$s-t$ path TSP

David P. Williamson
Cornell University

August 17-21, 2015 ADFOCS

If you liked this...

...come visit us at Cornell!

The s-t path traveling salesman problem

The s-t Path Traveling Salesman Problem (s-t Path TSP)

Input:

- A complete, undirected graph $G=(V, E)$;
- Edge costs $c(i, j) \geq 0$ for all $e=(i, j) \in E$;
- Vertices $s, t \in V$.

Goal: Find the min-cost path that starts at s, ends at t, and visits every other vertex exactly once.

Costs are symmetric $(c(i, j)=c(j, i))$ and obey the triangle inequality $(c(i, k) \leq c(i, j)+c(j, k))$.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s - t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s - t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s - t Hamiltonian path.

Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices whose parity needs changing: s iff s has even degree in F, t iff t has even degree in F, and $v \neq s, t$ iff v has odd degree. Then find a minimum-cost T-join J. Find Eulerian path on $F \cup J$; shortcut to an s - t Hamiltonian path.

Course 1

Theorem

Hoogeveen's algorithm is a $\frac{5}{3}$-approximation algorithm.

Recent improvements on Hoogeveen's algorithm.

Hoogeveen
(1991) $\frac{5}{3}$

An, Kleinberg, Shmoys
(2012) $\frac{1+\sqrt{5}}{2} \approx 1.618$

Sebő
Vygen
(2013) $\quad \frac{8}{5}=1.6$
(2015) 1.599

Goal: Understand the An et al. and Sebő algorithm and analysis.

A Linear Programming Relaxation

$$
\operatorname{Min} \sum_{e \in E} c_{e} x_{e}
$$

subject to:

$$
\begin{aligned}
& x(\delta(v))= \begin{cases}1, & v=s, t \\
2, & v \neq s, t\end{cases} \\
& x(\delta(S)) \geq \begin{cases}1, & |S \cap\{s, t\}|=1 \\
2, & |S \cap\{s, t\}| \neq 1,\end{cases} \\
& 0 \leq x_{e} \leq 1, \quad \forall e \in E
\end{aligned}
$$

where $\delta(S)$ is the set of edges with exactly one endpoint in S, and $x\left(E^{\prime}\right) \equiv \sum_{e \in E^{\prime}} x_{e}$.

The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is defined by the following inequalities:

$$
\begin{array}{ll}
x(E)=|V|-1, & \\
x(E(S)) \leq|S|-1, & \forall|S| \subseteq V,|S| \geq 2 \\
x_{e} \geq 0, & \forall e \in E
\end{array}
$$

where $E(S)$ is the set of all edges with both endpoints in S.

Lemma

Any solution x feasible for the s-t path TSP LP relaxation is in the spanning tree polytope.

$$
\text { Curse } 1
$$

A warmup to the improvements

Let $O P T_{L P}$ be the value of an optimal solution x^{*} to the LP relaxation.

Theorem (An, Kleinberg, Shmoys (2012))

Hoogeveen's algorithm returns a solution of cost at most $\frac{5}{3} O P T_{L P}$.

An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity needs fixing in F.

Definition

S is an odd set if $|S \cap T|$ is odd.

Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

$$
\begin{aligned}
& \left|F_{\wedge} F(s)\right| \geqslant 2 \\
& \text { If } s^{\circ} \delta d_{\wedge}\left\{s_{1}, t\right\} \mid=1
\end{aligned}
$$

T-join LP

The solution to the following linear program is the minimum-cost T-join for costs $c \geq 0$:

$$
\begin{array}{lll}
\operatorname{Min} & \sum_{e \in E} c_{e} x_{e} & \\
& x(\delta(S)) \geq 1, & \forall S \subseteq V,|S \cap T| \text { odd } \\
& x_{e} \geq 0, & \forall e \in E .
\end{array}
$$

Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))

