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The traveling salesman problem

TRAVELING SALESMAN PROBLEM (TSP)
Input:

e A complete, undirected graph G = (V, E);
e Edge costs ¢(i,j) > 0 for all e = (i,j) € E.

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i,j) = c(j,)) and obey the triangle
inequality (c(i, k) < ¢(i.]) + c(j. K)).

Asymmetric TSP (ATSP) input has complete directed graph, and
c(i,/) may not equal c(j, ).
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The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)
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The traveling salesman problem

United States

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)
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Approximation Algorithms

An a-approximation algorithm is a polynomial-time algorithm that
returns a solution of cost at most « times the cost of an optimal
solution.

Long known: A %—approximation algorithm due to Christofides
(1976). No better approximation algorithm yet known.
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Christofides' algorithm

Compute minimum spanning tree (MST) F on G, then compute a
minimum-cost perfect matching M on odd-degree vertices of T.
“Shortcut” Eulerian traversal in resulting Eulerian graph of F U M.
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s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t € V, find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a %—approximation algorithm.
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s-t path TSP

The s-t path TSP:
Usual TSP input plus s, t € V, find a min-cost path from s to t
visiting all other nodes in between (an s-t Hamiltonian path).

Hoogeveen (1991) shows that the natural variant of Christofides’
algorithm gives a %—approximation algorithm.

What is the natural variant for the s-t path TSP?
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Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits
every edge exactly once iff s and t have odd-degree and all other
vertices have even degree.
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Eulerian path

There is an Eulerian path that starts at s, ends at t, and visits

every edge exactly once iff s and t have odd-degree and all other

vertices have even degree.

Which of these designs can you draw without lifting your
pencil from the paper (drawing each line once & not drawing

any other lines)?

Answer this correctly by December 1 and you could win $100 Visit www.msri.org for a hint or to submit a solution
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Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F, t iff t
has even degree in F, and v # s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T. Find
Eulerian path on F U M; shortcut to an s-t Hamiltonian path.



Davib P. WILLIAMSON s-t PATH TSP

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F, t iff t
has even degree in F, and v # s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T. Find
Eulerian path on F U M; shortcut to an s-t Hamiltonian path.



Davib P. WILLIAMSON s-t PATH TSP

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F, t iff t
has even degree in F, and v # s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T. Find
Eulerian path on F U M; shortcut to an s-t Hamiltonian path.




Davib P. WILLIAMSON s-t PATH TSP

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F, t iff t
has even degree in F, and v # s, t iff v has odd degree. Then find
a minimum-cost perfect matching M on the vertices in T. Find
Eulerian path on F U M; shortcut to an s-t Hamiltonian path.




Davib P. WILLIAMSON s-t PATH TSP

T-joins

Rather than a minimum-cost perfect matching on T, will construct
a minimum-cost T-join: a set of edges that has odd degree at
every vertex in T, even degree at every vertex not in T.
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T-joins

Rather than a minimum-cost perfect matching on T, will construct
a minimum-cost T -join: a set of edges that has odd degree at
every vertex in T, even degree at every vertex not in T.

O



Davib P. WILLIAMSON s-t PATH TSP

T-joins

Rather than a minimum-cost perfect matching on T, will construct
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Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing. Then find a minimum-cost T-join J.
Find Eulerian path on F U J; shortcut to an s-t Hamiltonian path.
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Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing. Then find a minimum-cost T-join J.
Find Eulerian path on F U J; shortcut to an s-t Hamiltonian path.

Hoogeveen's algorithm is a %-approximation algorithm.
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Proof of theorem
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Proof of theorem
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Proof of theorem
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Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
ce for e = (i, j) is number of edges in shortest i-j path in graph.
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Tight Example

The analysis is tight. Consider the graph TSP instance below: cost
ce for e = (i, j) is number of edges in shortest i-j path in graph.
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Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until
just the last few years.

Hoogeveen (1991) 3
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Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until
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Improvements

No improvement on Hoogeveen's algorithm for s-t path TSP, until
just the last few years.

