ADFOCS 2015

Exercises on Maximizing Submodular Functions
August 17-21, 2015

1. In the mazimum coverage problem, we have a set of elements E, and m subsets of
elements S1,...,5, C FE, each with a nonnegative weight w; > 0. The goal is to
choose k elements such that we maximize the weight of the subsets that are covered.
We say that a subset is covered if we have chosen some element from it. Thus we
want to find S C E such that |S| = k and that we maximize the total weight of the
subsets j such that SN S; # 0.

(a) Give a (1 — 1)-approximation algorithm for this problem.

(b) (Not easy) Show that if an approximation algorithm with performance guarantee
better than 1 — % + € exists for the maximum coverage problem for some constant
e > 0, then P = NP. (Hint: For this problem, you need to know that there is
no (clnn)-approximation algorithm for ¢ < 1 for the set cover problem unless
P=NP.)

2. A matroid (E,T) is a set E of ground elements together with a collection Z of subsets
of E; that is, if S € Z, then S C FE. A set S € 7 is said to be independent. The
independent sets of a matroid obey the following two axioms:

e If S is independent, then any S’ C S is also independent.

e If S and T are independent, and |S| < |T'|, then there is some e € T' — S such
that S U {e} is also independent.

An independent set S is a base of the matroid if no set strictly containing it is also
independent.

(a) Given an undirected graph G = (V, E), show that the forests of G form a matroid;
that is, show that if F is the ground set, and Z the set of forests of G, then the
matroid axioms are obeyed.

(b) Show that for any matroid, every base of the matroid has the same number of
ground elements.

(¢) For any given matroid, suppose that for each e € E, we have a nonnegative weight
we > 0. Give a greedy algorithm for the problem of finding a maximum-weight
base of a matroid.

3. Let (E,Z) be a matroid as defined above, and let f be a monotone, submodular
function such that f(0) = 0. Consider the following local search algorithm for finding
a maximum-value base of the matroid: First, start with an arbitrary base S. Then
consider all pairs e € S and ¢’ ¢ S. If SU{e'} —{e} is a base, and f(SU{e'} —{e}) >
f(S), then set S «— SU{e'} — {e}. Repeat until a locally optimal solution is reached.



The goal of this problem is to show that a locally optimal solution has value at least
half the optimal value.

(a) We begin with a simple case: suppose that the matroid is a uniform matroid,
that is, S C F is independent if |S| < k for some fixed k. Prove that for a locally
optimal solution S, f(S) > 1 OPT.

(b) To prove the general case, it is useful to know that for any two bases of a matroid,
X and Y, there exists a bijection g : X — Y such that for any e € X, S — {e} U
{g(e)} is independent. Use this to prove that for any locally optimal solution S,
f(S) > 1 OPT.

4. We showed that a randomized greedy algorithm could be used to obtain a %—approximation
algorithm for maximizing nonnegative, nonmonotone submodular functions. Here we
consider a deterministic variant of that algorithm, shown below. Recall that we defined
the function f over the set {1,...,n}, and defined X, =X;U {i+1,...,n}. For your
proof, you may find it useful again to consider OPT; = X; U (OPTN{i + 1,...,n}),

where OPT is an optimal set. Recall that for randomized algorithm we showed that

BIf(OPT; 1) ~ J(OPT)] £ SEIf(X:) — f(Xi1) + (%) — f(Ki 1)l

X() — @
for i + 1 ton do
ai + f(Xio1 U{i}) — f(Xio1)

ri < f(Xio1 —{i}) — f(Xi1)
if a; > r; then
X+ X; 1 U {’l}
else
Xi — Xi—l
return X,

(a) Prove that it gives a %—approximation algorithm for the problem, for f a non-

negative, nonmonotone submodular function. What inequality leads to a -

3
approximation algorithm?

(b) (Challenge problem) Show that if f is symmetric (that is, f(X) = f(E — X) for

all X), then the same algorithm gives a %—approximation algorithm.



