Algorithmic Challenges of Big Data

Subgradient methods for huge-scale optimization problems

Yurii Nesterov, CORE/INMA (UCL)

August 14, 2014

Lecture 2 (Max Planck Institute)

Outline

- **1** Sparse Optimization problems
- 2 Sparse updates for linear operators
- 3 Fast updates in computational trees
- 4 Simple subgradient methods
- 5 Application examples
- 6 Computational experiments: Google problem

Sparse problems

Problem:
$$\min_{x \in Q} f(x)$$
, where Q is closed and convex in \mathbb{R}^N , and
• $f(x) = \Psi(Ax)$, where Ψ is a simple convex function:
 $\Psi(y_1) \ge \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle$, $y_1, y_2 \in \mathbb{R}^M$,
• $A : \mathbb{R}^N \to \mathbb{R}^M$ is a sparse matrix.
Let $p(x) \stackrel{\text{def}}{=} \#$ of nonzeros in x. Sparsity coefficient:
 $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

- Computation of vector Ax needs p(A) operations.
- Initial complexity MN is reduced in $\gamma(A)$ times.

$$x_0 \in Q, \quad x_{k+1} = \pi_Q(x_k - hf'(x_k)), \quad k \geq 0.$$

Main computational expenses

- Projection of simple set Q needs O(N) operations.
- Displacement $x_k \rightarrow x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times. **Note:** For Large- and Huge-scale problems, we often have $\gamma(A) \approx 10^{-4} \dots 10^{-6}$. **Can we get more?**

Sparse updating strategy

Main idea

• After update
$$x_+ = x + d$$
 we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_{y} + Ad$.

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{\substack{j \in \sigma(d) \\ j \in \sigma(d)}} p(Ae_j)$, can be VERY small! $\kappa_A(d) = M \sum_{\substack{j \in \sigma(d) \\ j \in \sigma(d)}} \gamma(Ae_j) \stackrel{\text{def}}{=} \gamma(d) \cdot \frac{1}{p(d)} \sum_{\substack{j \in \sigma(d) \\ j \in \sigma(d)}} \gamma(Ae_j) \cdot MN$ $\leq \gamma(d) \max_{\substack{1 \leq j \leq m \\ 1 \leq j \leq m \\ l}} \gamma(Ae_j) \cdot MN$. If $\gamma(d) \leq c\gamma(A), \gamma(A_j) \stackrel{\text{def}}{=} c\gamma(A)$, then $\overline{\kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN}$.

Expected acceleration: $(10^{-6})^2 = 10^{-12} \Rightarrow 1 \sec \approx 32\,000$ vears! Yu. Nesterov Subgradient methods for huge-scale problems

When it can work?

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with *sparse* gradients.

Let us try:

1 Quadratic function $f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$. The gradient f'(x) = Ax - b, $x \in \mathbb{R}^N$,

is not sparse even if A is sparse.

Piece-wise linear function g(x) = max_{1≤i≤m} [⟨a_i, x⟩ - b⁽ⁱ⁾]. Its subgradient f'(x) = a_{i(x)}, i(x) : f(x) = ⟨a_{i(x)}, x⟩ - b^{(i(x))}, can be sparse is a_i is sparse!

But: We need a fast procedure for updating *max-type operations*.

Fast updates in short computational trees

Def: Function f(x), $x \in \mathbb{R}^n$, is *short-tree representable*, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n = 2^k$ and the tree has k + 1 levels: $v_{0,i} = x^{(i)}$, i = 1, ..., n. Size of the next level halves the size of the previous one:

$$\mathbf{v}_{i+1,j} = \psi_{i+1,j}(\mathbf{v}_{i,2j-1},\mathbf{v}_{i,2j}), \quad j = 1,\ldots,2^{k-i-1}, \ i = 0,\ldots,k-1,$$

where $\psi_{i,i}$ are some bivariate functions.