 Hoogeveen's algorithm returns a solution of cost at most $\frac{5}{3} O P T_{L P}$.
Lemma

Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even. If $|S \cap\{s, t\}| \neq 1$, then $|F \cap \delta(S)|$ is odd.

$$
\begin{array}{ll}
\operatorname{Min} & \sum_{e \in E} c_{e} x_{e} \\
& \\
& x(\delta(S)) \geq 1, \\
& x_{e} \geq 0,
\end{array} \quad \forall S \subseteq V,|S \cap T| \text { odd }, ~ \forall e \in E . ~ \$
$$

Basic idea: Show that $y=\frac{1}{3} \chi_{F}+\frac{1}{3} x^{*}$ is feasible for T-join LP, where x^{*} is solution to LP relaxation, and χ_{F} is characteristic vector for spanning tree F.

Convex combination

Let x^{*} be an optimal LP solution. Let χ_{F} be the characteristic vector of a set of edges F, so that

$$
\chi_{F}(e)= \begin{cases}1 & e \in F \\ 0 & e \notin F\end{cases}
$$

Since x^{*} is in the spanning tree polytope, can write x^{*} as a convex combination of spanning trees F_{1}, \ldots, F_{k} :

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}}
$$

such that $\sum_{i=1}^{k} \lambda_{i}=1, \lambda_{i} \geq 0$.

Best-of-Many Christofides' Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many Christofides' algorithm: given optimal LP solution x^{*}, compute convex combination of spanning trees

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}} .
$$

For each spanning tree F_{i}, let T_{i} be the set of vertices whose parity needs fixing, let J_{i} be the minimum-cost T_{i}-join. Find s - t Hamiltonian path by shortcutting $F_{i} \cup J_{i}$. Return the shortest path found over all i.

Best-of-Many Christofides' Algorithm

$$
x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}}
$$

For each spanning tree F_{i}, let T_{i} be the set of vertices whose parity needs fixing, J_{i} be the minimum-cost T_{i}-join. Find s - t Hamiltonian path by shortcutting $F_{i} \cup J_{i}$. Return the shortest path found over all i.

Theorem

The Best-of-Many Christofides' algorithm returns a solution of cost at most $\frac{5}{3} O P T_{L P}$.
$y_{i}={ }_{3}^{1} X_{F_{i}}+\frac{1}{3} x^{*}$. Claim: Feasible for T_{i}-join $L P$.
If $S \circ d d,\left|S_{\wedge}\{s, t\}\right| \neq 1$, then

$$
y_{i}(\delta(s))=\frac{1}{3}\left|\rho_{n} \cap \delta(s)\right|+\frac{1}{3} x^{*}(\delta(s)) \geqslant \frac{1}{3}+\frac{2}{3}
$$

If $\left.S_{\circ . d d}, \mid S_{\cap}\{s, t\}\right\}=1$, then

$$
y_{i}(\delta(s))^{\prime}=\frac{1}{3}\left|F_{i} \wedge \delta(s)\right|+\frac{1}{3} x^{*}(\delta(s)) \geq \frac{2}{3}+\frac{1}{3}=1
$$

Cost of $\min _{i} c\left(F_{i} \cup J_{i}\right) \leqslant \sum_{i} \lambda_{i} c\left(F_{i} \cup J_{i}\right)$

$$
\begin{aligned}
& =\sum_{i} \lambda_{i}\left(\sum_{e \in F_{i}} C_{e}^{i}+\frac{1}{3} \sum_{e \in F_{i}} c_{e}+\frac{1}{3} \sum_{e c e} c_{e} x_{e}^{*}\right) \\
& =\sum_{i} \lambda_{i}\left(\frac{4}{3} c\left(F_{j}\right)+\frac{1}{3} \sum_{e \in E} c_{e} x_{e}^{*}\right) \\
& =\frac{4}{3} \sum_{i} \lambda_{i} c\left(F_{i}\right)+\frac{1}{3} \sum_{i} \lambda_{i} \sum_{e \in E} c_{e} x_{e}^{*} \\
& =\frac{4}{3} \sum_{e \in E} c_{e} x_{e}^{*}+\frac{1}{3} \sum_{e \in E} c_{e} e_{e}^{*}=\frac{5}{3} \sum_{e \in E} c_{e} x_{e}^{*}=\frac{5}{3} \Delta P T_{L p}
\end{aligned}
$$

Improvement?

