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The s-t path traveling salesman problem

The s-t Path Traveling Salesman Problem (s-t Path
TSP)
Input:

• A complete, undirected graph G = (V ,E );
• Edge costs c(i , j) ≥ 0 for all e = (i , j) ∈ E ;
• Vertices s, t ∈ V .

Goal: Find the min-cost path that starts at s, ends at t, and visits
every other vertex exactly once.

Costs are symmetric (c(i , j) = c(j , i)) and obey the triangle
inequality (c(i , k) ≤ c(i , j) + c(j , k)).
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Hoogeveen’s algorithm
Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F , t iff t
has even degree in F , and v 6= s, t iff v has odd degree. Then find
a minimum-cost T -join J . Find Eulerian path on F ∪ J ; shortcut
to an s-t Hamiltonian path.
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Improvements

Theorem
Hoogeveen’s algorithm is a 5

3 -approximation algorithm.

Recent improvements on Hoogeveen’s algorithm.
Hoogeveen (1991) 5

3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.
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A Linear Programming Relaxation

Min
∑
e∈E

cexe

subject to: x(δ(v)) =
{

1, v = s, t,
2, v 6= s, t,

x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of edges with exactly one endpoint in S, and
x(E ′) ≡

∑
e∈E ′ xe .
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The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is
defined by the following inequalities:

x(E ) = |V | − 1,
x(E (S)) ≤ |S| − 1, ∀|S| ⊆ V , |S| ≥ 2,
xe ≥ 0, ∀e ∈ E ,

where E (S) is the set of all edges with both endpoints in S.

Lemma
Any solution x feasible for the s-t path TSP LP relaxation is in the
spanning tree polytope.
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A warmup to the improvements

Let OPTLP be the value of an optimal solution x∗ to the LP
relaxation.

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen’s algorithm returns a solution of cost at most 5

3OPTLP .
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An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity
needs fixing in F .

Definition
S is an odd set if |S ∩ T | is odd.

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.
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T -join LP

The solution to the following linear program is the minimum-cost
T -join for costs c ≥ 0:

Min
∑
e∈E

cexe

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .
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Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
Hoogeveen’s algorithm returns a solution of cost at most 5

3OPTLP .

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even. If
|S ∩ {s, t}| 6= 1, then |F ∩ δ(S)| is odd.

Min
∑
e∈E

cexe

x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .

Basic idea: Show that y = 1
3χF + 1

3x
∗ is feasible for T -join LP,

where x∗ is solution to LP relaxation, and χF is characteristic
vector for spanning tree F .
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Convex combination

Let x∗ be an optimal LP solution. Let χF be the characteristic
vector of a set of edges F , so that

χF (e) =
{

1 e ∈ F
0 e /∈ F

Since x∗ is in the spanning tree polytope, can write x∗ as a convex
combination of spanning trees F1, . . . ,Fk :

x∗ =
k∑

i=1
λiχFi ,

such that
∑k

i=1 λi = 1, λi ≥ 0.
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Best-of-Many Christofides’ Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many
Christofides’ algorithm: given optimal LP solution x∗, compute
convex combination of spanning trees

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, let Ji be the minimum-cost Ti -join. Find s-t
Hamiltonian path by shortcutting Fi ∪ Ji . Return the shortest path
found over all i .
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Best-of-Many Christofides’ Algorithm

x∗ =
k∑

i=1
λiχFi .

For each spanning tree Fi , let Ti be the set of vertices whose parity
needs fixing, Ji be the minimum-cost Ti -join. Find s-t Hamiltonian
path by shortcutting Fi ∪ Ji . Return the shortest path found over
all i .

Theorem
The Best-of-Many Christofides’ algorithm returns a solution of cost
at most 5

3OPTLP .
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Proof
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Improvement?

To do better, we need to improve the analysis for the costs of the
Ti -joins; recall that we use that

yi =
1
3χFi +

1
3x
∗

is feasible for the Ti -join LP.

Consider
yi = αχFi + βx∗.

Then the cost of the best s-t Hamiltonian path is at most

(1+ α+ β)OPTLP .
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Improvement?

Proof that yi feasible for Ti -join LP had two cases. Assume S odd
(|S ∩ Ti | odd).

If |S ∩ {s, t}| 6= 1, then

yi(δ(S)) = α|Fi ∩ δ(S)|+ βx∗(δ(S)) ≥ α+ 2β.

We will want α+ 2β ≥ 1, so the Ti -join LP constraint is satisfied.
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Improvement?

