ALGORITHMIC CHALLENGES OF Bic DATA

Subgradient methods for huge-scale optimization
problems

Yurii Nesterov, CORE/INMA (UCL)

August 14, 2014

Lecture 2 (Max Planck Institute)

Yu. Nesterov Subgradient methods for huge-scale problems 1/24

Outline

Sparse Optimization problems

Pd Sparse updates for linear operators
Fast updates in computational trees
B Simple subgradient methods

H Application examples

[@ Computational experiments: Google problem

Yu. Nesterov Subgradient methods for huge-scale problems 2/24

Sparse problems

Problem: mig f(x), where @ is closed and convex in RN, and
XE

m f(x) = W(Ax), where V is a simple convex function:
V(y1) > V() + (V' (2) 01 —y2), yi,y2 € RY,

m A: RV — RM is a sparse matrix.

Let p(x) def # of nonzeros in x. Sparsity coefficient:

def
1(A) = B

Example 1: Matrix-vector multiplication

m Computation of vector Ax needs p(A) operations.

m Initial complexity MN is reduced in y(A) times.

Yu. Nesterov Subgradient methods for huge-scale problems 3/24

Example: Gradient Method

X0 € Q, xky1=mo(xk —hf'(xk)), k=>0.

Main computational expenses

m Projection of simple set Q needs O(/N) operations.
m Displacement xx — xx — hf’(xx) needs O(N) operations.

m f/(x) = ATU/(Ax). If Wis simple, then the main efforts are
spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with full matrices, we accelerate in

~v(A) times.

Note: For Large- and Huge-scale problems, we often have
v(A) =~ 107*...107°. Can we get more?

Yu. Nesterov Subgradient methods for huge-scale problems 4/24

Sparse updating strategy

m After update x; = x+ d we have y, & Axy = Ax +Ad.

y
m What happens if d is sparse?

Denote o(d) = {j : dU) #0}. Theny, =y + > dU). Ae;.
jea(d)
Its complexity, ra(d) e > p(Aej), can be VERY smalll
j€a(d)
kald) = M Y A(Ag) = A(d)- k5 X (Ag)- MN
j€a(d) Jjeo(d)
< 4(d) max v(Aej) - MN.

If 7(d) < c(A), (A 2 c1(A), then
ka(d) < c?-42(A)- MN |

Expected acceleration: (107°)2 = 10712 = 1sec ~ 32000
carcl

Yu. Nesterov Subgradient methods for huge-scale problems

When it can work?

m Simple methods: No full-vector operations! (Is it possible?)

m Simple problems: Functions with sparse gradients.

Let us try:

Quadratic function f(x) = 3(Ax, x) — (b,x). The gradient
f'(x)=Ax—b, xeRV,
is not sparse even if A is sparse.

Piece-wise linear function g(x) = max [(a;, x) — b()]. lts
1<i<m

subgradient f'(x) = aj(x), i(x) 1 f(x) = (aj(x), x) — bUC,
can be sparse is a; is sparse!

But: We need a fast procedure for updating max-type operations.

Yu. Nesterov Subgradient methods for huge-scale problems 6/24

Fast updates in short computational trees

Def: Function f(x), x € R", is short-tree representable, if it can
be computed by a short binary tree with the height = In n.

Let n = 2k and the tree has k + 1 levels: vo,i = 0D i=1,...n
Size of the next level halves the size of the previous one:
Vierj = Yiv1j(Vigim1,vigg), j=1,...,2k 1 i=0,... k-1,

where 1); ; are some bivariate functions.

Vi1
Vk—1,1 [Vk—1,2
V21 V2.n/4
Vi1 2 e Vin/2—1 Vin/2
Vo1 [W2 | Vo3 [Vo4 V0,n—3V0,n—20,n—1] Vo,n

Yu. Nesterov Subgradient methods for huge-scale problems 7/24

Main advantages

m Important examples (symmetric functions)
Fx) = lxllp, P>1, wij(ti,ta) = [P+ [60lP 1V,
n .
f(x) = In <Z eX(')> . Yij(t,) = In(e® +e?),
i=1
f(x) = max x(1) i j(t1, t2) = max{ty, t2}.
1<i<n
m The binary tree requires only n — 1 auxiliary cells.
m Its value needs n — 1 applications of v; (-,) (= operations).
m If x, differs from x in one entry only, then for re-computing

f(x4) we need only k = log, n operations.

Thus, we can have pure subgradient minimization schemes with
Sublinear Iteration Cost

Yu. Nesterov Subgradient methods for huge-scale problems 8/24

Simple subgradient methods

I. Problem: £* %' min f(x), where
XEQ

m Q is a closed and convex and ||f'(x)| < L(f), x € Q,

m the optimal value f* is known.

Consider the following optimization scheme (B.Polyak, 1967):

fox) =",
xo € Q, Xk1:7TQ<Xk—f(Xk) , k>0.
! 1F/(xe) 12
Denote ¥ = min f(x;). Then for any k > 0 we have:

0<i<k

* _ fx L(F)lxo—mx, (o)l
O

Ixek —x*|| < |lxo — x*||, Vx*e€ X..