To do better, we need to improve the analysis for the costs of the T_{i}-joins; recall that we use that

$$
y_{i}=\frac{1}{3} \chi_{F_{i}}+\frac{1}{3} x^{*}
$$

is feasible for the T_{i}-join LP.
Consider

$$
y_{i}=\alpha \chi_{F_{i}}+\beta x^{*} \text {. If fecesible for } T_{i-j \text { in }}
$$

Then the cost of the best s-t Hamiltonian path is at most

$$
(1+\alpha+\beta) O P T_{L P}
$$

Improvement?

Proof that y_{i} feasible for T_{i}-join LP had two cases. Assume S odd ($\left|S \cap T_{i}\right|$ odd).

If $|S \cap\{s, t\}| \neq 1$, then

$$
y_{i}(\delta(S))=\alpha\left|F_{i} \cap \delta(S)\right|+\beta x^{*}(\delta(S)) \geq \alpha+2 \beta
$$

We will want $\alpha+2 \beta \geq 1$, so the T_{i}-join LP constraint is satisfied.

Improvement?

If $|S \cap\{s, t\}|=1$, then

$$
y_{i}(\delta(S))=\alpha\left|F_{i} \cap{ }^{?} \delta(S)\right|+\beta x^{*}(\delta(S)) \geq 2 \alpha+\beta x^{*}(\delta(S))
$$

Improvement?

If $|S \cap\{s, t\}|=1$, then

$$
\left.y_{i}(\delta(S))=\alpha\left|F_{i} \cap \delta(S)\right|+\beta x^{*}(\delta(S)) \geq \frac{2 \alpha+\beta x^{*}(\delta(S)}{<1}\right)
$$

Since we assume $\alpha+2 \beta \geq 1$, we only run into problems if

$$
x^{*}(\delta(S))<\frac{1-2 \alpha}{\beta}
$$

Note that $\alpha=0, \beta=\frac{1}{2}$ works if $x^{*}(\delta(S)) \geq 2$ for all $S \subset V$, and gives a tour of cost at most $\frac{3}{2} O P T_{L P}$.

Improvement?

If $|S \cap\{s, t\}|=1$, then

$$
y_{i}(\delta(S))=\alpha\left|F_{i} \cap \delta(S)\right|+\beta x^{*}(\delta(S)) \geq 2 \alpha+\beta x^{*}(\delta(S))
$$

Since we assume $\alpha+2 \beta \geq 1$, we only run into problems if

$$
x^{*}(\delta(S))<\frac{1-2 \alpha}{\beta}
$$

Note that $\alpha=0, \beta=\frac{1}{2}$ works if $x^{*}(\delta(S)) \geq 2$ for all $S \subset V$, and gives a tour of cost at most $\frac{3}{2} O P T_{L P}$.
So focus on cuts for which $x^{*}(\delta(S))<2$, and add an extra "correction" term to y_{i} to handle these cuts.

Definition
 S is τ-narrow if $x^{*}(\delta(S))<1+\tau$ for fixed $\tau \leq 1$.

Only S such that $|S \cap\{s, t\}|=1$ are τ-narrow.

Definition

Let \mathcal{C}_{τ} be all τ-narrow cuts S with $s \in S$.

The τ-narrow cuts in \mathcal{C}_{τ} have a nice structure.
Theorem (An, Kleinberg, Shmoys (2012))
If $S_{1}, S_{2} \in \mathcal{C}_{\tau}, S_{1} \neq S_{2}$, then either $S_{1} \subset S_{2}$ or $S_{2} \subset S_{1}$.

