
Algorithmic Challenges of Big Data

Subgradient methods for huge-scale optimization
problems

Yurii Nesterov, CORE/INMA (UCL)

August 14, 2014

Lecture 2 (Max Planck Institute)

Yu. Nesterov Subgradient methods for huge-scale problems 1/24



Outline

1 Sparse Optimization problems

2 Sparse updates for linear operators

3 Fast updates in computational trees

4 Simple subgradient methods

5 Application examples

6 Computational experiments: Google problem

Yu. Nesterov Subgradient methods for huge-scale problems 2/24



Sparse problems

Problem: min
x∈Q

f (x), where Q is closed and convex in RN , and

f (x) = Ψ(Ax), where Ψ is a simple convex function:

Ψ(y1) ≥ Ψ(y2) + 〈Ψ′(y2), y1 − y2〉, y1, y2 ∈ RM ,

A : RN → RM is a sparse matrix.

Let p(x)
def
= # of nonzeros in x . Sparsity coefficient:

γ(A)
def
= p(A)

MN .

Example 1: Matrix-vector multiplication

Computation of vector Ax needs p(A) operations.

Initial complexity MN is reduced in γ(A) times.

Yu. Nesterov Subgradient methods for huge-scale problems 3/24



Example: Gradient Method

x0 ∈ Q, xk+1 = πQ(xk − hf ′(xk)), k ≥ 0.

Main computational expenses

Projection of simple set Q needs O(N) operations.

Displacement xk → xk − hf ′(xk) needs O(N) operations.

f ′(x) = ATΨ′(Ax). If Ψ is simple, then the main efforts are
spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with full matrices, we accelerate in
γ(A) times.
Note: For Large- and Huge-scale problems, we often have

γ(A) ≈ 10−4 . . . 10−6. Can we get more?

Yu. Nesterov Subgradient methods for huge-scale problems 4/24



Sparse updating strategy

Main idea

After update x+ = x + d we have y+
def
= Ax+ = Ax︸︷︷︸

y

+Ad .

What happens if d is sparse?

Denote σ(d) = {j : d (j) 6= 0}. Then y+ = y +
∑

j∈σ(d)
d (j) · Aej .

Its complexity, κA(d)
def
=

∑
j∈σ(d)

p(Aej), can be VERY small!

κA(d) = M
∑

j∈σ(d)
γ(Aej) = γ(d) · 1

p(d)

∑
j∈σ(d)

γ(Aej) ·MN

≤ γ(d) max
1≤j≤m

γ(Aej) ·MN.

If γ(d) ≤ cγ(A), γ(Aj) ≤ cγ(A), then

κA(d) ≤ c2 · γ2(A) ·MN .

Expected acceleration: (10−6)2 = 10−12 ⇒ 1 sec ≈ 32 000
years!

Yu. Nesterov Subgradient methods for huge-scale problems 5/24



When it can work?

Simple methods: No full-vector operations! (Is it possible?)

Simple problems: Functions with sparse gradients.

Let us try:

1 Quadratic function f (x) = 1
2〈Ax , x〉 − 〈b, x〉. The gradient

f ′(x) = Ax − b, x ∈ RN ,

is not sparse even if A is sparse.

2 Piece-wise linear function g(x) = max
1≤i≤m

[〈ai , x〉 − b(i)]. Its

subgradient f ′(x) = ai(x), i(x) : f (x) = 〈ai(x), x〉 − b(i(x)),
can be sparse is ai is sparse!

But: We need a fast procedure for updating max-type operations.

Yu. Nesterov Subgradient methods for huge-scale problems 6/24



Fast updates in short computational trees

Def: Function f (x), x ∈ Rn, is short-tree representable, if it can
be computed by a short binary tree with the height ≈ ln n.

Let n = 2k and the tree has k + 1 levels: v0,i = x (i), i = 1, . . . , n.
Size of the next level halves the size of the previous one:

vi+1,j = ψi+1,j(vi ,2j−1, vi ,2j), j = 1, . . . , 2k−i−1, i = 0, . . . , k − 1,

where ψi ,j are some bivariate functions.

v2,1
v1,1 v1,2

v0,1 v0,2 v0,3 v0,4

v2,n/4
v1,n/2−1 v1,n/2

v0,n−3v0,n−2v0,n−1 v0,n

. . . . . . . . .