Hoogeveen (
An, Kleinberg, Shmoys (2012) +2‘/§ ~ 1.618
Sebd (
Vygen (2015)

Goal: Understand the An et al. and Sebé algorithm and analysis.
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A Linear Programming Relaxation

Min Z CeXe

eckE
subject to: x(8(v)) = { ; ::::,‘E
/
| safstd = |
x(6(5)) > {2 [Is*nf:,f«ﬂ# l
0 S Xe S 17 ve € E’

where 0(S) is the set of edges with exactly one endpoint in S, and
X(E") = Y ecpr Xe-
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A Linear Programming Relaxation

Min Z CeXe

ecE

subject to: x(d(v)) = { é’ Z ; Z’ i’

1, [Sn{s,t} =1,
x(8(5)) = { 2, |SNn{s t}| #1,

OSXeS]., ve€E7

where 0(S) is the set of edges with exactly one endpoint in S, and
X(E") = Y ecpr Xe-
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LP relaxation
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LP relaxation
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The spanning tree polytope

s-t PATH TSP

The spanning tree polytope (convex hull of all spanning trees) is
defined by the following inequalities:

D v =X(E)=|V|-1,
“  _x(E(S) <|S|-1, v|S| C V.|| > 2,

2 Y Xe > 0, Ve € E,
eels)

where E(S) is the set of all edges with both endpoints in S.

S
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The LP relaxation and spanning trees

Any solution x feasible for the s-t path TSP LP relaxation is in the
spanning tree polytope.
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Proof

s-t PATH TSP

)

x(5(v)) = {
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v =-5,t,
v#s,t,
ISN{s,t} =1,
1SN {s t} #1,

0<xe <1, Ve € E.

( ):|V|_17
x(E(S)) =S| -1, VS| C V,[S] > 2,
620, VEEE.
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A warmup to the improvements

Let OPT,p be the value of an optimal solution x* to the LP
relaxation.

Hoogeveen's algorithm returns a solution of cost at most %OPTLP.
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An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity
needs fixing in F.

S'is an odd set if |SN T| is odd. I

Let S be an odd set. If |S N {s,t}| =1, then |F N(S)| is even. If
SN {s,t}| #1, then |F N4(S)| is odd.
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Let S be an odd set. If |S N {s,t}| =1, then |F N(S)| is even. If
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Proof of lemma

S degr(v) = 2|E(S) N F| +[5(S) N F|

veSs
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T-join LP

s-t PATH TSP

The solution to the following linear program is the minimum-cost
T-join for costs ¢ > O:

Min Z CeXe

ecE
subject to: x(6(S))>1, VSCV,SNT|odd
Xe > 0, Veec E.
S

F’or (SAT[ odd

> deg;(v) = 2|E(S) N J|+[6(S) N J|
ves odd 2Vtn odd
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T-join LP

s-t PATH TSP

The solution to the following linear program is the minimum-cost
T-join for costs ¢ > O:

Min Z CeXe

ecE
subject to: x(6(S))>1, VSCV,SNT|odd
Xe > 0, Veec E.
S

> degy(v) = 2|E(S) N J|+[6(S) N J|
veSs
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Proof of theorem

Hoogeveen's algorithm returns a solution of cost at most %OPTLP.

Let S be an odd set. If |S N {s,t}| =1, then |F N(S)| is even. If
SN {s,t}| # 1, then |F N (S)| is odd.

Min Z CeXe

ecE
x(6(S)) > 1, VS CV,|SNT| odd
Xe > 0, Ve € E.
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Cqnvex combination

Let x* be an optimal LP solution. Let xg be the characteristic
vector of a set of edges F, so that

XF(e):{(l) 2;,,::

Since x* is in the spanning tree polytope, can write x* as a convex
combination of spanning trees Fi,..., F:

k
*
X = Zz\iXF;a
i=1

such that K ;A =1, \; > 0.
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Best-of-Many Christofides’ Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many
Christofides’ algorithm: given optimal LP solution x*, compute
convex combination of spanning trees

k
x* = Z AiXF;-
i=1

For each spanning tree F;, let T; be the set of vertices whose parity
needs fixing, let J; be the minimum-cost T;-join. Find s-t
Hamiltonian path by shortcutting F; U J;. Return the shortest path
found over all i.
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Best-of-Many Christofides’ Algorithm

k
x* = Z )‘iXF,--
i=1

For each spanning tree F;, let T; be the set of vertices whose parity
needs fixing, J; be the minimum-cost T;-join. Find s-t Hamiltonian
path by shortcutting F; U J;. Return the shortest path found over
all /.

The Best-of-Many Christofides’ algorithm returns a solution of cost
at most gOPTLp.




