha = 1$. Let all norms $\|\cdot\|_{(i)}$ are standard Euclidean. Then $R_0(x_0)$ is the size of the initial level set, and

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{i=1}^n L_i\right] \cdot R_0^2(x_0) \equiv \frac{2n}{k} \cdot \left[\frac{1}{n}\sum_{i=1}^n L_i\right] \cdot R_0^2(x_0).$$

Rate of convergence of GM can be estimated as

$$f(x_k) - f^* \le \frac{\gamma}{k} R_0^2(x_0),$$

where γ satisfies condition $f''(x) \leq \gamma \cdot I$, $x \in \mathbb{R}^N$. **Note:** maximal eigenvalue of symmetric matrix can reach its trace.

In the worst case, the rate of convergence of GM is the same as that of RCDM.

Theorem. Let f(x) be strongly convex with respect to $\|\cdot\|_{1-\alpha}$ with convexity parameter $\sigma_{1-\alpha} > 0$. Then, for $\{x_k\}$ generated by $RCDM(\alpha, x_0)$ we have

$$\phi_k - \phi^* \leq \left(1 - \frac{\sigma_{1-\alpha}}{S_\alpha}\right)^k (f(x_0) - f^*).$$

Proof: Let x_k be generated by RCDM after k iterations. Let us estimate the expected result of the next iteration.

$$f(x_k) - E_{i_k}(f(x_{k+1})) = \sum_{i=1}^n p_{\alpha}^{(i)} \cdot [f(x_k) - f(T_i(x_k))]$$

$$\geq \sum_{i=1}^n \frac{p_{\alpha}^{(i)}}{2L_i} \left(\|f_i'(x_k)\|_{(i)}^* \right)^2 = \frac{1}{2S_{\alpha}} (\|f'(x_k)\|_{1-\alpha}^*)^2$$

$$\geq \frac{\sigma_{1-\alpha}}{S_{\alpha}} (f(x_k) - f^*).$$

It remains to compute expectation in ξ_{k-1} , \ldots , ξ_{k-1} ,

Note: We have proved that the <u>expected values</u> of random $f(x_k)$ are good.

Can we guarantee anything after a single run?

Confidence level: Probability $\beta \in (0, 1)$, that some statement about random output is correct. **Main tool:** Markov inequality $(\xi, T > 0)$:

$$\operatorname{\mathbf{Prob}}\left[\xi \ge T\right] \leq \frac{E(\xi)}{T}.$$

Our situation:

$$\operatorname{Prob}\left[f(x_k) - f^* \ge \epsilon\right] \le \frac{1}{\epsilon} [\phi_k - f^*] \le 1 - \beta.$$

We need $\phi_k - f^* \leq \epsilon \cdot (1 - \beta)$.

Too expensive for $\beta \to 1$?

御 と く ヨ と く ヨ と

Consider $f_{\mu}(x) = f(x) + \frac{\mu}{2} ||x - x_0||_{1-\alpha}^2$. It is strongly convex. Therefore, we can obtain $\phi_k - f_{\mu}^* \le \epsilon \cdot (1-\beta)$ in

$$O\left(\frac{1}{\mu}S_{\alpha}\ln\frac{1}{\epsilon\cdot(1-\beta)}\right)$$
 iterations.

Theorem. Define $\alpha = 1$, $\mu = \frac{\epsilon}{4R_0^2(x_0)}$, and choose

$$k \geq 1 + \frac{8S_1 R_0^2(x_0)}{\epsilon} \left[\ln \frac{2S_1 R_0^2(x_0)}{\epsilon} + \ln \frac{1}{1-\beta} \right].$$

Let x_k be generated by $RCDM(1, x_0)$ as applied to f_{μ} . Then $\mathbf{Prob}\left(f(x_k) - f^* \leq \epsilon\right) \geq \beta.$

