
s-t path TSP

David P. Williamson
Cornell University

August 17-21, 2015
ADFOCS

David P. Williamson s-t path TSP

The traveling salesman problem

Traveling Salesman Problem (TSP)
Input:

• A complete, undirected graph G = (V ,E);
• Edge costs c(i , j) ≥ 0 for all e = (i , j) ∈ E .

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i , j) = c(j , i)) and obey the triangle
inequality (c(i , k) ≤ c(i , j) + c(j , k)).

Asymmetric TSP (ATSP) input has complete directed graph, and
c(i , j) may not equal c(j , i).

David P. Williamson s-t path TSP

The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)

David P. Williamson s-t path TSP

The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)

David P. Williamson s-t path TSP

Approximation Algorithms

Definition
An α-approximation algorithm is a polynomial-time algorithm that
returns a solution of cost at most α times the cost of an optimal
solution.

Long known: A 3
2 -approximation algorithm due to Christofides

(1976). No better approximation algorithm yet known.

David P. Williamson s-t path TSP

Christofides’ algorithm

Compute minimum spanning tree (MST) F on G , then compute a
minimum-cost perfect matching M on odd-degree vertices of T .
“Shortcut” Eulerian traversal in resulting Eulerian graph of F ∪M.

David P. Williamson s-t path TSP

Christofides’ algorithm

Compute minimum spanning tree (MST) F on G , then compute a
minimum-cost perfect matching M on odd-degree vertices of T .
“Shortcut” Eulerian traversal in resulting Eulerian graph of F ∪M.

David P. Williamson s-t path TSP

Christofides’ algorithm

Compute minimum spanning tree (MST) F on G , then compute a
minimum-cost perfect matching M on odd-degree vertices of T .
“Shortcut” Eulerian traversal in resulting Eulerian graph of F ∪M.

David P. Williamson s-t path TSP

Christofides’ algorithm

Compute minimum spanning tree (MST) F on G , then compute a
minimum-cost perfect matching M on odd-degree vertices of T .
“Shortcut” Eulerian traversal in resulting Eulerian graph of F ∪M.

David P. Williamson s-t path TSP

s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a 5

3 -approximation algorithm.

What is the natural variant for the s-t path TSP?

David P. Williamson s-t path TSP

s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a 5

3 -approximation algorithm.

What is the natural variant for the s-t path TSP?

David P. Williamson s-t path TSP

Eulerian path
There is an Eulerian path that starts at s, ends at t, and visits
every edge exactly once iff s and t have odd-degree and all other
vertices have even degree.

David P. Williamson s-t path TSP

Eulerian path
There is an Eulerian path that starts at s, ends at t, and visits
every edge exactly once iff s and t have odd-degree and all other
vertices have even degree.

David P. Williamson s-t path TSP

Hoogeveen’s algorithm
Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F , t iff t
has even degree in F , and v 6= s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T . Find
Eulerian path on F ∪M; shortcut to an s-t Hamiltonian path.

s

t

s

t

s

t

s

t

David P. Williamson s-t path TSP

Hoogeveen’s algorithm
Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F , t iff t
has even degree in F , and v 6= s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T . Find
Eulerian path on F ∪M; shortcut to an s-t Hamiltonian path.

s

t

s

t

s

t

s

t

David P. Williamson s-t path TSP

Hoogeveen’s algorithm
Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F , t iff t
has even degree in F , and v 6= s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T . Find
Eulerian path on F ∪M; shortcut to an s-t Hamiltonian path.

s

t

s

t

s

t

s

t

David P. Williamson s-t path TSP

Hoogeveen’s algorithm
Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F , t iff t
has even degree in F , and v 6= s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T . Find
Eulerian path on F ∪M; shortcut to an s-t Hamiltonian path.

s

t

s

t

s

t

s

t

David P. Williamson s-t path TSP

T -joins

Rather than a minimum-cost perfect matching on T , will construct
a minimum-cost T-join: a set of edges that has odd degree at
every vertex in T , even degree at every vertex not in T .

David P. Williamson s-t path TSP

T -joins

Rather than a minimum-cost perfect matching on T , will construct
a minimum-cost T-join: a set of edges that has odd degree at
every vertex in T , even degree at every vertex not in T .

David P. Williamson s-t path TSP

T -joins

Rather than a minimum-cost perfect matching on T , will construct
a minimum-cost T-join: a set of edges that has odd degree at
every vertex in T , even degree at every vertex not in T .

David P. Williamson s-t path TSP

T -joins

Rather than a minimum-cost perfect matching on T , will construct
a minimum-cost T-join: a set of edges that has odd degree at
every vertex in T , even degree at every vertex not in T .

David P. Williamson s-t path TSP

Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing. Then find a minimum-cost T -join J .
Find Eulerian path on F ∪ J ; shortcut to an s-t Hamiltonian path.

Theorem
Hoogeveen’s algorithm is a 5

3 -approximation algorithm.

David P. Williamson s-t path TSP

Hoogeveen’s algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing. Then find a minimum-cost T -join J .
Find Eulerian path on F ∪ J ; shortcut to an s-t Hamiltonian path.

Theorem
Hoogeveen’s algorithm is a 5

3 -approximation algorithm.

David P. Williamson s-t path TSP

Proof of theorem

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Proof of theorem

s

t

s

t

David P. Williamson s-t path TSP

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
ce for e = (i , j) is number of edges in shortest i-j path in graph.

s . . .

