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What is a Submodular Function?

Given a finite ground set of elements E = {e1, . . . , en}, consider
any function f : 2E → <≥0 that maps subsets of the ground set E
to nonnegative reals.

Definition
The function f is submodular if for all S,T ⊆ E , S ⊆ T , and
` ∈ E − T ,

f (T ∪ {`})− f (T ) ≤ f (S ∪ {`})− f (S).

In other words, the function has decreasing marginal gains as the
input set increases.
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An Equivalent Definition

Equivalently, the function f is submodular if for all A,B ⊆ E ,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).
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Proof of Equivalence

f (A)+f (B) ≥ f (A∪B)+f (A∩B)⇒ f (T∪{`})−f (T ) ≤ f (S∪{`})−f (S)
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Some Terminology

Definition
f is monotone if for all S,T ⊆ V , S ⊆ T ,

f (S) ≤ f (T ).

Otherwise, f is nonmonotone.
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Some Examples

Given a graph G = (V ,E ) with weights wij ≥ 0 on the edges
(i , j) ∈ E , let w(S) be the total weight of the edges with one
endpoint in S ⊆ V ; that is, the weight of the cut induced by S.

Claim that w is submodular:

w(S) + w(T ) ≥ w(S ∪ T ) + w(S ∩ T ).

S T
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Some Examples

Cornuejols, Fischer, and Nemhauser (1977) give an example of
opening bank accounts to maximize float. Let B be a set of banks,
P a set of payees, k the number of accounts to open, vij the value
of float for paying j ∈ P from i ∈ B.

Define f (S) =
∑

j∈P maxi∈S vij .

Then goal is to find S ⊆ B, |S| ≤ k, to maximize f (S).

Lemma
f is submodular.
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Some Examples
Kempe, Kleinberg, and Tardos (2003) give an example of selecting
influential nodes in a social network. Input is directed graph
G = (V ,A), probabilities pij for each arc (i , j) ∈ A.

If node i is activated, then for all j ∈ V such that (i , j) ∈ A, j
becomes activated with probability pij .

i
j

k

`

Let f (S) be expected total number of vertices activated if we
initially activate the vertices in S.
Goal is to maximize f (S) subject to |S| ≤ k.

Claim
f is submodular.
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An Issue

How do we give the function f as input?

If we list f (S) for all S ⊆ E , then maximizing or minimizing f is
easy in linear time.

Assume an oracle model: we have a subroutine that computes
f (S) for any S ⊆ E in constant time.
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NP-hardness and approximation algorithms

Some of these problems are NP-hard; for instance, finding a cut S
to maximize w(S) is the MAX CUT problem.

Definition
An α-approximation algorithm for maximizing a submodular
function f in the oracle model is a polynomial-time algorithm that
finds a set S with f (S) ≥ α · OPT , where α ≤ 1.
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Greedy algorithm

What is a natural greedy algorithm for maximizing a monotone
submodular function f subject to |S| ≤ k?

Cornuejols, Fisher, Nemhauser (1977)
S ← ∅
while |S| < k do

i ← argmaxi∈E f (S ∪ {i})− f (S)
S ← S ∪ {i}

return S

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com



David P. Williamson Maximizing Submodular Functions

Greedy algorithm

What is a natural greedy algorithm for maximizing a monotone
submodular function f subject to |S| ≤ k?

Cornuejols, Fisher, Nemhauser (1977)
S ← ∅
while |S| < k do

i ← argmaxi∈E f (S ∪ {i})− f (S)
S ← S ∪ {i}

return S



David P. Williamson Maximizing Submodular Functions

The Result

Theorem (Cornuejols, Fisher, Nemhauser (1977))

The greedy algorithm is a
(
1− 1

e

)
-approximation algorithm.

The theorem is based on the following lemma.

Lemma
Pick any S ⊆ E, |S| < k. Let O be an optimal solution. Then

max
i∈E

[f (S ∪ {i})− f (S)] ≥ 1
k (f (O)− f (S)).

We’ll assume the lemma and prove the theorem, then come back
to the lemma.
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Limits

Feige (1998) shows that we cannot have a(
1− 1

e + ε
)
-approximation algorithm for maximizing a monotone

submodular function subject to a cardinality constraint unless
P = NP. (An exercise, though a hard one).
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Nonmonotone Submodular Functions

We now assume E = {1, . . . , n}. Two natural greedy algorithms
for maximizing a nonmonotone submodular function:

• X ← ∅. For i ← 1 to n, if f (X ∪ {i}) > f (X ), add i to X .
• X ← E . For i ← 1 to n, if f (X − {i}) > f (X ), remove i from
X .

We’ll look at an algorithm that in some sense randomizes between
the two.
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Notation
The algorithm will maintain a set Xi ⊆ {1, 2, . . . , i}.

Define X̂i ≡ Xi ∪ {i + 1, . . . , n}.

X0 = X̂n = Xi X̂i Xn X̂n.

Each step of the algorithm will compute

ai ← f (Xi−1 ∪ {i})− f (Xi−1) value of adding i to Xi−1

ri ← f (X̂i−1 − {i})− f (X̂i−1) value of removing i from X̂i−1

Lemma

ai + ri ≥ 0.
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The DoubleGreedy Algorithm

Buchbinder, Feldman, Naor, Schwartz (2012)
X0 ← ∅
for i ← 1 to n do

Compute ai , ri
if ai ≥ 0, ri < 0 then

Xi ← Xi ∪ {i} // so X̂i = X̂i−1
if ai < 0, ri ≥ 0 then

Xi ← Xi−1 // so X̂i = X̂i−1 − {i}
else

Xi ←
{

Xi−1 ∪ {i} w. prob ai
ai+ri

Xi−1 w. prob ri
ai+ri
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More Notation

Let OPT be an optimal set, and

OPTi ≡ Xi ∪ (OPT ∩ {i + 1, . . . , n});

same as Xi on {1, 2, . . . , i} and same as OPT on {i + 1, . . . , n}.

OPT0 = OPTn =

Main Lemma

E [f (OPTi−1)−f (OPTi )] ≤ 1
2E [f (Xi )−f (Xi−1)+f (X̂i )−f (X̂i−1)].
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Main Result

Theorem (Buchbinder et al. (2012))
DoubleGreedy is a 1

2 -approximation algorithm for maximizing a
nonmonotone submodular function.
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Proof of the Lemma

Lemma

E [f (OPTi−1)−f (OPTi )] ≤ 1
2E [f (Xi )−f (Xi−1)+f (X̂i )−f (X̂i−1)].
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Proof of the Lemma
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Limits

Theorem (Feige, Mirrokni, Vondrák (2007))

There is no
(

1
2 + ε

)
-approximation algorithm for maximizing a

nonmonotone submodular function in the oracle model for
constant ε > 0.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com