If |S ∩ {s, t}| = 1, then

yi(δ(S)) = α|Fi ∩ δ(S)|+ βx∗(δ(S)) ≥ 2α+ βx∗(δ(S)).

Since we assume α+ 2β ≥ 1, we only run into problems if

x∗(δ(S)) < 1− 2α
β

.

Note that α = 0, β = 1
2 works if x∗(δ(S)) ≥ 2 for all S ⊂ V , and

gives a tour of cost at most 3
2OPTLP .

So focus on cuts for which x∗(δ(S)) < 2, and add an extra
“correction” term to yi to handle these cuts.
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τ -Narrow Cuts

Definition
S is τ -narrow if x∗(δ(S)) < 1+ τ for fixed τ ≤ 1.

Only S such that |S ∩ {s, t}| = 1 are τ -narrow.

Definition
Let Cτ be all τ -narrow cuts S with s ∈ S.
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τ -Narrow Cuts

The τ -narrow cuts in Cτ have a nice structure.

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 ∈ Cτ , S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.
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First need to show that

x∗(δ(S1)) + x∗(δ(S2)) ≥ x∗(δ(S1 − S2)) + x∗(δ(S2 − S1)).

S1 S2
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Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 ∈ Cτ , S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the τ -narrow cuts look like s ∈ Q1 ⊂ Q2 ⊂ · · · ⊂ Qk ⊂ V .

s . . . t
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Correction Factor

Let eQ be the minimum-cost edge in δ(Q). Then consider the
following (from Gao (2014)):

yi = αχFi + βx∗ +
∑

Q∈Cτ ,|Q∩Ti | odd
(1− 2α− βx∗(δ(Q)))χeQ

for α, β, τ ≥ 0 such that

α+ 2β = 1 and τ =
1− 2α
β

− 1.

Theorem
yi is feasible for the Ti -join LP.
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Proof



David P. Williamson s-t path TSP

Two Lemmas

Recall x∗ =
∑k

i=1 λiχFi , with
∑k

i=1 λi = 1 and λi ≥ 0. So λi is a
probability distribution on the trees Fi ; probability of Fi is λi .

Lemma
Let F be a randomly sampled tree Fi , and T the corresponding
vertices Ti . Let Q ∈ Cτ be a τ -narrow cut. Then

Pr[|δ(Q) ∩ F| = 1] ≥ 2− x∗(δ(Q))

Pr[|Q ∩ T | odd] ≤ x∗(δ(Q))− 1.
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Two Lemmas
Recall eQ is the cheapest edge crossing a τ -narrow cut Q ∈ Cτ .

Lemma ∑
Q∈Cτ

ceQ ≤
∑
e∈E

cex∗e .

s

Q1 Q2

v . . . t



David P. Williamson s-t path TSP

An-Kleinberg-Shmoys

Theorem (An, Kleinberg, and Shmoys (2012))

Best-of-Many Christofides’ is a 1+
√

5
2 -approximation algorithm for

s-t path TSP.
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Proof of AKS
For the proof, recall that eQ is min-cost edge in δ(Q), Cτ are the
cuts Q with x∗(δ(Q)) < 1+ τ ,

yi = αχFi + βx∗ +
∑

Q∈Cτ ,|Q∩Ti | odd
(1− 2α− βx∗(δ(Q)))χeQ

is feasible for the Ti -join LP, and

Lemma
Let F be a randomly sampled tree Fi , and T the corresponding
vertices Ti . Let Q ∈ Cτ be a τ -narrow cut. Then

Pr[|δ(Q) ∩ F| = 1] ≥ 2− x∗(δ(Q))

Pr[|Q ∩ T | odd] ≤ x∗(δ(Q))− 1.

Lemma ∑
Q∈Cτ

ceQ ≤
∑
e∈E

cex∗e .
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Sebő’s Improvement

Sebő (2013) gives a tighter analysis of the Best-of-Many
Christofides’ algorithm. For spanning tree Fi , let F st

i be the set of
edges in the s-t path in Fi . Recall from the proof of Hoogeven’s
algorithm that Fi − F st

i is also a Ti -join, so c(Ji) ≤ c(Fi − F st
i ).

s

t
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One More Lemma

Let F be a random spanning tree (tree Fi with probability λi), and
F st its associated s-t path. Let c(F st) be the cost of this path.
Recall that

Pr[|F ∩ δ(Q)| = 1] ≥ 2− x∗(δ(Q))

for a τ -narrow cut Q.

