Finding primal-dual solutions for Huge Scale Problems

Yurii Nesterov, CORE/INMA (UCL)

August 15, 2014

Lecture 3 (Max Planck Institute)
Optimization problem: simple constraints

Consider the problem: \(\min_{x \in Q} f(x) \), where

- \(Q \) is a closed convex set: \(x, y \in Q \Rightarrow [x, y] \subseteq Q \),
- \(f \) is a subdifferentiable on \(Q \) convex function:
 \[f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle, \quad x, y \in Q, \nabla f(x) \in \partial f(x). \]

Optimality condition: point \(x^* \in Q \) is optimal iff

\[\langle \nabla f(x^*), x - x^* \rangle \geq 0, \quad \forall x \in Q. \]

Interpretation: Function increases along any feasible direction.
1. **Interior solution.** Let $x_* \in \text{int } Q$. Then
\[
\langle \nabla f(x_*), x - x_* \rangle \geq 0, \quad \forall x \in Q \quad \text{implies} \quad \nabla f(x_*) = 0.
\]

2. **Optimization over positive orthant.**
Let $Q \equiv \mathbb{R}_+^n = \{ x \in \mathbb{R}^n : x^{(i)} \geq 0, \ i = 1, \ldots, n \}$.

Optimality condition:
\[
\langle \nabla f(x_*), x - x_* \rangle \geq 0, \quad \forall x \in \mathbb{R}_+^n.
\]

Coordinate form:
\[
\nabla_i f(x_*) \left(x^{(i)} - x_*^{(i)} \right) \geq 0, \quad \forall x^{(i)} \geq 0.
\]

This means that
- \[
\nabla_i f(x_*) \geq 0, \quad i = 1, \ldots, n, \quad (\text{tend } x^{(i)} \rightarrow \infty)
\]
- \[
x_*^{(i)} \nabla_i f(x_*) = 0, \quad i = 1, \ldots, n, \quad (\text{set } x^{(i)} = 0.)
\]
Optimization problem: functional constraints

Problem: \[\min_{x \in Q} \{ f_0(x), f_i(x) \leq 0, \ i = 1, \ldots, m \}, \] where

- \(Q \) is a closed convex set,
- all \(f_i \) are convex and subdifferentiable on \(Q, \ i = 0, \ldots, m \):
 \[f_i(y) \geq f_i(x) + \langle \nabla f_i(x), y - x \rangle, \quad x, y \in Q, \ \nabla f_i(x) \in \partial f_i(x). \]

Optimality condition (KKT, 1956): point \(x_* \in Q \) is optimal iff there exist Lagrange multipliers \(\lambda_*^{(i)} \geq 0, \ i = 1, \ldots, m \), such that

(1) \[\langle \nabla f_0(x_*), x - x_* \rangle + \sum_{i=1}^{m} \lambda_*^{(i)} \nabla f_i(x_*), x - x_* \rangle \geq 0, \quad \forall x \in Q, \]

(2) \[f_i(x_*)) \leq 0, \quad i = 1, \ldots, m, \quad \text{(feasibility)} \]

(3) \[\lambda_*^{(i)} f_i(x_*)) = 0, \quad i = 1, \ldots, m. \quad \text{(complementary slackness)} \]
Lagrange multipliers: interpretation

Let $\mathcal{I} \subseteq \{1, \ldots, m\}$ be an arbitrary set of indexes.

Denote $f_{\mathcal{I}}(x) = f_0(x) + \sum_{i \in \mathcal{I}} \lambda^{(i)} f_i(x)$. Consider the problem

$$P_{\mathcal{I}} : \min_{x \in Q} \{ f_{\mathcal{I}}(x) : f_i(x) \leq 0, i \not\in \mathcal{I} \}.$$

Observation: in any case, x_* is the optimal solution of problem $P_{\mathcal{I}}$.

Interpretation: $\lambda^{(i)}_*$ are the *shadow prices* for resources. (Kantorovich, 1939)

Application examples:
- Traffic congestion: car flows on roads \Leftrightarrow size of queues.
- Electrical networks: currents in the wires \Leftrightarrow voltage potentials, etc.

Main question: How to compute (x_*, λ_*)?
Algebraic interpretation

Consider the Lagrangian \(\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^{m} \lambda^{(i)} f_i(x) \).

