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1. Consider the following standard linear programming relaxation of the traveling sales-
man problem:

Min
∑
e∈E

cexe

subject to:

x(δ(v)) = 2, ∀v ∈ V,
x(δ(S)) ≥ 2, ∀S ⊂ V, S 6= ∅,
0 ≤ xe ≤ 1, ∀e ∈ E.

Let x∗ be an optimal solution to the LP, and let OPTLP be the optimal value of the
LP.

(a) Show that n−1
n x∗ is feasible for the spanning tree polytope.

(b) Show that Christofides’ algorithm returns a solution of cost at most 3
2OPTLP .

2. Recall the LP relaxation for the s-t TSP path problem:

Min
∑
e∈E

cexe

subject to:

x(δ(v)) =

{
1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E.

Let x∗ be an optimal solution to the LP, and let OPTLP be the optimal value of the
LP.

In this problem, we will show that the Best-of-Many Christofides’ algorithm is a 3
2 -

approximation algorithm if x∗e ∈ {0, 12 , 1} for all e ∈ E. Let F1, . . . , Fk be the spanning
trees in the convex combination given by x∗, and let T1, . . . , Tk be the sets of vertices
whose parity needs fixing in the trees F1, . . . , Fk (respectively). A set S is odd for a
tree Fi if |S ∩ Ti| is odd.

(a) Prove that for any tree Fi, x
∗(δ(S)) is integral for any odd set S.

(b) Prove that for any tree Fi, x
∗(δ(S)) ≥ 2 for any odd set S.
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(c) Prove that Best-of-Many Christofides’ algorithm returns a solution of cost at
most 3

2OPTLP .

3. Consider a solution x to the LP relaxation in Problem 1 that is a fractional 2-matching:
xe ∈ {0, 1/2, 1} for all e ∈ E, and all the edges with xe = 1/2 form vertex-disjoint
cycles with odd numbers of edges. A 2-matching is a set of edges such that each vertex
has degree two, and each connected component has at least 3 vertices in it (and is
thus a collection of cycles, each of which has at least 3 vertices in it). A graphical
2-matching is a multiset of edges such that each vertex has even degree, and each
connected component has at least 3 vertices in it. In this exercise, we will show that
we can find a 2-matching of cost at most 4/3 times the value of the LP solution.

To do this, consider a graph G′ obtained from the LP solution by any path of edges
e with xe = 1 and replacing the path with a single edge, and including any edge e
with xe = 1/2. The resulting graph is cubic (each vertex has degree exactly 3) and
is 2-edge-connected (argue to yourself that this must be true). Let the cost c′e of any
edge e in the graph G′ be the cost of the path (if e corresponds to a path in the original
graph) or the negative of the cost of the edge e (if the edge e had xe = 1/2) in the
original graph. Compute a minimum-cost perfect matching M . We now construct a
set of edges F . If e ∈ M corresponded to a path in the original graph, then add two
copies of each edge in the path to F . If e /∈ M and e corresponded to a path in the
original graph, then include one copy of each edge in the path in F . If for edge e we
had xe = 1/2 and e /∈M , then add this edge to F (if e ∈M then we do not add this
edge to F ).

(a) Argue that the resulting set of edges F must be a graphical 2-matching.

(b) Prove that the cost of the edges in F must be at most 4
3

∑
e∈E cexe.

(c) Prove that there is a 2-matching of cost at most the cost of the edges in F .

4. In the prize-collecting traveling salesman problem, we are given a complete graph
G = (V,E), costs ce ≥ 0 on the edges e ∈ E that obey the triangle inequality, a root
vertex r ∈ V , and penalties πi ≥ 0 for all i ∈ V . The goal is to find a set of vertices S
with r ∈ S, and a tour T on S that minimizes

∑
e∈T ce+

∑
i/∈S πi; that is, we minimize

the total cost of the tour on S plus the penalties of the vertices not in S.

In the prize-collecting Steiner tree problem, we are given a graph G = (V,E), costs
ce ≥ 0 on the edges e ∈ E, a root vertex r ∈ V , and penalties πi ≥ 0 for all i ∈ V .
The goal is to find a set of vertices S with r ∈ S, and a tree T spanning S that
minimizes

∑
e∈T ce+

∑
i/∈S πi; that is, we minimize the total cost of the tree on S plus

the penalties of the vertices not in S.
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Consider the following linear program.

Min
∑
e∈E

cexe +
∑
i∈V

πi(1− yi)

subject to ∑
e∈δ(S)

xe ≥ yi, ∀S ⊆ V − r, S 6= ∅,∀i ∈ S,

yr = 1,

yi ≥ 0, ∀i ∈ V,
xe ≥ 0, ∀e ∈ E.

We assert that the LP can be solved in polynomial time (using an algorithm known
as the ellipsoid method). Let (x∗, y∗) be an optimal solution. Consider the following
algorithm for the prize-collecting Steiner tree problem. We let S = {i ∈ V : y∗i ≥ α}
for some α. Find a minimum-cost spanning tree T on S. It is possible to show that∑

e∈T ce ≤
2
α

∑
e∈E cex

∗
e.

(a) Argue that the linear program is a relaxation of the prize-collecting Steiner tree
problem.

(b) If you are familiar with the ellipsoid method, argue that the linear program can
be solved in polynomial time.

(c) Show that there is a value for α such that the algorithm is a 3-approximation
algorithm for the prize-collecting Steiner tree problem.

(d) Use the 3-approximation algorithm for the prize-collecting Steiner tree problem
to devise an approximation algorithm for the prize-collecting traveling salesman
problem. How good a performance guarantee can you get?
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