

David P. Williamson Cornell University

August 17-21, 2015 ADFOCS



### The traveling salesman problem

 $\begin{array}{l} TRAVELING \ SALESMAN \ PROBLEM \ (TSP) \\ \textbf{Input}: \end{array}$ 

- A complete, undirected graph G = (V, E);
- Edge costs  $c(i,j) \ge 0$  for all  $e = (i,j) \in E$ .

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i,j) = c(j,i)) and obey the triangle inequality  $(c(i,k) \le c(i,j) + c(j,k))$ .

Asymmetric TSP (ATSP) input has complete directed graph, and c(i, j) may not equal c(j, i).

#### The traveling salesman problem



From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)

#### The traveling salesman problem



From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)

#### Approximation Algorithms

#### Definition

An  $\alpha$ -approximation algorithm is a polynomial-time algorithm that returns a solution of cost at most  $\alpha$  times the cost of an optimal solution.

Long known: A  $\frac{3}{2}$ -approximation algorithm due to Christofides (1976). No better approximation algorithm yet known.









The *s*-*t* path TSP:

Usual TSP input plus  $s, t \in V$ , find a min-cost path from s to t visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides' algorithm gives a  $\frac{5}{3}$ -approximation algorithm.

The s-t path TSP:

Usual TSP input plus  $s, t \in V$ , find a min-cost path from s to t visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides' algorithm gives a  $\frac{5}{3}$ -approximation algorithm.

What is the natural variant for the s-t path TSP?

### Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits every edge exactly once iff s and t have odd-degree and all other vertices have even degree.

# Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits every edge exactly once iff s and t have odd-degree and all other vertices have even degree.

Which of these designs can you draw without lifting your pencil from the paper (drawing each line once & not drawing any other lines)?

Answer this correctly by December 1 and you could win \$100. Visit www.msri.org for a hint or to submit a solution.





















Let *F* be the min-cost spanning tree. Let *T* be the set of vertices whose parity needs changing. Then find a minimum-cost *T*-join *J*. Find Eulerian path on  $F \cup J$ ; shortcut to an *s*-*t* Hamiltonian path.

# Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$ ; shortcut to an *s*-*t* Hamiltonian path.

#### Theorem

Hoogeveen's algorithm is a  $\frac{5}{3}$ -approximation algorithm.

Let F be edges in MST, 
$$c(F) \equiv \sum_{e \in P} c_e$$
.  
Let O be edges in optimal solu,  $OPT = c(O)$ .  
Clearly  $c(F) \leq OPT$  since O is a spanning tree.  
Let T be vertices in F whose pairity needs changing.  
Idea: Construct 3 T-joins of total cost  $c(F) + OPT$ .  
Then MST + min-cost T-join  $\leq c(F) + \frac{1}{3}(c(F) + OPT)$   
Then MST + min-cost T-join  $\leq c(F) + \frac{1}{3}(c(F) + OPT)$   
 $\leq OPT + \frac{2}{3}OPT = \frac{2}{3}OPT$ .  
Let R be edges on  $s \neq yath$  in MST F.  
Color edges of O green or blue: start at s, color blue  
in T reached. Gives G (green), B (blue).

F-R e T-join: Fu (F-R) has even degree at every  
node except s,t  
G a T-join: pairs up nodes in T.  
B is not e T-join: FuB has even degree at all nodes  
But then BuR is a T-join.  
$$c(F-R) + c(G) + o(BuR) = C(F) + c(O).$$

s-t path TSP









# Tight Example



Hoogeveen (1991)  $\frac{5}{3}$ 

Hoogeveen (1991)  $\frac{5}{3}$ An, Kleinberg, Shmoys (2012)  $\frac{1+\sqrt{5}}{2} \approx 1.618$ 

Hoogeveen(1991) $\frac{5}{3}$ An, Kleinberg, Shmoys(2012) $\frac{1+\sqrt{5}}{2} \approx 1.618$ Sebő(2013) $\frac{8}{5} = 1.6$ 

| Hoogeveen             | (1991) | 5<br>3                           |
|-----------------------|--------|----------------------------------|
| An, Kleinberg, Shmoys | (2012) | $rac{1+\sqrt{5}}{2}pprox 1.618$ |
| Sebő                  | (2013) | $\frac{8}{5} = 1.6$              |
| Vygen                 | (2015) | 1.599                            |

Goal: Understand the An et al. and Sebő algorithm and analysis.

#### DAVID P. WILLIAMSON

#### s-t PATH TSP

#### A Linear Programming Relaxation

where  $\delta(S)$  is the set of edges with exactly one endpoint in S, and  $x(E') \equiv \sum_{e \in E'} x_e$ .