Condition KKT(1): \[\langle \nabla f_0(x_*) + \sum_{i=1}^{m} \lambda_*^{(i)} \nabla f_i(x_*), x - x_* \rangle \geq 0, \]
\(\forall x \in Q \), implies \[x_* \in \text{Arg min}_{x \in Q} \mathcal{L}(x, \lambda_*). \]

Define the dual function \(\phi(\lambda) = \min_{x \in Q} \mathcal{L}(x, \lambda), \lambda \geq 0 \). It is concave!

By Danskin’s Theorem, \(\nabla \psi(\lambda) = (f_1(x(\lambda)), \ldots, f_m(x(\lambda))) \), with \[x(\lambda) \in \text{Arg max}_{x \in Q} \mathcal{L}(x, \lambda). \]

Conditions KKT(2,3): \(f_i(x_*) \leq 0, \lambda_*^{(i)} f_i(x_*) = 0, i = 1, \ldots, m, \)
imply \((x_* = x(\lambda_*)) \)
\[\lambda_* \in \text{Arg max}_{\lambda \geq 0} \phi(\lambda). \]
Main idea: solve the dual problem \[
\max_{\lambda \geq 0} \phi(\lambda)
\]
by the subgradient method:

1. Compute \(x(\lambda_k) \) and define \(\nabla \phi(\lambda_k) = (f_1(x(\lambda_k)), \ldots, f_m(x(\lambda_k))) \).

2. Update \(\lambda_{k+1} = \text{Project}_{\mathbb{R}^n_+} (\lambda_k + h_k \nabla \phi(\lambda_k)) \).

Stepsizes \(h_k > 0 \) are defined in the usual way.

Main difficulties:
- Each iteration is time consuming.
- Unclear termination criterion.
- Low rate of convergence \((O\left(\frac{1}{e^2}\right) \text{ upper-level iterations}) \).
Define the Augmented Lagrangian
\[
\hat{\mathcal{L}}_K(x, \lambda) = f_0(x) + \frac{1}{2K} \sum_{i=1}^{m} \left(\lambda^{(i)} + Kf_i(x) \right)^2_+ - \frac{1}{2K} \|\lambda\|_2^2, \quad \lambda \in \mathbb{R}^m,
\]
where \(K > 0 \) is a penalty parameter.

Consider the dual function \(\hat{\phi}(\lambda) = \min_{x \in Q} \hat{\mathcal{L}}(x, \lambda) \).

- **Main properties.** Function \(\hat{\phi} \) is concave. Its gradient is Lipschitz continuous with constant \(\frac{1}{K} \).
- Its unconstrained maximum is attained at the optimal dual solution.
- The corresponding point \(\hat{x}(\lambda_*) \) is the optimal primal solution.

Hint: Check that the equation
\[
(\lambda^{(i)} + Kf_i(x))_+ = \lambda^{(i)}
\]
is equivalent to KKT(2,3).
Method of Augmented Lagrangians

Note that \(\nabla \hat{\phi}(\lambda) = \frac{1}{K} \left(\lambda^{(i)} + Kf_i(x) \right)_+ - \frac{1}{K} \lambda \).

Therefore, the usual gradient method \(\lambda_{k+1} = \lambda_k + K\nabla \hat{\phi}(\lambda_k) \) is exactly as follows:

Method: \[\lambda_{k+1} = (\lambda_k + Kf(\hat{x}(\lambda_k)))_+ . \]

Advantage: Fast *local* convergence of the dual process.

Disadvantages:

- Difficult iteration.
- Unclear termination.
- No global complexity analysis.

Do we have an alternative?
Problem formulation

Problem: \(f^* = \inf_{x \in Q} \{ f_0(x) : f_i(x) \leq 0, \ i = 1, \ldots, m \} \), where

- \(f_i(x), \ i = 0, \ldots, m, \) are closed convex functions on \(Q \) endowed with a first-order black-box oracles,
- \(Q \subset E \) is a bounded simple closed convex set. (We can solve some auxiliary optimization problems over \(Q \).)