First need to show that

$$
x^{*}\left(\delta\left(S_{1}\right)\right)+x^{*}\left(\delta\left(S_{2}\right)\right) \geq x^{*}\left(\delta\left(S_{1}-S_{2}\right)\right)+x^{*}\left(\delta\left(S_{2}-S_{1}\right)\right) .
$$

Pf $S_{\text {pe }}$ otherwise. $S_{1}-S_{2} \pm \phi$, and. $S_{2}-S_{1} \not \pm \phi$

$$
\begin{aligned}
(1+\tau)+(1+\tau) & >x^{*}\left(\delta\left(s_{1}\right)\right)+x^{*}\left(\delta\left(s_{\tau}\right)\right) \\
& \geqslant x^{*}\left(\delta\left(s_{1}-s_{2}\right)\right)+x^{*}\left(\delta\left(s_{2}-s_{1}\right)\right) \\
& \geqslant 2+2 . \quad \rightarrow \longleftarrow
\end{aligned}
$$

Proof of theorem

Theorem (An, Kleinberg, Shmoys (2012))
If $S_{1}, S_{2} \in \mathcal{C}_{\tau}, S_{1} \neq S_{2}$, then either $S_{1} \subset S_{2}$ or $S_{2} \subset S_{1}$.

Theorem (An, Kleinberg, Shmoys (2012))
If $S_{1}, S_{2} \in \mathcal{C}_{\tau}, S_{1} \neq S_{2}$, then either $S_{1} \subset S_{2}$ or $S_{2} \subset S_{1}$.
So the τ-narrow cuts look like $s \in Q_{1} \subset Q_{2} \subset \cdots \subset Q_{k} \subset V$.

Correction Factor

Let e_{Q} be the minimum-cost edge in $\delta(Q)$. Then consider the following (from Gao (2014)):

$$
y_{i}=\alpha \chi_{F_{i}}+\beta x^{*}+\sum_{Q \in \mathcal{C}_{\tau},\left|Q \cap T_{i}\right| \text { odd }}\left(1-2 \alpha-\beta x^{*}(\delta(Q))\right) \chi_{e_{Q}}
$$

for $\alpha, \beta, \tau \geq 0$ such that

$$
\alpha+2 \beta=1 \quad \text { and } \quad \tau=\frac{1-2 \alpha}{\beta}-1
$$

Course 2

Theorem

y_{i} is feasible for the T_{i}-join LP.
if S odd $\left(\left|S \wedge T_{i}\right| \circ d d\right)$
If $|\operatorname{Sn}\{s, t\}| \neq 1$

$$
y_{i}(\delta(s)) \geqslant \alpha\left|F_{i} \cap \delta(s)\right|+\beta_{x}^{*}(\delta(s)) \geqslant \alpha+2 \beta=1
$$

If $\left|S_{n}\{s, t\}\right|=1$
If S not τ-narrow

$$
\begin{aligned}
& \text { If } S \text { not } \tau \text {-narrow } \\
& \left.y_{i}(\delta(s)) \geqslant \alpha \mid F_{i} \cap \delta(s)\right)+\beta x^{*}(\delta(s)) \geqslant 2 \alpha+\beta(1+\tau)=1 \text {. }
\end{aligned}
$$

If S is E-narsow

$$
\begin{aligned}
& \text { If } S \text { is } \begin{aligned}
& \\
& y_{i}(\delta(s))\left.\geqslant \alpha \mid F_{i} \cap \delta(s)\right)+\beta x^{*}(\delta(s))+\left(1-2 \alpha-\beta x^{*}(\delta(s))\right)\left|e_{s} \cap \delta(s)\right| \\
& \geqslant 2 \alpha+\beta x^{*}(\delta(s))+\left(1-2 \alpha-\beta x^{*}(\delta(s))\right) \\
&=1 .
\end{aligned}
\end{aligned}
$$

Proof

Two Lemmas

Recall $x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{F_{i}}$, with $\sum_{i=1}^{k} \lambda_{i}=1$ and $\lambda_{i} \geq 0$. So λ_{i} is a probability distribution on the trees F_{i}; probability of F_{i} is λ_{i}.