#### DAVID P. WILLIAMSON

#### s-t PATH TSP

#### A Linear Programming Relaxation

Min 
$$\sum_{e \in E} c_e x_e$$
  
subject to:  
$$x(\delta(v)) = \begin{cases} 1, & v = s, t, \\ 2, & v \neq s, t, \end{cases}$$
  
$$x(\delta(S)) \ge \begin{cases} 1, & |S \cap \{s, t\}| = 1, \\ 2, & |S \cap \{s, t\}| \neq 1, \end{cases}$$
  
$$0 \le x_e \le 1, \qquad \forall e \in E, \end{cases}$$

where  $\delta(S)$  is the set of edges with exactly one endpoint in S, and  $x(E') \equiv \sum_{e \in E'} x_e$ .











#### The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is defined by the following inequalities:

$$\sum_{\substack{e \in E \\ e \in E \\ e \in S}} x_e \equiv x(E) = |V| - 1,$$
  
$$= x(E(S)) \le |S| - 1, \qquad \forall |S| \subseteq V, |S| \ge 2,$$
  
$$\forall e \in E,$$
  
$$\forall e \in E,$$

where E(S) is the set of all edges with both endpoints in S.



DAVID P. WILLIAMSON

s-t path TSP

#### The LP relaxation and spanning trees

#### Lemma

Any solution x feasible for the s-t path TSP LP relaxation is in the spanning tree polytope.

$$X (E) = \sum_{e \in E} x_e = \frac{1}{2} \sum_{v \in v} x(f(v))$$
  
=  $\frac{1}{2} ((|v|-2) \cdot 2 + 2) = |v|-1$ 

$$\begin{aligned} x(E(S)) &= \frac{1}{2} \left( \sum_{v \in S} x(\delta(v)) - x(\delta(S)) \right) \\ & J_{t}^{F} \left[ Sn\{s, t\} = 1 \\ x(E(S)) &\leq \frac{1}{2} \left( 1 + 2(|S| - 1) - 1 \right) = |S| - 1 \right) \\ & \downarrow_{t}^{F} \left[ I_{t}^{F} Sn\{s, t\} = \emptyset \\ & \downarrow_{t}^{F} Sn\{s, t\} = \emptyset \\ & \downarrow_{t}^{F} Sn\{s, t\} = \{s, t\} \end{aligned}$$

### Proof

$$\begin{aligned} x(\delta(v)) &= \begin{cases} 1, & v = s, t, \\ 2, & v \neq s, t, \end{cases} \\ x(\delta(S)) &\geq \begin{cases} 1, & |S \cap \{s, t\}| = 1, \\ 2, & |S \cap \{s, t\}| \neq 1, \end{cases} \\ 0 &\leq x_e \leq 1, \qquad \forall e \in E. \end{cases} \end{aligned}$$

$$\begin{split} x(E) &= |V| - 1, \\ x(E(S)) &\leq |S| - 1, \qquad \forall |S| \subseteq V, |S| \geq 2, \\ x_e &\geq 0, \qquad \forall e \in E. \end{split}$$

#### A warmup to the improvements

# Let $OPT_{LP}$ be the value of an optimal solution $x^*$ to the LP relaxation.

Theorem (An, Kleinberg, Shmoys (2012))

Hoogeveen's algorithm returns a solution of cost at most  $\frac{5}{3}OPT_{LP}$ .

#### An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity needs fixing in F.

#### Definition

S is an *odd set* if  $|S \cap T|$  is odd.

#### Lemma











s-t PATH TSP

# Proof of lemma



$$\sum_{v \in S} deg_F(v) = 2|E(S) \cap F| + |\delta(S) \cap F|$$

$$\frac{f \text{ of } |\text{emma}}{\text{If } |\text{Sn}\{s,t\}|=|} \cdot Spsc seS. seT iff beggeb) even.}$$

$$\therefore S \cdot \text{Ad} \Rightarrow even \# \text{if } \text{Add } \text{dg. vertices in S.}$$

$$|\text{SnTI } \text{odd}$$

$$\frac{Z}{V + s} \frac{\text{degr}[v]}{v + s} - 2|E(s)nF| = |O(s)nF|$$

$$v + s} \frac{v + s}{v + s} \frac{|S(s)nF|}{v + s} = \frac{|S(s)nF|}{v + s} \frac{|S(s)nF|}{v$$

#### DAVID P. WILLIAMSON

s-t path TSP

## T-join LP

The solution to the following linear program is the minimum-cost T-join for costs  $c \ge 0$ :

Subject to:  

$$\begin{aligned}
\text{Min} \quad \sum_{e \in E} c_e x_e \\
x(\delta(S)) \ge 1, \quad \forall S \subseteq V, |S \cap T| \text{ odd} \\
x_e \ge 0, \quad \forall e \in E.
\end{aligned}$$
For (snTl odd
$$\sum_{v \in S} deg_J(v) = 2|E(S) \cap J| + |\delta(S) \cap J| \\
even \quad odd
\end{aligned}$$