$V_{k,1}$								
$V_{k-1,1}$					$V_{k-1,2}$			
V _{2,1}					<i>v</i> _{2,}	n/4		
V _{1,1} V _{1,2}			•	$V_{1,n/2-1}$	<i>V</i> _{1,<i>n</i>/2}			
<i>V</i> 0,1	<i>V</i> 0,2	<i>V</i> 0,3	<i>V</i> 0,4			$V_{0,n-3}V_{0,n-2}$	V0,n-1 V0,n	

Main advantages

Important examples (symmetric functions)

$$\begin{split} f(x) &= \|x\|_{p}, \quad p \geq 1, \quad \psi_{i,j}(t_{1},t_{2}) \equiv \left[|t_{1}|^{p} + |t_{2}|^{p} \right]^{1/p}, \\ f(x) &= \ln\left(\sum_{i=1}^{n} e^{x^{(i)}}\right), \quad \psi_{i,j}(t_{1},t_{2}) \equiv \ln\left(e^{t_{1}} + e^{t_{2}}\right), \\ f(x) &= \max_{1 \leq i \leq n} x^{(i)}, \qquad \psi_{i,j}(t_{1},t_{2}) \equiv \max\left\{t_{1},t_{2}\right\}. \end{split}$$

• The binary tree requires only n - 1 auxiliary cells.

- Its value needs n-1 applications of $\psi_{i,j}(\cdot, \cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Thus, we can have pure subgradient minimization schemes with Sublinear Iteration Cost

・ 同 ト ・ ヨ ト ・ ヨ ト …

8/24

Simple subgradient methods

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967):

$$x_0 \in Q, \quad x_{k+1} \ = \ \pi_Q \left(x_k - rac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k)
ight), \quad k \ge 0.$$

Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$. Then for any $k \ge 0$ we have:

$$f_k^* - f^* \leq \frac{L(f) \|x_0 - \pi_{X_*}(x_0)\|}{(k+1)^{1/2}},$$

 $||x_k - x^*|| \le ||x_0 - x^*||, \quad \forall x^* \in X_*.$

Proof:

Let us fix $x^* \in X_*$. Denote $r_k(x^*) = ||x_k - x^*||$. Then

$$\begin{aligned} r_{k+1}^2(x^*) &\leq \left\| x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) - x^* \right\|^2 \\ &= r_k^2(x^*) - 2 \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} \langle f'(x_k), x_k - x^* \rangle + \frac{(f(x_k) - f^*)^2}{\|f'(x_k)\|^2} \\ &\leq r_k^2(x^*) - \frac{(f(x_k) - f^*)^2}{\|f'(x_k)\|^2} \leq r_k^2(x^*) - \frac{(f_k^* - f^*)^2}{L^2(f)}. \end{aligned}$$

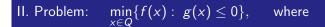
From this reasoning, $||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2$, $\forall x^* \in X^*$. **Corollary:** Assume X_* has recession direction d_* . Then

$$\|x_k - \pi_{X_*}(x_0)\| \leq \|x_0 - \pi_{X_*}(x_0)\|, \quad \langle d_*, x_k \rangle \geq \langle d_*, x_0 \rangle.$$

(Proof: consider $x^* = \pi_{X_*}(x_0) + \alpha d_*$, $\alpha \ge 0$.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Constrained minimization (N.Shor (1964) & B.Polyak)



- Q is closed and convex,
- *f*, *g* have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

$$\begin{aligned} \text{If } g(x_k) > h \, \|g'(x_k)\|, \quad \text{then (A):} \quad x_{k+1} &= \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} \, g'(x_k) \right), \\ & \text{else (B):} \quad x_{k+1} &= \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} \, f'(x_k) \right). \end{aligned}$$

Let $\mathcal{F}_k \subseteq \{0, \dots, k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i).$ **Theorem:** If $k > ||x_0 - x^*||^2 / h^2$, then $\mathcal{F}_k \neq \emptyset$ and $f_k^* - f(x) \le hL(f), \quad \max_{i \in \mathcal{F}_k} g(x_i) \le hL(g).$ Yu. Nesterov Subgradient methods for huge-scale problems 11/24

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take $h = \frac{\epsilon}{\max\{L(f), L(g)\}}$. Then we need to decide on the number of steps N (easy!).

Note: The standard advice is $h = \frac{R}{\sqrt{N+1}}$ (much more difficult!)

2. Constants L(f), L(g) are not known

- Start from a guess.
- Restart from scratch each time we see the guess is wrong.
- The guess is doubled after restart.

3. Tracking the record value f_k^*					
Double run.	Other ideas	are welcome!	- na		
	Yu Nesterov	Subgradient methods for huge-scale problems	12		

III. Problem:
$$\min_{x\geq 0} \left\{ f(x) \stackrel{\text{def}}{=} \max_{1\leq i\leq M} [\ell_i(x) \equiv \langle a_i, x \rangle - b_i] \right\}.$$

Define i(x): $f(x) = \ell_{i(x)}(x)$, and random variable $\xi(x)$, which gives indexes from $\sigma(a_{i(x)})$ with equal probabilities $\frac{1}{p(a_{i(x)})}$.

