$s-t$ path TSP

David P. Williamson
Cornell University

August 17-21, 2015 ADFOCS

The traveling salesman problem

Traveling Salesman Problem (TSP)
Input:

- A complete, undirected graph $G=(V, E)$;
- Edge costs $c(i, j) \geq 0$ for all $e=(i, j) \in E$.

Goal: Find the min-cost tour that visits each city exactly once.
Costs are symmetric $(c(i, j)=c(j, i))$ and obey the triangle inequality $(c(i, k) \leq c(i, j)+c(j, k))$.

Asymmetric TSP (ATSP) input has complete directed graph, and $c(i, j)$ may not equal $c(j, i)$.

The traveling salesman problem

From Bill Cook, tour of 647 US colleges (www.math.uwaterloo.ca/tsp/college)

The traveling salesman problem

From Bill Cook, tour of 647 US colleges (www.math.uwaterloo.ca/tsp/college)

Approximation Algorithms

Definition

An α-approximation algorithm is a polynomial-time algorithm that returns a solution of cost at most α times the cost of an optimal solution.

Long known: A $\frac{3}{2}$-approximation algorithm due to Christofides (1976). No better approximation algorithm yet known.

Christofides' algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. "Shortcut" Eulerian traversal in resulting Eulerian graph of $F \cup M$.

Christofides' algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. "Shortcut" Eulerian traversal in resulting Eulerian graph of $F \cup M$.

Christofides' algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. "Shortcut" Eulerian traversal in resulting Eulerian graph of $F \cup M$.

Christofides' algorithm

Compute minimum spanning tree (MST) F on G, then compute a minimum-cost perfect matching M on odd-degree vertices of T. "Shortcut" Eulerian traversal in resulting Eulerian graph of $F \cup M$.

The s-t path TSP:
Usual TSP input plus $s, t \in V$, find a min-cost path from s to t visiting all other nodes in between (an s-t Hamiltonian path). Hoogeveen (1991) shows that the natural variant of Christofides' algorithm gives a $\frac{5}{3}$-approximation algorithm.

The s-t path TSP:
Usual TSP input plus $s, t \in V$, find a min-cost path from s to t visiting all other nodes in between (an s-t Hamiltonian path). Hoogeveen (1991) shows that the natural variant of Christofides' algorithm gives a $\frac{5}{3}$-approximation algorithm.

What is the natural variant for the $s-t$ path TSP?

Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits every edge exactly once iff s and t have odd-degree and all other vertices have even degree.

Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits every edge exactly once iff s and t have odd-degree and all other vertices have even degree.

Which of these designs can you draw without lifting your pencil from the paper (drawing each line once \& not drawing any other lines)?
Answer this correctly by December I and you could win $\$ 100$. Visit www.msri.org for a hint or to submit a solution.

A.

B.

C.

D.

O2004 Mathomatical Scicnce Research lnotibute

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost perfect matching M on the vertices in T. Find Eulerian path on $F \cup M$; shortcut to an s-t Hamiltonian path.

T-joins

Rather than a minimum-cost perfect matching on T, will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.

T-joins

Rather than a minimum-cost perfect matching on T, will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.

T-joins

Rather than a minimum-cost perfect matching on T, will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.

T-joins

Rather than a minimum-cost perfect matching on T, will construct a minimum-cost T-join: a set of edges that has odd degree at every vertex in T, even degree at every vertex not in T.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s - t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s - t Hamiltonian path.

Theorem

Hoogeveen's algorithm is a $\frac{5}{3}$-approximation algorithm.

Proof of theorem
Let F be edges in MST, $c(F) \equiv \sum_{e \in P} c_{e}$
Let O be edges in optimal soln, OPT $=c(O)$.
Clearly $c(F) \leq O P T$ since O is a spanning tree.
Let T be vertices in F whose parity needs changing.
Idea: Construct 3 T-jons of total coot $C(F)+O P T$.
Then MST + min-cost T-join $\leq C(F)+\frac{1}{3}(C(F)+O P T)$
$\leq O P T+\frac{2}{3} O P T=\frac{5}{3} O P T$.
Let R be edges in sot path in MST F.
Color edges of 0 green or blue: start at s, color blue until find node in T, then switch colors as each node in T reached. Gives G (green), B (blue).
$F-R$ a T-join: $F \cup(F-R)$ has even degree at every node except s, t
G a T-join: pairs up nodes in T.
B is not a T-join: FUB has even degree at all nodes But then $B \cup R$ is a $T_{-j o i n . ~}^{\text {on }}$

$$
c(F-R)+c(G)+c(B \cup R)=c(F)+c(0)
$$

Proof of theorem

Proof of theorem

Proof of theorem

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost c_{e} for $e=(i, j)$ is number of edges in shortest $i-j$ path in graph.

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost c_{e} for $e=(i, j)$ is number of edges in shortest $i-j$ path in graph.

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost c_{e} for $e=(i, j)$ is number of edges in shortest $i-j$ path in graph.

Tight Example

The analysis is tight. Consider the graph TSP instance below: cost c_{e} for $e=(i, j)$ is number of edges in shortest $i-j$ path in graph.

Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until just the last few years.

Hoogeveen
(1991) $\frac{5}{3}$

Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until just the last few years.

Hoogeveen
An, Kleinberg, Shmoys (2012) $\frac{1+\sqrt{5}}{2} \approx 1.618$

Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until just the last few years.

Hoogeveen
An, Kleinberg, Shmoys
Sebő
(1991) $\frac{5}{3}$
(2012) $\frac{1+\sqrt{5}}{2} \approx 1.618$
(2013) $\quad \frac{8}{5}=1.6$

Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until just the last few years.

Hoogeveen	(1991)	$\frac{5}{3}$
An, Kleinberg, Shmoys	(2012)	$\frac{1+\sqrt{5}}{2} \approx 1.618$
Sebő	(2013)	$\frac{8}{5}=1.6$
Vygen	(2015)	1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.

A Linear Programming Relaxation

$$
\begin{aligned}
& \operatorname{Min} \quad \sum_{e \in E} c_{e} x_{e} \\
& \quad x(\delta(v))= \begin{cases}1 & v=s, t \\
2 & v \pm s, t\end{cases} \\
& \\
& x(\delta(S)) \geq \begin{cases}1 & |s n\{s, t\}|=1 \\
2 & |s \wedge\{s, t\}| \neq 1\end{cases} \\
& \quad 0 \leq x_{e} \leq 1, \quad \forall e \in E,
\end{aligned}
$$

where $\delta(S)$ is the set of edges with exactly one endpoint in S, and $x\left(E^{\prime}\right) \equiv \sum_{e \in E^{\prime}} x_{e}$.

A Linear Programming Relaxation

$$
\operatorname{Min} \sum_{e \in E} c_{e} x_{e}
$$

subject to:

$$
\begin{aligned}
& x(\delta(v))= \begin{cases}1, & v=s, t \\
2, & v \neq s, t\end{cases} \\
& x(\delta(S)) \geq \begin{cases}1, & |S \cap\{s, t\}|=1, \\
2, & |S \cap\{s, t\}| \neq 1,\end{cases} \\
& 0 \leq x_{e} \leq 1, \quad \forall e \in E
\end{aligned}
$$

where $\delta(S)$ is the set of edges with exactly one endpoint in S, and $x\left(E^{\prime}\right) \equiv \sum_{e \in E^{\prime}} x_{e}$.

LP relaxation

LP relaxation

LP relaxation

LP relaxation

LP relaxation

The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is defined by the following inequalities:

$$
\begin{aligned}
\sum_{<\in E} x_{e} & \equiv x(E)=|V|-1, & & \\
& =x(E(S)) \leq|S|-1, & & \forall|S| \subseteq V,|S| \geq 2, \\
x_{c} & x_{e} \geq 0, & & \forall e \in E,
\end{aligned}
$$

$\sum_{c \in=(s)} x_{c}$ where $E(S)$ is the set of all edges with both endpoints in S.

The LP relaxation and spanning trees

Lemma

Any solution x feasible for the s-t path TSP LP relaxation is in the spanning tree polytope.

$$
\begin{aligned}
& x(E) \equiv \sum_{e \in E} x_{e}=\frac{1}{2} \sum_{v \in v} x(\delta(v)) \\
& =\frac{1}{2}((|v|-2) \cdot 2+2)=|v|-1 \\
& x(E(S))=\frac{1}{2}\left(\sum_{v \in S} x(\delta(v))-x(\delta(S))\right) \\
& \begin{array}{ll}
\sim(s) & \text { If }|s n\{s, t\}|=1 \\
\sim & x(E(s)) \leq \frac{1}{2}(1+2(|s|-1)-1)=|s|-1 .
\end{array} \\
& \text { If } S \cap\{s, t\}=\varnothing \\
& \text { If } S \cap\{s, t\}=\{s, t\}
\end{aligned}
$$

$$
\begin{aligned}
& x(\delta(v))= \begin{cases}1, & v=s, t, \\
2, & v \neq s, t\end{cases} \\
& x(\delta(S)) \geq \begin{cases}1, & |S \cap\{s, t\}|=1, \\
2, & |S \cap\{s, t\}| \neq 1,\end{cases} \\
& 0 \leq x_{e} \leq 1, \quad \forall e \in E .
\end{aligned}
$$

$$
\begin{aligned}
& x(E)=|V|-1 \\
& x(E(S)) \leq|S|-1 \\
& x_{e} \geq 0
\end{aligned}
$$

$$
\forall|S| \subseteq V,|S| \geq 2
$$

$$
\forall e \in E
$$

A warmup to the improvements

Let $O P T_{L P}$ be the value of an optimal solution x^{*} to the LP relaxation.

Theorem (An, Kleinberg, Shmoys (2012))

Hoogeveen's algorithm returns a solution of cost at most $\frac{5}{3} O P T_{L P}$.

An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity needs fixing in F.