Lemma

Let \mathcal{F} be a randomly sampled tree F_{i}, and \mathcal{T} the corresponding vertices T_{i}. Let $Q \in \mathcal{C}_{\tau}$ be a τ-narrow cut. Then

$$
\begin{aligned}
\operatorname{Pr}[|\delta(Q) \cap \mathcal{F}|=1] & \geq 2-x^{*}(\delta(Q)) \\
\operatorname{Pr}[|Q \cap \mathcal{T}| \text { odd }] & \leq x^{*}(\delta(Q))-1
\end{aligned}
$$

$$
\begin{aligned}
& X^{x}(\delta(Q))=E\left[\left|z_{\wedge} \delta(Q)\right|\right] \geqslant \operatorname{Pr}\left[\left|z_{n} \delta(Q)\right|=1\right]+ \\
& 2 \operatorname{Pr}[|\exists \wedge \delta(G)| \geqslant 2] \\
& \text { and } \operatorname{Pr}[|\not \approx \rho(0)|=1]+\operatorname{Pr}[|\xi \wedge \delta(Q)| \geqslant 2]=1 \\
& \therefore \operatorname{Pr}[|\exists \cap \delta(0)|=1] \geqslant 2-x^{*}(\delta(0)) \\
& \operatorname{Pr}[|ま \wedge \delta(a)| \geq 2] \leq x^{*}(\delta(a))-1
\end{aligned}
$$

Recall $\left|Q_{\wedge} T_{j}\right|$ odd $\Rightarrow\left|F_{i} \sim \delta(Q)\right| \geqslant 2$

$$
\therefore \operatorname{Pr}\left[\left|a_{n} T_{i}\right| \circ d d\right] \leqslant \operatorname{Pr}\left[\left|f_{1} \delta(0)\right| \geqslant 2\right] \leqslant \psi^{*}(\delta(0))-1 \text {. }
$$

Two Lemmas

Recall e_{Q} is the cheapest edge crossing a τ-narrow cut $Q \in \mathcal{C}_{\tau}$.

Lemma

$$
\sum_{Q \in \mathcal{C}_{\tau}} c_{e_{Q}} \leq \sum_{e \in E} c_{e} x_{e}^{*}
$$

An-Kleinberg-Shmoys

Course 4-5

Theorem (An, Kleinberg, and Shmoys (2012))
Best-of-Many Christofides' is a $\frac{1+\sqrt{5}}{2}$-approximation algorithm for s-t path TSP.