Assuming that f^* is known, we can define now a random vector variable Next(x) by the following rules:

- 1. Compute $h(x) = \frac{f(x) f^*}{\|f'(x)\|^2}$. Generate $j(x) = \xi(x)$.
- 2. Define $[\operatorname{Next}(x)]^{(j(x))} = (x^{(j(x))} h(x)a^{(j(x))}_{i(x)})_+$. 3. For other indexes $j \neq j(x)$, define $[\operatorname{Next}(x)]^{(j)} = x^{(j)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Algorithmic scheme

- **0**. Choose $x_0 \ge 0$. Compute $u_0 = Ax_0 b$ and $f(x_0)$.
- kth iteration (k ≥ 0).
 a) Generate j_k = ξ(x_k) and update x_{k+1} = Next(x_k).
 b) Update u_{k+1} = u_k + Ae_{j_k} · (x^(j_k)_{k+1} x^(j_k)_k), re-computing in parallel the value of f(x_{k+1}).

This method defines a sequence of discrete random variables $\{x_k\}$. Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$. **Theorem:** Let $p(a_i) \le r$, i = 1, ..., m. Then, for any $k \ge 0$ we have:

$$\begin{array}{lll} \mathcal{E}\left([f_k^* - f^*]^2\right) & \leq & \frac{rL^2(f)\|x_0 - \pi_{X_*}(x_0)\|^2}{k+1}, \\ \mathcal{E}(\|x_k - x_*\|^2) & \leq & \|x_0 - x_*\|^2, \quad \forall x_* \in X_*. \end{array}$$

NB: One iteration needs at most $\max_{1 \le i \le N} p(Ae_j) \cdot \log_2 M$ operations.

Theoretical consequences

Assume that $\kappa(A) \approx \gamma^2(A)n^2$. Compare three methods:

- Sparse updates (SU). Complexity $\gamma^2(A)n^2\frac{L^2R^2}{\epsilon^2}\log n$ operations.
- Smoothing technique (ST). Complexity $\gamma(A)n^2 \frac{LR}{\epsilon}$ operations.
- Polynomial-time methods (PT). Complexity $(\gamma(A)n + n^3)n \ln \frac{LR}{\epsilon}$ operations.

There are three possibilities.

- Low accuracy: $\gamma(A) \frac{LR}{\epsilon} < 1$. Then we choose SU.
- <u>Moderate accuracy</u>: $1 < \gamma(A) \frac{LR}{\epsilon} < n^2$. We choose ST.
- <u>High accuracy</u>: $\gamma(A)\frac{LR}{\epsilon} > n^2$. We choose PT.

NB: For Huge-Scale problems usually $\gamma(A) \approx \frac{1}{n}$. Switch if $n > \frac{LR}{\epsilon}$.

Observations:

- Very often, Large- and Huge- scale problems have repetitive sparsity patterns and/or limited connectivity.
 - Social networks.
 - Mobile phone networks.
 - Truss topology design (local bars).
 - Finite elements models (2D: four neighbors, 3D: six neighbors).
- **2** For *p*-diagonal matrices $\kappa(A) \leq p^2$.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Goal: Rank the agents in the society by their social weights.

- Unknown: $x_i \ge 0$ social influence of agent i = 1, ..., N.
- Known: σ_i set of friends of agent *i*.

Hypothesis

- Agent *i* shares his support among all friends by equal parts.
- The influence of agent *i* is equal to the total support obtained from his friends.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $E \in R^{N \times N}$ be an incidence matrix of the connections graph. Denote $e = (1, ..., 1)^T \in R^N$ and $\overline{E} = E \cdot \operatorname{diag} (E^T e)^{-1}$. Since, $\overline{E}^T e = e$, this matrix is stochastic.

Problem: Find $x^* \ge 0$: $\overline{E}x^* = x^*$, $x^* \ne 0$. The size is very big!

Known technique:

- Regularization + Fixed Point (Google Founders, B.Polyak & coauthors, etc.)
- Solve it by random CD-method as applied to $\frac{1}{2} \| \vec{E}x x \|^2 + \frac{\gamma}{2} [\langle e, x \rangle 1]^2, \quad \gamma > 0.$

Main drawback: No interpretation for the objective function!

マボン イラン イラン・ラ

18/24

Nonsmooth formulation of Google Problem

Main property of spectral radius $(A \ge 0)$

If
$$A \in R^{n \times n}_+$$
, then $\rho(A) = \min_{x \ge 0} \max_{1 \le i \le n} \frac{1}{x^{(i)}} \langle e_i, Ax \rangle$.
The minimum is attained at the corresponding eigenvector.

