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1. In the maximum coverage problem, we have a set of elements E, and m subsets of
elements S1, . . . , Sm ⊆ E, each with a nonnegative weight wj ≥ 0. The goal is to
choose k elements such that we maximize the weight of the subsets that are covered.
We say that a subset is covered if we have chosen some element from it. Thus we
want to find S ⊆ E such that |S| = k and that we maximize the total weight of the
subsets j such that S ∩ Sj 6= ∅.

(a) Give a (1− 1
e )-approximation algorithm for this problem.

(b) (Not easy) Show that if an approximation algorithm with performance guarantee
better than 1− 1

e +ε exists for the maximum coverage problem for some constant
ε > 0, then P = NP . (Hint: For this problem, you need to know that there is
no (c lnn)-approximation algorithm for c < 1 for the set cover problem unless
P = NP .)

2. A matroid (E, I) is a set E of ground elements together with a collection I of subsets
of E; that is, if S ∈ I, then S ⊆ E. A set S ∈ I is said to be independent. The
independent sets of a matroid obey the following two axioms:

• If S is independent, then any S′ ⊆ S is also independent.

• If S and T are independent, and |S| < |T |, then there is some e ∈ T − S such
that S ∪ {e} is also independent.

An independent set S is a base of the matroid if no set strictly containing it is also
independent.

(a) Given an undirected graph G = (V,E), show that the forests of G form a matroid;
that is, show that if E is the ground set, and I the set of forests of G, then the
matroid axioms are obeyed.

(b) Show that for any matroid, every base of the matroid has the same number of
ground elements.

(c) For any given matroid, suppose that for each e ∈ E, we have a nonnegative weight
we ≥ 0. Give a greedy algorithm for the problem of finding a maximum-weight
base of a matroid.

3. Let (E, I) be a matroid as defined above, and let f be a monotone, submodular
function such that f(∅) = 0. Consider the following local search algorithm for finding
a maximum-value base of the matroid: First, start with an arbitrary base S. Then
consider all pairs e ∈ S and e′ /∈ S. If S ∪{e′}−{e} is a base, and f(S ∪{e′}−{e}) >
f(S), then set S ← S ∪ {e′}− {e}. Repeat until a locally optimal solution is reached.
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The goal of this problem is to show that a locally optimal solution has value at least
half the optimal value.

(a) We begin with a simple case: suppose that the matroid is a uniform matroid;
that is, S ⊆ E is independent if |S| ≤ k for some fixed k. Prove that for a locally
optimal solution S, f(S) ≥ 1

2 OPT.

(b) To prove the general case, it is useful to know that for any two bases of a matroid,
X and Y , there exists a bijection g : X → Y such that for any e ∈ X, S − {e} ∪
{g(e)} is independent. Use this to prove that for any locally optimal solution S,
f(S) ≥ 1

2 OPT.

4. We showed that a randomized greedy algorithm could be used to obtain a 1
2 -approximation

algorithm for maximizing nonnegative, nonmonotone submodular functions. Here we
consider a deterministic variant of that algorithm, shown below. Recall that we defined
the function f over the set {1, . . . , n}, and defined X̂i ≡ Xi ∪ {i+ 1, . . . , n}. For your
proof, you may find it useful again to consider OPTi = Xi ∪ (OPT∩{i + 1, . . . , n}),
where OPT is an optimal set. Recall that for randomized algorithm we showed that

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[f(Xi)− f(Xi−1) + f(X̂i)− f(X̂i−1)].

X0 ← ∅
for i← 1 to n do

ai ← f(Xi−1 ∪ {i})− f(Xi−1)

ri ← f(X̂i−1 − {i})− f(X̂i−1)
if ai ≥ ri then

Xi ← Xi−1 ∪ {i}
else

Xi ← Xi−1
return Xn

(a) Prove that it gives a 1
3 -approximation algorithm for the problem, for f a non-

negative, nonmonotone submodular function. What inequality leads to a 1
3 -

approximation algorithm?

(b) (Challenge problem) Show that if f is symmetric (that is, f(X) = f(E −X) for
all X), then the same algorithm gives a 1

2 -approximation algorithm.
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