. . .

vk−1,1 vk−1,2
vk,1

Yu. Nesterov Subgradient methods for huge-scale problems 7/24



Main advantages

Important examples (symmetric functions)

f (x) = ‖x‖p, p ≥ 1, ψi ,j(t1, t2) ≡ [ |t1|p + |t2|p ]1/p ,

f (x) = ln

(
n∑

i=1
ex

(i)

)
, ψi ,j(t1, t2) ≡ ln (et1 + et2) ,

f (x) = max
1≤i≤n

x (i), ψi ,j(t1, t2) ≡ max {t1, t2} .

The binary tree requires only n − 1 auxiliary cells.

Its value needs n − 1 applications of ψi ,j(·, ·) ( ≡ operations).

If x+ differs from x in one entry only, then for re-computing
f (x+) we need only k ≡ log2 n operations.

Thus, we can have pure subgradient minimization schemes with
Sublinear Iteration Cost

.
Yu. Nesterov Subgradient methods for huge-scale problems 8/24



Simple subgradient methods

I. Problem: f ∗
def
= min

x∈Q
f (x), where

Q is a closed and convex and ‖f ′(x)‖ ≤ L(f ), x ∈ Q,

the optimal value f ∗ is known.

Consider the following optimization scheme (B.Polyak, 1967):

x0 ∈ Q, xk+1 = πQ

(
xk −

f (xk)− f ∗

‖f ′(xk)‖2
f ′(xk)

)
, k ≥ 0.

Denote f ∗k = min
0≤i≤k

f (xi ). Then for any k ≥ 0 we have:

f ∗k − f ∗ ≤ L(f )‖x0−πX∗ (x0)‖
(k+1)1/2

,

‖xk − x∗‖ ≤ ‖x0 − x∗‖, ∀x∗ ∈ X∗.

Yu. Nesterov Subgradient methods for huge-scale problems 9/24



Proof:

Let us fix x∗ ∈ X∗. Denote rk(x∗) = ‖xk − x∗‖. Then

r2k+1(x∗) ≤
∥∥∥xk − f (xk )−f ∗

‖f ′(xk )‖2
f ′(xk)− x∗

∥∥∥2
= r2k (x∗)− 2 f (xk )−f ∗

‖f ′(xk )‖2
〈f ′(xk), xk − x∗〉+ (f (xk )−f ∗)2

‖f ′(xk )‖2

≤ r2k (x∗)− (f (xk )−f ∗)2
‖f ′(xk )‖2

≤ r2k (x∗)− (f ∗k −f
∗)2

L2(f )
.

From this reasoning, ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2, ∀x∗ ∈ X ∗.
Corollary: Assume X∗ has recession direction d∗. Then

‖xk − πX∗(x0)‖ ≤ ‖x0 − πX∗(x0)‖, 〈d∗, xk〉 ≥ 〈d∗, x0〉.

(Proof: consider x∗ = πX∗(x0) + αd∗, α ≥ 0.)

Yu. Nesterov Subgradient methods for huge-scale problems 10/24



Constrained minimization (N.Shor (1964) & B.Polyak)

II. Problem: min
x∈Q
{f (x) : g(x) ≤ 0}, where

Q is closed and convex,

f , g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If g(xk) > h ‖g ′(xk)‖, then (A): xk+1 = πQ

(
xk − g(xk )

‖g ′(xk )‖2
g ′(xk)

)
,

else (B): xk+1 = πQ

(
xk − h

‖f ′(xk )‖ f
′(xk)

)
.

Let Fk ⊆ {0, . . . , k} be the set (B)-iterations, and
f ∗k = min

i∈Fk

f (xi ).

Theorem: If k > ‖x0 − x∗‖2/h2, then Fk 6= ∅ and

f ∗k − f (x) ≤ hL(f ), max
i∈Fk

g(xi ) ≤ hL(g).

Yu. Nesterov Subgradient methods for huge-scale problems 11/24



Computational strategies

1. Constants L(f ), L(g) are known (e.g. Linear Programming)

We can take h = ε
max{L(f ),L(g)} . Then we need to decide on the

number of steps N (easy!).

Note: The standard advice is h = R√
N+1

(much more difficult!)

2. Constants L(f ), L(g) are not known

Start from a guess.

Restart from scratch each time we see the guess is wrong.

The guess is doubled after restart.

3. Tracking the record value f ∗k

Double run. Other ideas are welcome!

Yu. Nesterov Subgradient methods for huge-scale problems 12/24



Random sparse coordinate methods

III. Problem: min
x≥0

{
f (x)

def
= max

1≤i≤M
[`i (x) ≡ 〈ai , x〉 − bi ]

}
.

