ADFOCS 2015

Exercises on Maximizing Submodular Functions

August 17-21, 2015

- 1. In the maximum coverage problem, we have a set of elements E, and m subsets of elements $S_1, \ldots, S_m \subseteq E$, each with a nonnegative weight $w_j \ge 0$. The goal is to choose k elements such that we maximize the weight of the subsets that are covered. We say that a subset is covered if we have chosen some element from it. Thus we want to find $S \subseteq E$ such that |S| = k and that we maximize the total weight of the subsets j such that $S \cap S_j \neq \emptyset$.
 - (a) Give a $(1 \frac{1}{e})$ -approximation algorithm for this problem.
 - (b) (Not easy) Show that if an approximation algorithm with performance guarantee better than $1 \frac{1}{e} + \epsilon$ exists for the maximum coverage problem for some constant $\epsilon > 0$, then P = NP. (Hint: For this problem, you need to know that there is no $(c \ln n)$ -approximation algorithm for c < 1 for the set cover problem unless P = NP.)
- 2. A matroid (E, \mathcal{I}) is a set E of ground elements together with a collection \mathcal{I} of subsets of E; that is, if $S \in \mathcal{I}$, then $S \subseteq E$. A set $S \in \mathcal{I}$ is said to be *independent*. The independent sets of a matroid obey the following two axioms:
 - If S is independent, then any $S' \subseteq S$ is also independent.
 - If S and T are independent, and |S| < |T|, then there is some $e \in T S$ such that $S \cup \{e\}$ is also independent.

An independent set S is a *base* of the matroid if no set strictly containing it is also independent.

- (a) Given an undirected graph G = (V, E), show that the forests of G form a matroid; that is, show that if E is the ground set, and \mathcal{I} the set of forests of G, then the matroid axioms are obeyed.
- (b) Show that for any matroid, every base of the matroid has the same number of ground elements.
- (c) For any given matroid, suppose that for each $e \in E$, we have a nonnegative weight $w_e \ge 0$. Give a greedy algorithm for the problem of finding a maximum-weight base of a matroid.
- 3. Let (E, \mathcal{I}) be a matroid as defined above, and let f be a monotone, submodular function such that $f(\emptyset) = 0$. Consider the following local search algorithm for finding a maximum-value base of the matroid: First, start with an arbitrary base S. Then consider all pairs $e \in S$ and $e' \notin S$. If $S \cup \{e'\} - \{e\}$ is a base, and $f(S \cup \{e'\} - \{e\}) >$ f(S), then set $S \leftarrow S \cup \{e'\} - \{e\}$. Repeat until a locally optimal solution is reached.

The goal of this problem is to show that a locally optimal solution has value at least half the optimal value.

- (a) We begin with a simple case: suppose that the matroid is a *uniform matroid*; that is, $S \subseteq E$ is independent if $|S| \leq k$ for some fixed k. Prove that for a locally optimal solution S, $f(S) \geq \frac{1}{2}$ OPT.
- (b) To prove the general case, it is useful to know that for any two bases of a matroid, X and Y, there exists a bijection $g: X \to Y$ such that for any $e \in X$, $S \{e\} \cup \{g(e)\}$ is independent. Use this to prove that for any locally optimal solution S, $f(S) \ge \frac{1}{2}$ OPT.
- 4. We showed that a randomized greedy algorithm could be used to obtain a $\frac{1}{2}$ -approximation algorithm for maximizing nonnegative, nonmonotone submodular functions. Here we consider a deterministic variant of that algorithm, shown below. Recall that we defined the function f over the set $\{1, \ldots, n\}$, and defined $\hat{X}_i \equiv X_i \cup \{i+1, \ldots, n\}$. For your proof, you may find it useful again to consider $OPT_i = X_i \cup (OPT \cap \{i+1, \ldots, n\})$, where OPT is an optimal set. Recall that for randomized algorithm we showed that

$$E[f(OPT_{i-1}) - f(OPT_i)] \le \frac{1}{2}E[f(X_i) - f(X_{i-1}) + f(\hat{X}_i) - f(\hat{X}_{i-1})].$$

 $X_{0} \leftarrow \emptyset$ for $i \leftarrow 1$ to n do $a_{i} \leftarrow f(X_{i-1} \cup \{i\}) - f(X_{i-1})$ $r_{i} \leftarrow f(\hat{X}_{i-1} - \{i\}) - f(\hat{X}_{i-1})$ if $a_{i} \ge r_{i}$ then $X_{i} \leftarrow X_{i-1} \cup \{i\}$ else $X_{i} \leftarrow X_{i-1}$ return X_{n}

- (a) Prove that it gives a $\frac{1}{3}$ -approximation algorithm for the problem, for f a non-negative, nonmonotone submodular function. What inequality leads to a $\frac{1}{3}$ -approximation algorithm?
- (b) (Challenge problem) Show that if f is symmetric (that is, f(X) = f(E X) for all X), then the same algorithm gives a $\frac{1}{2}$ -approximation algorithm.