Lemma (Sebő (2013))∑
Q∈Cτ

(2− x∗(δ(Q)))ceQ ≤ E [c(F st)].
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Sebő (2013)

Theorem (Sebő (2013))
Best-of-Many Christofides’ is an 8

5 -approximation algorithm.
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Proof of Sebő
For the proof, recall that eQ is min-cost edge in δ(Q), Cτ are the
cuts Q with x∗(δ(Q)) < 1+ τ ,

yi = αχFi + βx∗ +
∑

Q∈Cτ ,|Q∩Ti | odd
(1− 2α− βx∗(δ(Q)))χeQ

is feasible for the Ti -join LP, and

Lemma
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vertices Ti . Let Q ∈ Cτ be a τ -narrow cut. Then

Pr[|δ(Q) ∩ F| = 1] ≥ 2− x∗(δ(Q))

Pr[|Q ∩ T | odd] ≤ x∗(δ(Q))− 1.

Lemma ∑
Q∈Cτ

(2− x∗(δ(Q)))ceQ ≤ E [c(F st)].
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Vygen’s Improvement

Vygen (2015) gives a 1.599-approximation algorithm.

Key idea: Modify the initial convex combination of trees into
another one that avoids certain bad properties.
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Integrality Gap

The performance of Best-of-Many Christofides’ cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

µ ≡ sup OPT
OPTLP

over all instances of the problem.

Note that we have shown µ ≤ 8
5 , since we find a tour of cost at

most 8
5OPTLP .
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V ,E ), cost ce for
e = (i , j) is number of edges in a shortest i-j path in G .

s t

k
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Integrality Gap

We can show a lower bound on the integrality gap using an
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V ,E ), cost ce for
e = (i , j) is number of edges in a shortest i-j path in G .

s t

k

OPT
OPTLP

→ 3
2 as k →∞
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Graph Instances

Sebő and Vygen (2014) show that for graph TSP instances of s-t
path TSP, can get a 3

2 -approximation algorithm (i.e. the algorithm
produces a solution of cost at most 3

2OPTLP), so the integrality
gap is tight for these instances.

We’ll present a simplified version of this result due to Gao (2013).
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Graph Instances

Given the input graph G = (V ,E ) and an optimal solution, can
replace any edge (i , j) in the optimal solution with the i-j path in
G since these have the same cost.

So finding an optimal solution is equivalent to finding a multiset F
of edges such that (V ,F ) is connected, degF (s) and degF (t) are
odd, degF (v) is even for all v ∈ V − {s, t}, and |F | is minimum.
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LP Relaxation

Min
∑
e∈E

xe

subject to: x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

xe ≥ 0, ∀e ∈ E .

Let x∗ be an optimal LP solution.
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Narrow Cuts

As before, focus on narrow cuts S such that x∗(δ(S)) < 2 (i.e. a
τ -narrow cut for τ = 1). Recall:

Theorem (An, Kleinberg, Shmoys (2012))
If S1, S2 are narrow cuts, S1 6= S2, then either S1 ⊂ S2 or S2 ⊂ S1.

So the narrow cuts look like s ∈ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ V .

s . . . t

Let S0 ≡ ∅, Sk+1 ≡ V , Li ≡ Si − Si−1.
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Key Idea

Find a tree spanning Li in the support of x∗ for each i . Connect
each of these via a single edge from Li to Li+1. Let F be the
resulting tree, T the vertices in F whose parity needs changing.

Then |F | = n − 1 and |δ(Si) ∩ F | = 1 for each narrow cut Si .

s L1 L2 . . . Lk t
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Key Lemma

Recall:

Lemma
Let S be an odd set. If |S ∩ {s, t}| = 1, then |F ∩ δ(S)| is even.

Min
∑
e∈E

cexe

subject to: x(δ(S)) ≥ 1, ∀S ⊆ V , |S ∩ T | odd
xe ≥ 0, ∀e ∈ E .

Lemma
y = 1

2x
∗ is feasible for the the T -join LP.
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Gao (2013)

Theorem (Gao (2013))
For spanning tree F constructed by the algorithm, let J be a
minimum-cost T -join. Then c(F ∪ J) ≤ 3

2OPTLP .

Min
∑
e∈E

xe

subject to: x(δ(S)) ≥
{

1, |S ∩ {s, t}| = 1,
2, |S ∩ {s, t}| 6= 1,

xe ≥ 0, ∀e ∈ E .
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Last Lemma
Let E (x∗) = {e ∈ E : x∗e > 0} be the support of LP solution x∗,
H = (V ,E (x∗)) the support graph of x∗, H(S) the graph induced
by a set S of vertices.