Defining the Lagrangian
\[
\mathcal{L}(x, \lambda) = f_0(x) + \sum_{i=1}^{m} \lambda(i) f_i(x), \quad x \in Q, \ \lambda \in \mathbb{R}^m_+,
\]
we can introduce the Lagrangian dual problem
\[
f_* \overset{\text{def}}{=} \sup_{\lambda \in \mathbb{R}^m_+} \phi(\lambda),
\]
where \(\phi(\lambda) \overset{\text{def}}{=} \inf_{x \in Q} \mathcal{L}(x, \lambda) \).

Clearly, \(f^* \geq f_* \). Later, we will show \(f^* = f_* \) algorithmically.
Bregman distances

Prox-function: \(d(\cdot) \) is strongly convex on \(Q \) with parameter one:
\[
d(y) \geq d(x) + \langle \nabla d(x), y - x \rangle + \frac{1}{2} \|y - x\|^2, \quad x, y \in Q.
\]

Denote by \(x_0 \) the prox-center of the set \(Q \): \(x_0 = \arg \min_{x \in Q} d(x) \).

Assume \(d(x_0) = 0 \).

Bregman distance:
\[
\beta(x, y) = d(y) - d(x) - \langle \nabla d(x), y - x \rangle, \quad x, y \in Q.
\]

Clearly, \(\beta(x, y) \geq \frac{1}{2} \|x - y\|^2 \) for all \(x, y \in Q \).

Bregman mapping: for \(x \in Q, g \in E^* \) and \(h > 0 \) define
\[
B_h(x, g) = \arg \min_{y \in Q} \{ h \langle g, y - x \rangle + \beta(x, y) \}.
\]

The first-order condition for point \(x_+ = B_h(x, g) \) is as follows:
\[
\langle hg + \nabla d(x_+) - \nabla d(x), y - x_+ \rangle \geq 0, \quad y \in Q.
\]
Examples

1. Euclidean distance. We choose \(\|x\| = \left[\sum_{i=1}^{n} (x^{(i)})^2 \right]^{1/2} \) and \(d(x) = \frac{1}{2} \|x\|^2 \). Then \(\beta(x, y) = \frac{1}{2} \|x - y\|^2 \), and we have

\[
\mathcal{B}_h(x, g) = \text{Projection}_Q(x - hg).
\]

2. Entropy distance. We choose \(\|x\| = \sum_{i=1}^{n} |x^{(i)}| \) and

\[
d(x) = \ln n + \sum_{i=1}^{n} x^{(i)} \ln x^{(i)}. \quad \text{Then}
\]

\[
\beta(x, y) = \sum_{i=1}^{n} y^{(i)} [\ln y^{(i)} - \ln x^{(i)}].
\]

If \(Q = \{ x \in \mathbb{R}^n : \sum_{i=1}^{n} x^{(i)} = 1 \} \), then

\[
\mathcal{B}^{(i)}_h(x, g) = x^{(i)} e^{-hg^{(i)}} / \left[\sum_{j=1}^{n} x^{(j)} e^{-hg^{(j)}} \right], \quad i = 1, \ldots, n.
\]
Switching subgradient method

Input parameter: the step size \(h > 0 \).

Initialization: Compute the prox-center \(x_0 \).

Iteration \(k \geq 0 \): a) Define \(\mathcal{I}_k = \{ i \in \{1, \ldots, m\} : f_i(x_k) > h\|\nabla f_i(x_k)\|_* \} \).

b) If \(\mathcal{I}_k = \emptyset \), then compute \(x_{k+1} = B_h \left(x_k, \frac{\nabla f_0(x_k)}{\|\nabla f_0(x_k)\|_*} \right) \).

c) If \(\mathcal{I}_k \neq \emptyset \), then choose arbitrary \(i_k \in \mathcal{I}_k \) and define

\[
h_k = \frac{f_{i_k}(x_k)}{\|\nabla f_{i_k}(x_k)\|_*^2}.
\]

Compute \(x_{k+1} = B_{h_k} \left(x_k, \nabla f_{i_k}(x_k) \right) \).

After \(t \geq 0 \) iterations, define \(\mathcal{F}_t = \{ k \in \{0, \ldots, t\} : \mathcal{I}_k = \emptyset \} \).