Since $\rho(\bar{E}) = 1$, our problem is as follows:

$$f(x) \stackrel{\text{def}}{=} \max_{1 \leq i \leq N} [\langle e_i, \overline{E}x \rangle - x^{(i)}] \rightarrow \min_{x \geq 0}.$$

Interpretation: Increase self-confidence! Since $f^* = 0$, we can apply Polyak's method with sparse updates. **Additional features;** the optimal set X^* is a *convex cone*. If $x_0 = e$, then the whole sequence is separated from zero:

$$\langle x^*, e \rangle \leq \langle x^*, x_k \rangle \leq \|x^*\|_1 \cdot \|x_k\|_{\infty} = \langle x^*, e \rangle \cdot \|x_k\|_{\infty}.$$

Goal: Find $\bar{x} \ge 0$ such that $\|\bar{x}\|_{\infty} \ge 1$ and $f(\bar{x}) \le \epsilon$. (First condition is satisfied automatically.) We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Setup: Each agent has exactly p random friends. Thus, $\kappa(A) \stackrel{\text{def}}{=} \max_{1 \le i \le M} \kappa_A(A^T e_i) \approx p^2$.

Time for 10^4 iterations ($p = 32$)					Time for 1	10 ³ iter	ations	(p = 16)	
	N	$\kappa(A)$	GM _s	GM		N	$\kappa(A)$	GM _s	GM
	1024	1632	3.00	2.98		131072	576	0.19	213.9
	2048	1792	3.36	6.41		262144	592	0.25	477.8
	4096	1888	3.75	15.11		524288	592	0.32	1095.5
	8192	1920	4.20	139.92		1048576	608	0.40	2590.8
	16384	1824	4.69	408.38		1 9	$e_{c} \approx 1$	00 min	इ. १९९७

Yu. Nesterov

Subgradient methods for huge-scale problems

20/24

Let
$$N = 131072$$
, $p = 16$, $\kappa(A) = 576$, and $L(f) = 0.21$.

Iterations	$f - f^*$	Time (sec)
$1.0\cdot 10^5$	0.1100	16.44
$3.0 \cdot 10^{5}$	0.0429	49.32
$6.0\cdot10^5$	0.0221	98.65
$1.1\cdot 10^6$	0.0119	180.85
$2.2\cdot 10^6$	0.0057	361.71
$4.1\cdot 10^6$	0.0028	674.09
$7.6\cdot 10^6$	0.0014	1249.54
$1.0\cdot 10^7$	0.0010	1644.13

Dimension and accuracy are sufficiently high, but the time is still reasonable.

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)	
0	2.000000	0.00	
$1.0 \cdot 10^{5}$	0.546662	7.69	
$4.0 \cdot 10^{5}$	0.276866	30.74	
$1.0\cdot 10^6$	0.137822	76.86	
$2.5\cdot10^{6}$	0.063099	192.14	
$5.1\cdot10^{6}$	0.032092	391.97	
$9.9\cdot10^{6}$	0.016162	760.88	
$1.5 \cdot 10^{7}$	0.010009	1183.59	

Final point \bar{x}_* : $\|\bar{x}_*\|_{\infty} = 2.941497$, $R_0^2 \stackrel{\text{def}}{=} \|\bar{x}_* - e\|_2^2 = 1.2 \cdot 10^5$.

Theoretical bound: $\frac{L^2(f)R_0^2}{\epsilon^2} = 5.3 \cdot 10^7$. Time for GM: ≈ 1 year!

Conclusion

- Sparse GM is an efficient and reliable method for solving Large- and Huge- Scale problems with uniform sparsity.
- 2 We can treat also dense rows. Assume that inequality ⟨a, x⟩ ≤ b is dense. It is equivalent to the following system:

$$y^{(1)} = a^{(1)} x^{(1)}, \quad y^{(j)} = y^{(j-1)} + a^{(j)} x^{(j)}, \quad j = 2, ..., n,$$

 $y^{(n)} \leq b.$

We need *new variables* $y^{(j)}$ for all nonzero coefficients of *a*.

- Introduce p(a) additional variables and p(A) additional equality constraints. (No problem!)
- Hidden drawback: the above equalities are satisfied with errors.
- May be it is not too bad?
- **3** Similar technique can be applied to dense columns.

Next lecture:

Finding primal-dual solutions for Huge Scale Problems

□ > < E > < E > _ E