Lemma (Gao (2013))

For 1 ≤ p ≤ q ≤ k + 1, H
(⋃

p≤i≤q Li
)
is connected.

s L1 L2 . . . Lk t
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The Big Question

Is there a 3
2 -approx. alg. for s-t path TSP for general costs?
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One Idea

Idea: Construct a spanning tree F just as in Gao’s algorithm for
the graph case. Then again y = 1

2x
∗ is feasible for the T -join LP,

and the overall cost of F plus the T -join is at most
c(F ) + 1

2
∑

e∈E cex∗e .

Problem: Not clear how to bound the cost of F . Gao (2014) has
an example showing that F can have cost greater than OPTLP .
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The Bigger Question

Best-of-Many Christofides’ is provably better than Christofides’ for
s-t path TSP. What about the standard TSP?
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An empirical answer

Did some computational work with Cornell CS undergraduate Kyle
Genova to see whether Best-of-Many Christofides is any better
than standard Christofides in practice. Paper to appear in
upcoming ESA.
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The algorithms

We implement algorithms to do the following:
• Run the standard Christofides’ algorithm (Christofides 1976);
• Construct explicit convex combination via column generation
(An 2012);

• Construct explicit convex combination via splitting off (Frank
2011, Nagamochi, Ibaraki 1997);

• Add sampling scheme SwapRound to both of above; gives
negative correlation properties (Chekuri, Vondrák, Zenklusen
2010);

• Compute and sample from maximum entropy distribution
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010).
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The experiments

The algorithms were implemented in C++, run on a machine with
a 4.00Ghz Intel i7-875-K processor with 8GB DDR3 memory.

We run these algorithms on several types of instances:
• 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices (avg. 524);

• 5 non-Euclidean TSPLIB instances (gr120, si175, si535,
pa561, si1032);

• 39 Euclidean VLSI instances (Rohe) up to 3694 vertices (avg.
1473);

• 9 graph TSP instances (Kunegis 2013) up to 1615 vertices
(avg. 363).
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The results

Std ColGen ColGen+SR
Best Ave Best Ave

TSPLIB (E) 9.56% 4.03% 6.44% 3.45% 6.24%
VLSI 9.73% 7.00% 8.51% 6.40% 8.33%
TSPLIB (N) 5.40% 2.73% 4.41% 2.22% 4.08%
Graph 12.43% 0.57% 1.37% 0.39% 1.29%

MaxEnt Split Split+SR
Best Ave Best Ave Best Ave

TSPLIB (E) 3.19% 6.12% 5.23% 6.27% 3.60% 6.02%
VLSI 5.47% 7.61% 6.60% 7.64% 5.48% 7.52%
TSPLIB (N) 2.12% 3.99% 2.92% 3.77% 1.99% 3.82%
Graph 0.31% 1.23% 0.88% 1.77% 0.33% 1.20%

Costs given as percentages in excess of optimal.
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The results

Standard Christofides MST (Rohe VLSI instance XQF131)

Splitting off + SwapRound
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The results
BoMC yields more vertices in the tree of degree two.
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The results

So while the tree costs more (as percentage of optimal tour)...

Std BOM
TSPLIB (E) 87.47% 98.57%
VLSI 89.85% 98.84%
TSPLIB (N) 92.97% 99.36%
Graph 79.10% 98.23%
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The results

...the matching costs much less.

Std CG CG+SR MaxE Split Sp+SR
TSPLIB (E) 31.25% 11.43% 11.03% 10.75% 10.65% 10.41%
VLSI 29.98% 14.30% 14.11% 12.76% 12.78% 12.70%
TSPLIB (N) 24.15% 9.67% 9.36% 8.75% 8.77% 8.56%
Graph 39.31% 5.20% 4.84% 4.66% 4.34% 4.49%
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Conclusion

Q: Are there empirical reasons to think BoMC might be provably
better than Christofides’ algorithm?

A: Yes.

Maximum entropy sampling, or splitting off with SwapRound seem
like the best candidates.
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Conclusion
However, we have to be careful, as the following, very recent,
example of Schalekamp and van Zuylen shows.
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Conclusions

So it seems that randomization, or at least, careful construction of
the convex combination is needed.

Vygen (2015) also uses careful construction to improve s-t path
TSP from 1.6 to 1.5999.

If we want to use the best sample from Max Entropy or
SwapRound, then might need to prove some tail bounds.
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