Denote \(N(t) = |\mathcal{F}(t)| \). It is possible that \(N(t) = 0 \).
Finding the dual multipliers

if $N(t) > 0$, define the dual multipliers as follows:

1. $\lambda_t^{(0)} = h \sum_{k \in \mathcal{F}_t} \frac{1}{\|\nabla f_0(x_k)\|_*}$,

2. $\lambda_t^{(i)} = \frac{1}{\lambda_t^{(0)}} \sum_{k \in \mathcal{A}_i(t)} h_k, \quad i = 1, \ldots, m$,

where $\mathcal{A}_i(t) = \{ k \in \{0, \ldots, t\} : i_k = i \}$, $0 \leq i \leq m$.

Denote $S_t = \sum_{k \in \mathcal{F}_t} \frac{1}{\|\nabla f_0(x_k)\|_*}$. If $\mathcal{F}_t = \emptyset$, then we define $S_t = 0$.

For proving convergence of the switching strategy, we find an upper bound for the gap

$$\delta_t = \frac{1}{S_t} \sum_{k \in \mathcal{F}(t)} \frac{f_0(x_k)}{\|\nabla f_0(x_k)\|_*} - \phi(\lambda_t),$$

assuming that $N(t) > 0$.
Convergence analysis

Note that $\lambda_t^{(0)} = h \cdot S(t)$. Therefore

$$\lambda_t^{(0)} \cdot \delta_t = \sup_{x \in Q} \left\{ h \sum_{k \in \mathcal{F}(t)} \frac{f_0(x_k)}{\|\nabla f_0(x_k)\|_*} - \lambda_t^{(0)} f_0(x) - \sum_{i=1}^m \sum_{k \in \mathcal{A}_i(t)} h_k f_i(x) \right\}$$

$$= \sup_{x \in Q} \left\{ h \sum_{k \in \mathcal{F}(t)} \frac{f_0(x_k)-f_0(x)}{\|\nabla f_0(k)\|_*} - \sum_{k \notin \mathcal{F}(t)} h_k f_{i_k}(x) \right\}$$

$$\leq \sup_{x \in Q} \left\{ h \sum_{k \in \mathcal{F}(t)} \frac{\langle \nabla f_0(x_k) , x_k - x \rangle}{\|\nabla f_0(x_k)\|_*} + \sum_{k \notin \mathcal{F}(t)} h_k [\langle \nabla f_{i_k}(x_k) , x_k - x \rangle - f_{i_k}(x_k)] \right\}.$$

Let us estimate from above the right-hand side of this inequality.
For arbitrary \(x \in Q \), denote \(r_t(x) = \beta(x_t, x) \). Then

\[
\begin{align*}
 r_{t+1}(x) - r_t(x) &= [d(x) - d(x_{t+1}) - \langle \nabla d(x_{t+1}), x - x_{t+1} \rangle] \\
 &\quad - [d(x) - d(x_t) - \langle \nabla d(x_t), x - x_t \rangle] \\
 &= \langle \nabla d(x_t) - \nabla d(x_{t+1}), x - x_{t+1} \rangle \\
 &\quad - [d(x_{t+1}) - d(x_t) - \langle \nabla d(x_t), x_{t+1} - x_t \rangle] \\
 &\leq \langle \nabla d(x_t) - \nabla d(x_{t+1}), x - x_{t+1} \rangle - \frac{1}{2} \| x_t - x_{t+1} \|_2^2.
\end{align*}
\]

In view of optimality condition, for all \(x \in Q \) and \(k \in \mathcal{F}(t) \) we have

\[
\frac{h}{\| \nabla f_0(x_k) \|_*} \langle \nabla f_0(x_k), x_{k+1} - x \rangle \leq \langle \nabla d(x_{k+1}) - \nabla d(x_k), x - x_{k+1} \rangle.
\]

Assume that \(k \in \mathcal{F}_t \). In this case,

\[
\begin{align*}
 r_{k+1}(x) - r_k(x) &\leq - \frac{h}{\| \nabla f_0(x_k) \|_*} \langle \nabla f_0(x_k), x_{k+1} - x \rangle - \frac{1}{2} \| x_k - x_{k+1} \|_2^2 \\
 &\leq - \frac{h}{\| \nabla f_0(x_k) \|_*} \langle \nabla f_0(x_k), x - x_k \rangle + \frac{1}{2} h^2.
\end{align*}
\]
Infeasible step