Define i(x) : f (x) = `i(x)(x), and random variable ξ(x), which

gives indexes from σ(ai(x)) with equal probabilities 1
p(ai(x))

.

Assuming that f ∗ is known, we can define now a random vector
variable Next(x) by the following rules:

1. Compute h(x) = f (x)−f ∗
‖f ′(x)‖2 . Generate j(x) = ξ(x).

2. Define [ Next(x) ](j(x)) =
(
x (j(x)) − h(x)a

(j(x))
i(x)

)
+

.

3. For other indexes j 6= j(x), define [ Next(x) ](j) = x (j).

Yu. Nesterov Subgradient methods for huge-scale problems 13/24



Algorithmic scheme

0. Choose x0 ≥ 0. Compute u0 = Ax0 − b and f (x0).
1. kth iteration (k ≥ 0).

a) Generate jk = ξ(xk) and update xk+1 = Next(xk).

b) Update uk+1 = uk + Aejk ·
(
x
(jk )
k+1 − x

(jk )
k

)
, re-computing in

parallel the value of f (xk+1).

This method defines a sequence of discrete random variables {xk}.
Denote f ∗k = min

0≤i≤k
f (xi ).

Theorem: Let p(ai ) ≤ r , i = 1, . . . ,m. Then, for any k ≥ 0 we
have:

E
(

[f ∗k − f ∗]2
)
≤ rL2(f )‖x0−πX∗ (x0)‖2

k+1 ,

E(‖xk − x∗‖2) ≤ ‖x0 − x∗‖2, ∀x∗ ∈ X∗.

NB: One iteration needs at most max
1≤j≤N

p(Aej) · log2M operations.

Yu. Nesterov Subgradient methods for huge-scale problems 14/24



Theoretical consequences

Assume that κ(A) ≈ γ2(A)n2. Compare three methods:

Sparse updates (SU). Complexity γ2(A)n2 L
2R2

ε2
log n

operations.

Smoothing technique (ST). Complexity γ(A)n2 LRε operations.

Polynomial-time methods (PT). Complexity
(γ(A)n + n3)n ln LR

ε operations.

There are three possibilities.

Low accuracy: γ(A)LRε < 1. Then we choose SU.

Moderate accuracy: 1 < γ(A)LRε < n2. We choose ST.

High accuracy: γ(A)LRε > n2. We choose PT.

NB: For Huge-Scale problems usually γ(A) ≈ 1
n . Switch if

n > LR
ε .

Yu. Nesterov Subgradient methods for huge-scale problems 15/24



Application examples

Observations:

1 Very often, Large- and Huge- scale problems have repetitive
sparsity patterns and/or limited connectivity.

Social networks.
Mobile phone networks.
Truss topology design (local bars).
Finite elements models (2D: four neighbors, 3D: six neighbors).

2 For p-diagonal matrices κ(A) ≤ p2.

Yu. Nesterov Subgradient methods for huge-scale problems 16/24



Google problem

Goal: Rank the agents in the society by their social weights.

Unknown: xi ≥ 0 - social influence of agent i = 1, . . . ,N.

Known: σi - set of friends of agent i .

Hypothesis

Agent i shares his support among all friends by equal parts.

The influence of agent i is equal to the total support obtained
from his friends.

Yu. Nesterov Subgradient methods for huge-scale problems 17/24



Mathematical formulation: quadratic problem

Let E ∈ RN×N be an incidence matrix of the connections graph.
Denote e = (1, . . . , 1)T ∈ RN and Ē = E · diag (ET e)−1.
Since, ĒT e = e, this matrix is stochastic.

Problem: Find x∗ ≥ 0 : Ē x∗ = x∗, x∗ 6= 0.
The size is very big!

Known technique:

Regularization + Fixed Point (Google Founders, B.Polyak &
coauthors, etc.)

Solve it by random CD-method as applied to
1
2‖Ē x − x‖2 + γ

2 [〈e, x〉 − 1]2, γ > 0.

Main drawback: No interpretation for the objective function!

Yu. Nesterov Subgradient methods for huge-scale problems 18/24



Nonsmooth formulation of Google Problem

Main property of spectral radius (A ≥ 0)

If A ∈ Rn×n
+ , then ρ(A) = min

x≥0
max
1≤i≤n

1
x(i)
〈ei ,Ax〉.

The minimum is attained at the corresponding eigenvector.