Yu. Nesterov Subgradient methods for huge-scale problems 9/24

Let us fix x* € X,. Denote re(x*) =[xk — x*||. Then

IN

rl%+1(X*)

<

From this reasoning, ||xxy1 — x*[|2 < ||xx —

2
re\X

2
T

Xk —

(x7)

FOa)—F* cro\ x|]?

e fgnZ)f gxk) X H oo

_ of(x)=f* s o1 * x)—f*
IIf/k(T)HQ = rf(x*)_ 126

(x*) =

x*||?, Vx* € X*.

Corollary: Assume X, has recession direction d,. Then

Xk — 7x. ()|l < lIx0 — mx. (x0)ll, {di, xk) = {d, x0)-

(Proof: consider x* = mx,(x0) + ads, a > 0.)

Yu.

Nesterov

Subgradient methods for huge-scale problems

O

10/24

Constrained minimization (N.Shor (1964) & B.Polyak)

[I. Problem: mig{f(x) : g(x) <0}, where
X€

m Q@ is closed and convex,

m f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.
If g(xk) > h|lg’(xk)ll, then (A): xx11 =m¢Q (xk — %g’(xﬁ) ,
else (B): xky1=mQ (xk — m f’(xk))
Let Fx C {0,..., k} be the set (B)-iterations, and
fr = Irg}__nk f(x)-
Theorem: If k > |[xo — x*||?/h?, then Fy # 0 and
fii —f(x) < hL(f), maxg(x) < hL(g).

/ k
Yu. Nesterov Subgradient methods for huge-scale problems 11/24

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take h = m. Then we need to decide on the
number of steps N (easy!).

Note: The standard advice is h = \/A%l (much more difficult!)

2. Constants L(f), L(g) are not known

m Start from a guess.
m Restart from scratch each time we see the guess is wrong.

m The guess is doubled after restart.

3. Tracking the record value f;

Double run. Other ideas are welcome!

Yu. Nesterov Subgradient methods for huge-scale problems 12/24

Random sparse coordinate methods

x>0 1<i<™Mm

[1l. Problem: min {f(x) ' max [4i(x) = (ai, x) — b,-]}.

Define i(x) : f(x) = £i)(x), and random variable §(), which

gives indexes from o(aj(x)) with equal probabilities p(a -
Assuming that f* is known, we can define now a random vector
variable Next(x) by the following rules:

1. Compute h(x) = ﬁfff()x)ﬂz Generate j(x) = £(x).

2. Define [Next(x) |Y0) = (X(J(x)) _ h(X)aEJ(')(:;)))
I+
3. For other indexes j # j(x), define [Next(x)](J) — xU).

Yu. Nesterov Subgradient methods for huge-scale problems 13/24

Algorithmic scheme

0. Choose xg > 0. Compute ug = Axp — b and f(xo).
1. kth iteration (k > 0).

a) Generate ji = £(xx) and update xx+1 = Next(xk).
b) Update uxy1 = ux + Aej, - (x,((ﬁ)l — x,(('jk)), re-computing in
parallel the value of f(xk41).

This method defines a sequence of discrete random variables {x}.

Denote f = O@_igk f(xi).
1

Theorem: Let ;)(a,-) <r, i=1,....,m Then, for any k > 0 we
have: L2(F)l (x0)1?
* %12 r Xo—T X, (X
(-) = Lol
E(lba —xl?) < lxo = x| Vx € Xe

NB: One iteration needs at most Jmax, p(Aej) - logy M operations.

Yu. Nesterov Subgradient methods for huge-scale problems 14/24

Theoretical consequences

Assume that x(A) ~ 7?(A)n®. Compare three methods:

. 2 p2
m Sparse updates (SU). Complexity 72(A)n2% log n
operations.

2LR

m Smoothing technique (ST). Complexity y(A)n*== operations.

m Polynomial-time methods (PT). Complexity
(v(A)n+ n*)nln % operations.
There are three possibilities.
m Low accuracy: W(A)% < 1. Then we choose SU.
m Moderate accuracy: 1 < fy(A)% < n?. We choose ST.

m High accuracy: v(A)LE > n?. We choose PT.
NB: For Huge-Scale problems usually v(A) ~ % Switch if
n > T

Yu. Nesterov Subgradient methods for huge-scale problems 15/24

Application examples

Observations:

Very often, Large- and Huge- scale problems have repetitive
sparsity patterns and/or limited connectivity.

m Social networks.

Mobile phone networks.

Truss topology design (local bars).

Finite elements models (2D: four neighbors, 3D: six neighbors).

For p-diagonal matrices x(A) < p?.

Yu. Nesterov Subgradient methods for huge-scale problems 16/24

Google problem

Goal: Rank the agents in the society by their social weights.

m Unknown: x; > 0 - social influence of agent i =1,..., N.

m Known: o; - set of friends of agent /.

Hypothesis

m Agent /i shares his support among all friends by equal parts.

m The influence of agent / is equal to the total support obtained
from his friends.