Definition

S is an odd set if $|S \cap T|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

$\sum_{v \in S} \operatorname{deg}_{F}(v)=2|E(S) \cap F|+|\delta(S) \cap F|$

Pf of lemma
If $|s n\{s, t\}|=1$. Spse $s \in S$. $s \in T$ inf $\log _{g}(s)$ even.
$\therefore S$.dd \Rightarrow even \# it odd deg. vertices in S. \mid SniT| old

$$
\sum_{v \in s} \operatorname{deg}_{\text {even }}(v)-2|E(s) n F|=|\delta(s) \cap F|
$$

In fact $|\delta(s) \cap F| \geqslant 2$
$\left|S_{\wedge}\{s, t\}\right| \neq \mid$ os odd \Rightarrow odd \# odd deg vents in S

T-join LP

The solution to the following linear program is the minimum-cost T-join for costs $c \geq 0$:
subject to:

$$
\begin{array}{lll}
\text { Min } & \sum_{e \in E} c_{e} x_{e} & \\
& x(\delta(S)) \geq 1, & \forall S \subseteq V,|S \cap T| \text { odd } \\
& x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

For $\left|s_{n} T\right|$ odd

$$
\sum_{v \in S} \operatorname{deg}_{\text {odd }}(v)=2|E(S) \cap J|+|\delta(S) \cap J|
$$

T-join LP

The solution to the following linear program is the minimum-cost T-join for costs $c \geq 0$:
subject to:

$$
\begin{array}{lll}
\operatorname{Min} & \sum_{e \in E} c_{e} x_{e} & \\
& x(\delta(S)) \geq 1, & \forall S \subseteq V,|S \cap T| \text { odd } \\
& x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

$$
\sum_{v \in S} \operatorname{deg}_{J}(v)=2|E(S) \cap J|+|\delta(S) \cap J|
$$

Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen's algorithm returns a solution of cost at most $\frac{5}{3} O P T_{L P}$.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.
$\operatorname{Min} \sum_{e \in E} c_{e} x_{e}$

$$
\begin{array}{ll}
x(\delta(S)) \geq 1, & \forall S \subseteq V,|S \cap T| \text { odd } \\
x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Prof them: Lat x^{*} be an opt. soln to (Prelaxation.
Cost of MST $\leq \sum_{e \in E} C_{e} x_{c}^{*} \equiv O P T_{L P}$.
since x^{*} is feasible for sunning tree polytope.
Let $X_{F} \in\{0, \mid\}|E|$ set. $X_{F}(e)= \begin{cases}1 & \text { if } e \in F \\ 0 & \text { o. w. }\end{cases}$
Claim: $y=\frac{1}{3} X_{F}+\frac{1}{3} x^{*}$ feasible for T-join $L P$.
Then $c(f \cup J)=c(F)+c(J) \leqslant O P T_{G}+\frac{1}{3} c(F)+\frac{1}{3} O P T_{L}$

$$
\leqslant \frac{5}{3} O P T_{L P}
$$

$y=\frac{1}{3} X_{F}+\frac{1}{3} x^{*}$ teas. for $T_{-j \text { jon }} \cup P$.
Need to show that if $|\delta \wedge \tau|$ odd, then $y(\delta(s)) \geqslant 1$.
If $|\operatorname{sn}\{s, t\}| \neq \mid$, then

$$
y(\delta(s))=\frac{1}{3}|F \cap \delta(s)|+\frac{1}{3} x^{*}(\delta(s)) \geqslant \frac{1}{3}+\frac{2}{3}=1
$$

If $\left|s_{n}\{s, t\}\right|=1$, then

$$
\begin{aligned}
& \left|s_{n}\{s, t\}\right|=1, \text { Then } \\
& y(\delta(s))=\frac{1}{3}|F \wedge \delta(s)|+\frac{1}{3} x^{*}(\delta(s)) \geqslant \frac{2}{3}+\frac{1}{3}=1
\end{aligned}
$$

Cqnvex combination

Let x^{*} be an optimal LP solution. Let χ_{F} be the characteristic vector of a set of edges F, so that

$$
\chi_{F}(e)= \begin{cases}1 & e \in F \\ 0 & e \notin F\end{cases}
$$

Since x^{*} is in the spanning tree polytope, can write x^{*} as a convex combination of spanning trees F_{1}, \ldots, F_{k} :

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}}
$$

such that $\sum_{i=1}^{k} \lambda_{i}=1, \lambda_{i} \geq 0$.

Best-of-Many Christofides' Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many Christofides' algorithm: given optimal LP solution x^{*}, compute convex combination of spanning trees

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}} .
$$

For each spanning tree F_{i}, let T_{i} be the set of vertices whose parity needs fixing, let J_{i} be the minimum-cost T_{i}-join. Find s - t Hamiltonian path by shortcutting $F_{i} \cup J_{i}$. Return the shortest path found over all i.

Best-of-Many Christofides' Algorithm

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}}
$$

For each spanning tree F_{i}, let T_{i} be the set of vertices whose parity needs fixing, J_{i} be the minimum-cost T_{i}-join. Find s - t Hamiltonian path by shortcutting $F_{i} \cup J_{i}$. Return the shortest path found over all i.

Theorem

The Best-of-Many Christofides' algorithm returns a solution of cost at most $\frac{5}{3} O P T_{L P}$.