Since ρ(Ē ) = 1, our problem is as follows:

f (x)
def
= max

1≤i≤N
[〈ei , Ē x〉 − x (i)] → min

x≥0
.

Interpretation: Increase self-confidence!
Since f ∗ = 0, we can apply Polyak’s method with sparse updates.
Additional features; the optimal set X ∗ is a convex cone.
If x0 = e, then the whole sequence is separated from zero:

〈x∗, e〉 ≤ 〈x∗, xk〉 ≤ ‖x∗‖1 · ‖xk‖∞ = 〈x∗, e〉 · ‖xk‖∞.
Goal: Find x̄ ≥ 0 such that ‖x̄‖∞ ≥ 1 and f (x̄) ≤ ε.

(First condition is satisfied automatically.)
Yu. Nesterov Subgradient methods for huge-scale problems 19/24



Computational experiments: Iteration Cost

We compare Polyak’s GM with sparse update (GMs) with the
standard one (GM).

Setup: Each agent has exactly p random friends.

Thus, κ(A)
def
= max

1≤i≤M
κA(AT ei ) ≈ p2.

Iteration Cost: GMs ≤ κ(A) log2N ≈ p2 log2N, GM ≈ pN.
(log2 103 = 10, log2 106 = 20, log2 109 = 30)

Time for 104 iterations (p = 32)

N κ(A) GMs GM

1024 1632 3.00 2.98
2048 1792 3.36 6.41
4096 1888 3.75 15.11
8192 1920 4.20 139.92

16384 1824 4.69 408.38

Time for 103 iterations (p = 16)

N κ(A) GMs GM

131072 576 0.19 213.9
262144 592 0.25 477.8
524288 592 0.32 1095.5

1048576 608 0.40 2590.8

1 sec ≈ 100 min!

Yu. Nesterov Subgradient methods for huge-scale problems 20/24



Convergence of GMs : Medium Size

Let N = 131072, p = 16, κ(A) = 576, and L(f ) = 0.21.

Iterations f − f ∗ Time (sec)

1.0 · 105 0.1100 16.44
3.0 · 105 0.0429 49.32
6.0 · 105 0.0221 98.65
1.1 · 106 0.0119 180.85
2.2 · 106 0.0057 361.71
4.1 · 106 0.0028 674.09
7.6 · 106 0.0014 1249.54
1.0 · 107 0.0010 1644.13

Dimension and accuracy are sufficiently high, but the time is still
reasonable.

Yu. Nesterov Subgradient methods for huge-scale problems 21/24



Convergence of GMs : Large Scale

Let N = 1048576, p = 8, κ(A) = 192, and L(f ) = 0.21.

Iterations f − f ∗ Time (sec)

0 2.000000 0.00
1.0 · 105 0.546662 7.69
4.0 · 105 0.276866 30.74
1.0 · 106 0.137822 76.86
2.5 · 106 0.063099 192.14
5.1 · 106 0.032092 391.97
9.9 · 106 0.016162 760.88
1.5 · 107 0.010009 1183.59

Final point x̄∗: ‖x̄∗‖∞ = 2.941497, R2
0

def
= ‖x̄∗ − e‖22 = 1.2 · 105.

Theoretical bound:
L2(f )R2

0
ε2

= 5.3 ·107. Time for GM: ≈ 1 year!

Yu. Nesterov Subgradient methods for huge-scale problems 22/24



Conclusion

1 Sparse GM is an efficient and reliable method for solving
Large- and Huge- Scale problems with uniform sparsity.

2 We can treat also dense rows. Assume that inequality
〈a, x〉 ≤ b is dense. It is equivalent to the following system:

y (1) = a(1) x (1), y (j) = y (j−1) + a(j) x (j), j = 2, . . . , n,

y (n) ≤ b.

We need new variables y (j) for all nonzero coefficients of a.

Introduce p(a) additional variables and p(A) additional
equality constraints. (No problem!)
Hidden drawback: the above equalities are satisfied with errors.
May be it is not too bad?

3 Similar technique can be applied to dense columns.

Yu. Nesterov Subgradient methods for huge-scale problems 23/24



Next lecture:

Finding primal-dual solutions for Huge Scale Problems

Yu. Nesterov Subgradient methods for huge-scale problems 24/24


	Sparse Optimization problems
	Sparse updates for linear operators
	Fast updates in computational trees
	Simple subgradient methods
	Application examples
	Computational experiments: Google problem