If \(k \not\in \mathcal{F}(t) \), then the optimality condition defining the point \(x_{k+1} \) looks as follows:

\[
 h_k \langle \nabla f_{i_k}(x_k), x_{k+1} - x \rangle \leq \langle \nabla d(x_{k+1}) - \nabla d(x_k), x - x_{k+1} \rangle.
\]

Therefore,

\[
 r_{k+1}(x) - r_k(x) \leq -h_k \langle \nabla f_{i_k}(x_k), x_{k+1} - x \rangle - \frac{1}{2} \| x_k - x_{k+1} \|^2
\]

\[
 \leq -h_k \langle \nabla f_{i_k}(x_k), x_k - x \rangle + \frac{1}{2} h_k^2 \| \nabla f_{i_k}(x_k) \|^2_*.
\]

Hence,

\[
 h_k \left[\langle \nabla f_{i_k}(x_k), x_k - x \rangle - f_{i_k}(x_k) \right] \leq r_k(x) - r_{k+1}(x) - \frac{f_{i_k}^2(x_k)}{2 \| \nabla f_{i_k}(x_k) \|^2_*}
\]

\[
 \leq r_k(x) - r_{k+1}(x) - \frac{1}{2} h^2.
\]
Convergence result

Summing up all inequalities for $k = 0, \ldots, t$, and taking into account that $r_{t+1}(x) \geq 0$, we obtain

$$\lambda_t^{(0)} \delta_t \leq r_0(x) + \frac{1}{2} N(t) h^2 - \frac{1}{2} (t - N(t)) h^2 = r_0(x) - \frac{1}{2} th^2 + N(t) h^2.$$

Denote $D = \max_{x \in Q} r_0(x)$.

Theorem. If the number $t \geq \frac{2}{h^2} D$, then $\mathcal{F}(t) \neq \emptyset$.

In this case $\delta_t \leq M h$ and $\max_{1 \leq i \leq m} f_i(x_k) \leq M h$, $k \in \mathcal{F}(t)$

where $M = \max_{0 \leq k \leq t} \max_{0 \leq i \leq m} ||\nabla f_i(x_k)||_*$.

Proof: If $\mathcal{F}(t) = \emptyset$, then $N(t) = 0$. Consequently, $\lambda_t^{(0)} = 0$.

This is impossible for t big enough.

Finally, $\lambda_t^{(0)} \geq \frac{h}{M} N(t)$. Therefore, if t is big enough, then $\delta_t \leq \frac{N(t) h^2}{\lambda_t^{(0)}} \leq M h$. □
1. Optimal primal-dual solution can be approximated by a simple switching subgradient scheme.

2. Dual process looks as a coordinate-descent method.

3. Approximations of dual multipliers have natural interpretation: relative importance of corresponding constraints during the adjustments process.

4. However, it has optimal worst-case efficiency estimate even if the dual optimal solution does not exist.

5. Many interesting questions (influence of smoothness, strong convexity, etc.)
Linear Conic Problems

Assume that the space of primal variables E is partitioned:

$$x^j \in E_j, \ j = 1, \ldots, n, \quad x = (x^1, \ldots, x^n) \in E,$$

Thus, $\dim E = \sum_{j=1}^n \dim E_j$, and $\langle c, x \rangle \overset{\text{def}}{=} \sum_{j=1}^n \langle c^j, x^j \rangle$ for any $c \in E^*$.

Linear operator: $A = (A_1, \ldots, A_n)$, $Ax \overset{\text{def}}{=} \sum_{j=1}^n A_j x^j$, $x \in E$.

Primal cone: $x \in K = \bigotimes_{j=1}^n K_j$, $K_j \subset E_j$ are closed convex pointed.

Thus, $K^* = \bigotimes_{j=1}^n K_j^*$.

Primal problem: $f_* \overset{\text{def}}{=} \inf_{x \in K} \{ \langle c, x \rangle : Ax = b \}$, $b \in \mathbb{R}^m$.

Dual problem: $\sup_{y \in \mathbb{R}^m, s \in K^*} \{ \langle b, y \rangle : s + A^* y = c \}$.