Yu. Nesterov Subgradient methods for huge-scale problems 17/24

Mathematical formulation: quadratic problem

Let E € RN*N be an incidence matrix of the connections graph.
Denote e = (1,.. .,)7 € RN and E = E - diag (E"e)™ .
Since, ETe = e, this matrix is stochastic.

Problem: Find x* >0: Ex* =x* x*#0.
The size is very big!

Known technique:

m Regularization + Fixed Point (Google Founders, B.Polyak &
coauthors, etc.)

] Solye it by random CD-method as applied to
IEx = x|+ 3[{e,x) = 1%, v >0.

Main drawback: No interpretation for the objective function!

Yu. Nesterov Subgradient methods for huge-scale problems 18/24

Nonsmooth formulation of Google Problem

Main property of spectral radius (A > 0)

nxn I L i
If Ac RI™", then p(A) = il We o (ei, Ax).

The minimum is attained at the corresponding eigenvector.

Since p(E) =1, our problem is as follows:
def = i .
f = max [(e, Ex) —x] = min.
() max [le Bx) — x> min
Interpretation: Increase self-confidence!
Since f* = 0, we can apply Polyak’s method with sparse updates.
Additional features; the optimal set X* is a convex cone.

If xo = e, then the whole sequence is separated from zero:
(x7e) < (x"xi) < Xl [xelloo = (%", €) - [Ixkl|oo-

Goal: Find X > 0 such that ||X||cc > 1 and f(X) < e.
First condition is satisfied automatically.

Yu. Nesterov Subgradient methods for huge-scale problems

Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GMs) with the
standard one (GM).

Setup: Each agent has exactly p random friends.
def
Th A)= ATe) ~ p?.
us, k(A) 1r§niz%>;wnA(e)~p

Iteration Cost: GM; < k(A)log, N ~ p?log, N, GM = pN.
(log, 103 =10, log, 10° =20, log, 10° = 30)

Time for 10* iterations (p = 32) Time for 103 iterations (p = 16)

Nw(A)Y[GM;| GM NTw(A)Y[GM;| GM
1024 | 1632 | 3.00| 2.98 131072 | 576 | 0.19 | 213.9
2048 | 1792 | 3.36 | 6.41 262144 | 592 | 0.25 | 477.8
4096 | 1888 | 3.75 | 15.11 524288 | 592 | 0.32 | 1095.5
8192 | 1920 | 4.20 | 139.92 1048576 | 608 | 0.40 | 2590.8
16384 | 1824 | 4.69 | 408.38 1 sec ~ 100 min!

Yu. Nesterov Subgradient methods for huge-scale problems 20/24

Convergence of GM,: Medium Size

Let N = 131072, p = 16, x(A) = 576, and L(f) = 0.21.

Iterations | f — f* | Time (sec)

1.0-10° | 0.1100 16.44
3.0-10° | 0.0429 49.32
6.0 -10° | 0.0221 098.65

1.1-10% | 0.0119 180.85
2.2-10° | 0.0057 361.71
4.1-10° | 0.0028 674.09
7.6-10° | 0.0014 1249.54
1.0-107 | 0.0010 1644.13

Dimension and accuracy are sufficiently high, but the time is still
reasonable.

Yu. Nesterov Subgradient methods for huge-scale problems 21/24

Convergence of GM: Large Scale

Let N = 1048576, p = 8, 1(A) = 192, and L(f) = 0.21.

Iterations f—f*| Time (sec)

0 | 2.000000 0.00
1.0-10° | 0.546662 7.69
4.0-10° | 0.276866 30.74
1.0-10° | 0.137822 76.86

2.5-10° | 0.063099 192.14
5.1-10° | 0.032092 391.97
9.9-10° | 0.016162 760.88
1.5-107 | 0.010009 1183.59

Final point %.: [|% [c = 2.941497, R2 % ||%, — e|2 = 1.2 105

Theoretical bound: % =5.3-10". Time for GM: ~ 1 year!

Yu. Nesterov Subgradient methods for huge-scale problems 22/24

Conclusion

Sparse GM is an efficient and reliable method for solving
Large- and Huge- Scale problems with uniform sparsity.

We can treat also dense rows. Assume that inequality
(a,x) < bis dense. It is equivalent to the following system:

yO = OO 0 = yU-D 4 D x0) j=2 ... n,
We need new variables yU) for all nonzero coefficients of a.

m Introduce p(a) additional variables and p(A) additional
equality constraints. (No problem!)

m Hidden drawback: the above equalities are satisfied with errors.

m May be it is not too bad?

Similar technique can be applied to dense columns.

Yu. Nesterov Subgradient methods for huge-scale problems 23/24

Next lecture:

Finding primal-dual solutions for Huge Scale Problems

Yu. Nesterov Subgradient methods for huge-scale problems 24/24

	Sparse Optimization problems
	Sparse updates for linear operators
	Fast updates in computational trees
	Simple subgradient methods
	Application examples
	Computational experiments: Google problem