. . .

. . . t

David P. Williamson s-t path TSP

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
ce for e = (i , j) is number of edges in shortest i-j path in graph.

s . . .

. . .

. . . t

David P. Williamson s-t path TSP

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
ce for e = (i , j) is number of edges in shortest i-j path in graph.

s . . .

. . .

. . . t

David P. Williamson s-t path TSP

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
ce for e = (i , j) is number of edges in shortest i-j path in graph.

s . . .

. . .

. . . t

David P. Williamson s-t path TSP

Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until
just the last few years.
Hoogeveen (1991) 5

3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.

David P. Williamson s-t path TSP

Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until
just the last few years.
Hoogeveen (1991) 5

3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.

David P. Williamson s-t path TSP

Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until
just the last few years.
Hoogeveen (1991) 5

3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.

David P. Williamson s-t path TSP

Improvements

No improvement on Hoogeveen’s algorithm for s-t path TSP, until
just the last few years.
Hoogeveen (1991) 5

3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.

David P. Williamson s-t path TSP

A Linear Programming Relaxation

Min
∑
e∈E

cexe

subject to: x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of edges with exactly one endpoint in S, and
x(E ′) ≡

∑
e∈E ′ xe .

David P. Williamson s-t path TSP

A Linear Programming Relaxation

Min
∑
e∈E

cexe

subject to: x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of edges with exactly one endpoint in S, and
x(E ′) ≡

∑
e∈E ′ xe .

David P. Williamson s-t path TSP

LP relaxation

s

t

David P. Williamson s-t path TSP

LP relaxation

s

t

David P. Williamson s-t path TSP

LP relaxation

s

t

David P. Williamson s-t path TSP

LP relaxation

s

t

David P. Williamson s-t path TSP

LP relaxation

s

t

David P. Williamson s-t path TSP

The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is
defined by the following inequalities:

x(E) = |V | − 1,
x(E (S)) ≤ |S| − 1, ∀|S| ⊆ V , |S| ≥ 2,
xe ≥ 0, ∀e ∈ E ,

where E (S) is the set of all edges with both endpoints in S.

S

David P. Williamson s-t path TSP

The LP relaxation and spanning trees

Lemma
Any solution x feasible for the s-t path TSP LP relaxation is in the
spanning tree polytope.

David P. Williamson s-t path TSP

Proof

x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E .

x(E) = |V | − 1,
x(E (S)) ≤ |S| − 1, ∀|S| ⊆ V , |S| ≥ 2,
xe ≥ 0, ∀e ∈ E .

David P. Williamson s-t path TSP

A warmup to the improvements

Let OPTLP be the value of an optimal solution x∗ to the LP
relaxation.

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen’s algorithm returns a solution of cost at most 5

3OPTLP .

David P. Williamson s-t path TSP

An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity
needs fixing in F .

Definition
S is an odd set if |S ∩ T | is odd.

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

David P. Williamson s-t path TSP

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

s

t

David P. Williamson s-t path TSP

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

s

t

David P. Williamson s-t path TSP

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

s

t

David P. Williamson s-t path TSP

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

s

t

David P. Williamson s-t path TSP

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

s

t

David P. Williamson s-t path TSP

Proof of lemma

S

∑
v∈S

degF (v) = 2|E (S) ∩ F |+ |δ(S) ∩ F |

David P. Williamson s-t path TSP

T -join LP

The solution to the following linear program is the minimum-cost
T -join for costs c ≥ 0:

Min
∑
e∈E

cexe

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .

S

∑
v∈S

degJ(v) = 2|E (S) ∩ J |+ |δ(S) ∩ J |

David P. Williamson s-t path TSP

T -join LP

The solution to the following linear program is the minimum-cost
T -join for costs c ≥ 0:

Min
∑
e∈E

cexe

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .

S

∑
v∈S

degJ(v) = 2|E (S) ∩ J |+ |δ(S) ∩ J |

David P. Williamson s-t path TSP

Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen’s algorithm returns a solution of cost at most 5

3OPTLP .

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

Min
∑
e∈E

cexe

x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .

David P. Williamson s-t path TSP

Convex combination

Let x∗ be an optimal LP solution. Let χF be the characteristic
vector of a set of edges F , so that

χF (e) =
{

1 e ∈ F
0 e /∈ F

Since x∗ is in the spanning tree polytope, can write x∗ as a convex
combination of spanning trees F1, . . . ,Fk :

x∗ =
k∑

i=1
λiχFi ,

such that
∑k

i=1 λi = 1, λi ≥ 0.

David P. Williamson s-t path TSP

Best-of-Many Christofides’ Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many
Christofides’ algorithm: given optimal LP solution x∗, compute
convex combination of spanning trees

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, let Ji be the minimum-cost Ti -join. Find s-t
Hamiltonian path by shortcutting Fi ∪ Ji . Return the shortest path
found over all i .

David P. Williamson s-t path TSP

Best-of-Many Christofides’ Algorithm

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, Ji be the minimum-cost Ti -join. Find s-t Hamiltonian
path by shortcutting Fi ∪ Ji . Return the shortest path found over
all i .

Theorem
The Best-of-Many Christofides’ algorithm returns a solution of cost
at most 5

3OPTLP .