Assumption: Dual Problem is solvable. $\Rightarrow \langle s^*, x^* \rangle = 0$.
Important: Constraints in the dual problem are separable

$$\sup_{y \in R^m, s \in E^*} \left\{ \langle b, y \rangle : s^j = c^j - A_j^T y \in K_j^*, j = 1, \ldots, n \right\}.$$

We need to write them in a functional form.

In each cone K_j^* we fix a scaling element $d^j \in \text{int} K_j^*$, $j = 1, \ldots, n$.

For $u^j \in E_j^*$, define $\psi_j(u^j) \overset{\text{def}}{=} \min_{\tau} \left\{ \tau : \tau d^j - u^j \in K_j^* \right\}$.

Note: $c^j - A_j^T y \in K_j^*$ iff $f_j(y) \overset{\text{def}}{=} \psi_j(A_j^T y - c^j) \leq 0$.

Example: $K = R^n_+$. Then $K^* = K$. Choose $d = e \in K^*$. Then

$$\psi(u) = \max_{1 \leq i \leq n} u(i).$$
Subgradients of functional constraints

Primal form: $\psi_j(u^j) = \max_{x^j \in K_j} \{ \langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1 \}$.

Thus, $\partial \psi_j(u^j) = \text{Arg} \max_{x^j \in K_j} \{ \langle u^j, x^j \rangle : \langle d^j, x^j \rangle = 1 \} \ni x^j(u^j)$.

Constraint: $f_j(y) = \psi_j(A^T_j y - c^j)$.

Subgradient: $f'_j(y) \overset{\text{def}}{=} A_j x^j(A^T_j y - c^j) \in \partial f_j(y) \subset \mathbb{R}^m$.

Denote $F_j^*(\cdot)$ a self-concordant barrier for cone K_j^*.

Theorem: $\|f'_j(y)\|_{(2)}^* \leq \sigma_j \overset{\text{def}}{=} \sigma_j \overset{1/2}{=} \lambda_{\text{max}} \left(A_j \nabla^2 F_j^*(d^j) A^T_j \right)$.

Examples

1. If $K_j = R_+^1$, then $A_j = Ae_j \in R^m$, where e_j is the jth basis vector in R^n.

Let us take $F_j(z) = -\ln z$ and $d^j = 1$. Then $\nabla^2 F_j(z^j) = 1$ and

$$\sigma^2_j = \lambda_{\text{max}}(A_j A_j^T) = ||A_j||^2.$$

2. Let $K_j = \{S_j \succeq 0_{p \times p}\}$. We take $F_j(z) = -\ln \det z$, and $z^j = d^j = I_p$.

Then $A_j^*(y) = \sum_{i=1}^m A^i_j y^i$, $y \in R^m$, where A^i_j are symmetric $p \times p$-matrices. Thus,

$$\sigma_j = \max_{||y||=1} ||\sum_{i=1}^m A^i_j y^i||_F = \max_{||y||=1, \|B\|_F=1} \langle \sum_{i=1}^m A^i_j y^i, B \rangle = \max_{\|B\|_F=1} \left[\sum_{i=1}^m \langle A^i_j, B \rangle^2 \right]^{1/2}.$$

We assume that all σ_j, $j = 1, \ldots, n$, are computed in advance.
New Dual Problem

Denote $g_j(y) = \frac{1}{\sigma_j} f_j(y)$. Consider the problem:

$$\sup_{y \in \mathbb{R}^m, s \in E^*} \left\{ \langle b, y \rangle : g(y) \overset{\text{def}}{=} \max_{1 \leq j \leq n} g_j(y) \leq 0 \right\}.$$

Denote by $j(y)$ the active index j such that $g_j(y) = g(y)$. Then

$$g'(y) = \frac{1}{\sigma_{j(y)}} A_{j(y)} x_{j(y)} \left(A_{j(y)}^T y - c_{j(y)} \right), \quad \|g'(y)\| \leq 1.$$

Maximization scheme: Choose $h > 0$. Define $y_0 = 0$.