#### DAVID P. WILLIAMSON

s-t path TSP

### T-join LP

The solution to the following linear program is the minimum-cost T-join for costs  $c \ge 0$ :

subject to:

$$\begin{array}{ll} \mathsf{Min} & \sum_{e \in E} c_e x_e \\ & x(\delta(S)) \geq 1, \qquad \forall S \subseteq V, |S \cap T| \text{ odd} \\ & x_e \geq 0, \qquad \qquad \forall e \in E. \end{array}$$



$$\sum_{v \in S} deg_J(v) = 2|E(S) \cap J| + |\delta(S) \cap J|$$

### Proof of theorem

#### Theorem (An, Kleinberg, Shmoys (2012))

Hoogeveen's algorithm returns a solution of cost at most  $\frac{5}{3}OPT_{LP}$ .

#### Lemma

$$\begin{array}{ll} \mathsf{Min} & \sum_{e \in \mathcal{E}} c_e x_e \\ & x(\delta(S)) \geq 1, \qquad \quad \forall S \subseteq V, |S \cap T| \text{ odd} \\ & x_e \geq 0, \qquad \quad \forall e \in E. \end{array}$$

Pf of thm: Let 
$$x^*$$
 be an opt. solution to UP velocation.  
Cost of MST  $\leq \sum_{e \in e} c_e x_e^* \equiv OPT_{LP}$ .  
since  $x^*$  is feasible for commany tree  
Let  $\mathcal{N}_F \in \{0, 1\}^{|E|}$  s.t.  $\mathcal{N}_F(e) = \begin{cases} 1 & \text{if } e \in F \\ 0 & e.w. \end{cases}$   
Claim:  $y = \frac{1}{3}\mathcal{N}_F + \frac{1}{3}x^*$  feasible for T-join LP.  
Then  $c(FvJ) = c(F) + c(J) \equiv OPT_{LP} + \frac{1}{3}OPT_{LP}$   
 $\equiv \frac{3}{3}OPT_{LP}$ 

$$y = \frac{1}{3} \chi_{F} + \frac{1}{3} x^{*} \quad \text{feas. for } T\text{-join LP.}$$
Need to show that if  $|S \wedge T| \text{ odd}$ , then  $y(\delta(S)) \ge (.$   
If  $|S \wedge Ts, t3| \ne 1$ , then  
 $y(\delta(S)) = \frac{1}{3} |F \wedge \delta(S)| + \frac{1}{3} x^{*}(\delta(S)) \ge \frac{1}{3} + \frac{2}{3} = 1$   
If  $|S \wedge Ts, t3| = (., then)$   
 $y(\delta(S)) = \frac{1}{3} |F \wedge \delta(G)| + \frac{1}{3} x^{*}(\delta(S)) \ge \frac{2}{3} + \frac{1}{3} = (...)$ 

#### Convex combination

Let  $x^*$  be an optimal LP solution. Let  $\chi_F$  be the *characteristic* vector of a set of edges F, so that

$$\chi_F(e) = \begin{cases} 1 & e \in F \\ 0 & e \notin F \end{cases}$$

Since  $x^*$  is in the spanning tree polytope, can write  $x^*$  as a convex combination of spanning trees  $F_1, \ldots, F_k$ :

$$x^* = \sum_{i=1}^k \lambda_i \chi_{F_i},$$

such that  $\sum_{i=1}^{k} \lambda_i = 1$ ,  $\lambda_i \ge 0$ .

#### Best-of-Many Christofides' Algorithm

An, Kleinberg, Shmoys (2012) propose the *Best-of-Many Christofides*' algorithm: given optimal LP solution  $x^*$ , compute convex combination of spanning trees

$$x^* = \sum_{i=1}^k \lambda_i \chi_{F_i}.$$

For each spanning tree  $F_i$ , let  $T_i$  be the set of vertices whose parity needs fixing, let  $J_i$  be the minimum-cost  $T_i$ -join. Find s-tHamiltonian path by shortcutting  $F_i \cup J_i$ . Return the shortest path found over all i.

#### DAVID P. WILLIAMSON

#### s-t path TSP

#### Best-of-Many Christofides' Algorithm

$$x^* = \sum_{i=1}^k \lambda_i \chi_{F_i}.$$

For each spanning tree  $F_i$ , let  $T_i$  be the set of vertices whose parity needs fixing,  $J_i$  be the minimum-cost  $T_i$ -join. Find *s*-*t* Hamiltonian path by shortcutting  $F_i \cup J_i$ . Return the shortest path found over all *i*.

#### Theorem

The Best-of-Many Christofides' algorithm returns a solution of cost at most  $\frac{5}{3}OPT_{LP}$ .