Note: $\beta = 1 - 10^{-p} \Rightarrow \ln 10^p = 2.3p.$

▲口▶ ▲冊▶ ▲三▶ ▲三▶ 三 のの⊙

Extensions

1. Problems with constraints:

$$\min_{x \in Q} \quad f(x),$$

where $Q = \bigotimes_{i=1}^{n} Q_i$, $Q_i \subseteq R^{n_i}$, i = 1, ..., n, are closed and convex. Define the constrained coordinate update:

$$u^{(i)}(x) = \arg \min_{u^{(i)} \in Q_i} \left[\langle f'_i(x), u^{(i)} - x^{(i)} \rangle + \frac{L_i}{2} \| u^{(i)} - x^{(i)} \|_{(i)}^2 \right],$$

$$T_i(x) = x + U_i^T (u^{(i)} - x^{(i)}), \quad i = 1, \dots, n.$$

Then

$$f(x) - f(T_i(x)) \ge \frac{L_i}{2} \|u^{(i)} - x^{(i)}\|_{(i)}^2, \quad i = 1, \dots, n.$$

For $k \ge 0$ iterate:

1) Choose randomly i_k by uniform distribution on $\{1 \dots n\}$.

2) Update
$$x_{k+1} = T_{i_k}(x_k)$$
.

Theorem. For any $k \ge 0$ we have

$$\phi_k - f^* \leq \frac{n}{n+k} \cdot \left[\frac{1}{2}R_1^2(x_0) + f(x_0) - f^*\right]$$

If f is strongly convex in $\|\cdot\|_1$ with constant σ , then

$$\phi_k - f^* \leq \left(1 - \frac{2\sigma}{n(1+\sigma)}\right)^k \cdot \left(\frac{1}{2}R_1^2(x_0) + f(x_0) - f^*\right).$$

Implementation details: Random Counter

Given the values L_i , i = 1, ..., n, generate efficiently random $i \in \{1, \ldots, n\}$ with probabilities **Prob** $[i = k] = L_k / \sum_{i=1}^{n} L_j$. **Solution:** a) Trivial $\Rightarrow O(n)$ operations. **b)** Assume $n = 2^p$. Define p + 1 vectors $S_k \in \mathbb{R}^{2^{p-k}}$, $k=0,\ldots,p$: $S_0^{(i)} = L_i, \ i = 1, \dots, n.$ $S_{k}^{(i)} = S_{k-1}^{(2i)} + S_{k-1}^{(2i-1)}, \ i = 1, \dots, 2^{p-k}, \ k = 1, \dots, p.$ **Algorithm:** Make the choice in *p* steps, from top to bottom.

• If the element *i* of S_k is chosen, then choose in S_{k-1} either 2i or 2i - 1 in accordance to probabilities $\frac{S_{k-1}^{(2i)}}{S_k^{(i)}}$ or $\frac{S_{k-1}^{(2i-1)}}{S_k^{(i)}}$. Difference: for $n = 2^{20} > 10^6$ we have $p = \log_2 n = 20$, p = 20, p = 20. Yu. Nesterov Huge-scale optimization by CD-methods 23/25

Numerical experiments: Google problem

$$f(x) \stackrel{\text{def}}{=} \frac{1}{2} \|\bar{E}x - x\|^2 + \frac{\gamma}{2} [\langle e, x \rangle - 1]^2 \to \min_{x \in \mathbb{R}^n},$$

where $\gamma > 0$ is a penalty parameter, the norm is Euclidean.
Termination criterion: $\|\bar{E}x - x\|_{(2)} \le \epsilon \cdot \|x\|_{(2)}$ with $\epsilon = 0.01.$

Computer: Notebook Pentium-4 1.6GHz.

n	p	γ	k	Time (sec)
65536	10	$\frac{1}{n}$	47	7.41
	10	$\frac{1}{\sqrt{n}}$	65	10.5
262144	10	$\frac{1}{n}$	47	42.7
	10	$\frac{1}{\sqrt{n}}$	72	76.5
1048576	10	$\frac{1}{n}$	49	247
	10	$\frac{1}{\sqrt{n}}$	82	486

NB: Moderate growth of computational time.

ъ

- **1.** We presented a technique for solving huge-scale <u>smooth</u> optimization problems with simple constraints.
- 2. Data can be distributed in space.
- **3.** Data can be changing in time.
- Next lecture: Huge-scale <u>nonsmooth</u> optimization problems.

- < E > < E >