For $k \geq 0$ do:

if $g(y_k) \leq h$, then (F): $y_{k+1} = y_k + h \cdot \frac{b}{\|b\|},$

else (G): $y_{k+1} = y_k - g(y_k) \cdot g'(y_k).$
Primal and dual minimization sequences

For $N \geq 0$, denote by \mathcal{F}_N the set of iterations of type (F).
Let $\mathcal{G}_N \overset{\text{def}}{=} \{0, \ldots, N\} \setminus \mathcal{F}_N$, $N_f \overset{\text{def}}{=} |\mathcal{F}_N|$, and $N_g \overset{\text{def}}{=} |\mathcal{G}_N|$.

For step (F), $c^j - A_j^*y_k + h\sigma_j d^j \in K_j^*$, $j = 1, \ldots, n$, $k \in \mathcal{F}_N$.
Denote $e_j(x^j) \in E$: $e_j^i(x^j) = \begin{cases} x^j, & i = j, \\ 0, & \text{otherwise}, \end{cases} \quad i = 1, \ldots, n$.

Define the approximate primal-dual solutions as follows:

\[
\tilde{x}_N \overset{\text{def}}{=} \frac{\|b\|}{hN_f} \sum_{k \in \mathcal{G}_N} \frac{g(y_k)}{\sigma_j(y_k)} e_j(y_k) \left(x^j(y_k)(A_j^*(y_k)y_k - c^j(y_k)) \right) \in K,
\]
\[
\tilde{y}_N = \frac{1}{N_f} \sum_{k \in \mathcal{F}_N} y_k, \quad \tilde{s}_N = c - A^T\tilde{y}_N.
\]

This choice is motivated by the following relations:

\[
\tilde{s}_N^j = c^j - \frac{1}{N_f} \sum_{k \in \mathcal{F}_N} A_j^*y_k \succeq K_j^* - h\sigma_j d^j,
\]
\[
y_{N+1} = \frac{hN_f}{\|b\|} \cdot b - \sum_{k \in \mathcal{G}_N} \frac{g(y_k)}{\sigma_j(y_k)} A e_j(y_k) \left(x^j(y_k)(A_j^*(y_k)y_k - c^j(y_k)) \right).
\]
Convergence

Denote $\hat{d} \in K^*$: $\hat{d}^j = \sigma_j d^j$, $j = 1, \ldots, n$.

Theorem. Let $\hat{D} = 2 \left(\frac{\langle \hat{d}, x^* \rangle}{\|b\|} + 1 \right)$. For any $N \geq 0$ we have:

$$N_f \geq \frac{1}{\hat{D}} \left(N + 1 - \frac{\|y^*\|^2}{h^2} \right).$$

If $N_f \geq 1$, then $\langle c, \bar{x}_N \rangle - \langle b, \bar{y}_N \rangle \leq \frac{1}{2} h\|b\|$.

Finally, if $N + 1 > \frac{\|y^*\|^2}{h^2}$, then

$$\langle x^*, \bar{s}_N \rangle + \langle \bar{x}_N, s^* \rangle \leq h\|b\|,$$

and the residual in the primal-dual system vanishes as $N \to \infty$:

$$\frac{1}{\|b\|} \|b - A\bar{x}_N\| \leq \sqrt{\frac{\hat{D}}{N_f}} + \frac{\|y^*\|}{hN_f}. $$
Example: Solving huge LP

Let $K = R^n_+$. Then $\sigma_j = \|Ae_j\|$, $j = 1, \ldots, n$.

Assume the data is uniformly sparse: for all i and j
\[p(c) \leq r, \quad p(A^T e_i) \leq r, \quad p(b) \leq q, \quad p(Ae_j) \leq q, \]
with $r \ll n$ and $q \ll m$.

Preliminary work: $O(p(A))$ operations at most.

One iteration:

- Update y_k: $O(q)$ operations at most.
- Update new slack s_{k+1}: $O(rq \log_2 n)$ operations.
- Update the norm $\|y_k\|^2$: $O(q)$ operations.

Conclusion: cost of one iteration is $O(rq \log_2 n)$.

NB: Often r and q do not depend on n.
1. We have seen that both smooth and nonsmooth Huge-Scale convex optimization problems can be solved by gradient methods.
2. In many cases we can approximate the primal-dual solutions.
3. It is possible only if we properly use the problem structure.
4. It seems that in the future, any serious optimization problem will require development of its own optimization scheme.

Good luck!