Pf Best set path $\leqslant \sum_{i} \lambda_{i} c\left(F_{i} \cup J_{N}\right)$

$$
\begin{aligned}
& =\sum_{i} \lambda_{i}\left[c\left(F_{i}\right)+\alpha c\left(F_{i}\right)+\beta \sum_{e \in E} c_{e} x_{i}^{*}+\sum_{\substack{\text { Que } \\
\mid Q_{n T} T_{\text {dd }}}}\left(1-2 \alpha-\beta \times^{k}(\gamma(Q)) c_{e Q}\right]\right. \\
& \leq(1+\alpha+\beta) \sum_{e \in E} a_{e} x_{e}^{*}+\sum_{Q G E_{\tau}}\left(x^{*}(\delta(Q))-1\right)\left(1-2 \alpha-\beta x^{*}(\delta(Q)) C_{e Q}\right. \\
& \leqslant(1+\alpha+\beta) \sum_{e \in E} c_{e} x_{c}^{*}+\max _{0 \leqslant z<\tau} z(1-2 \alpha+\beta(1+z)) \sum_{Q \in e_{\tau}} c_{e} \\
& \leq\left(1+\alpha+\beta+\max _{0 \leq z<\tau}(1-2 \alpha-\beta(1+z)) \sum_{c \in E} \operatorname{Cexe}_{e}^{k}\right. \\
& =\left(\left(+\alpha+\beta \max _{0 \leq z \subset t} z(\beta \tau-\beta z)\right) \sum_{e \in E} C_{e} x_{e}^{*}\right. \\
& \text { Maximized } \\
& \text { nt } z={ }^{t} / 2 \\
& \leq\left(1+\alpha+\beta+\beta\left(\frac{e}{2}\right)^{2}\right) \sigma P T_{L_{P}} \\
& \leadsto \leq\left(2-\beta+\frac{(3 \beta-1)^{2}}{\psi \beta}\right) O P T_{L P}
\end{aligned}
$$

Proof of AKS

For the proof, recall that e_{Q} is min-cost edge in $\delta(Q), \mathcal{C}_{\tau}$ are the cuts Q with $x^{*}(\delta(Q))<1+\tau$,

$$
y_{i}=\alpha \chi_{F_{i}}+\beta x^{*}+\sum_{Q \in \mathcal{C}_{\tau},\left|Q \cap T_{i}\right| \text { odd }}\left(1-2 \alpha-\beta x^{*}(\delta(Q))\right) \chi_{e_{Q}}
$$

is feasible for the T_{i}-join LP, and

Lemma

Let \mathcal{F} be a randomly sampled tree F_{i}, and \mathcal{T} the corresponding vertices T_{i}. Let $Q \in \mathcal{C}_{\tau}$ be a τ-narrow cut. Then

$$
\begin{array}{r}
\operatorname{Pr}[|\delta(Q) \cap \mathcal{F}|=1] \geq 2-x^{*}(\delta(Q)) \\
\quad \operatorname{Pr}[|Q \cap \mathcal{T}| \text { odd }] \leq x^{*}(\delta(Q))-1
\end{array}
$$

Lemma

$$
\sum_{Q \in \mathcal{C}_{\tau}} c_{e_{Q}} \leq \sum_{e \in E} c_{e} x_{e}^{*}
$$

Global minimum:

$$
\min \left\{\left.2-x+\frac{(3 x-1)^{2}}{4 x} \right\rvert\, x \geq 0\right\}=\frac{1}{2}(1+\sqrt{5}) \text { at } x=\frac{1}{\sqrt{5}}
$$

Plot:

Sebő's Improvement

Sebő (2013) gives a tighter analysis of the Best-of-Many Christofides' algorithm. For spanning tree F_{i}, let $F_{i}^{s t}$ be the set of edges in the s - t path in F_{i}. Recall from the proof of Hoogeven's algorithm that $F_{i}-F_{i}^{s t}$ is also a T_{i}-join, so $c\left(J_{i}\right) \leq c\left(F_{i}-F_{i}^{s t}\right)$.

Sebő's Improvement

Sebő (2013) gives a tighter analysis of the Best-of-Many Christofides' algorithm. For spanning tree F_{i}, let $F_{i}^{s t}$ be the set of edges in the s - t path in F_{i}. Recall from the proof of Hoogeven's algorithm that $F_{i}-F_{i}^{s t}$ is also a T_{i}-join, so $c\left(J_{i}\right) \leq c\left(F_{i}-F_{i}^{s t}\right)$.

One More Lemma

Let \mathcal{F} be a random spanning tree (tree F_{i} with probability λ_{i}), and $\mathcal{F}^{s t}$ its associated $s-t$ path. Let $c\left(\mathcal{F}^{s t}\right)$ be the cost of this path. Recall that

$$
\operatorname{Pr}[|\mathcal{F} \cap \delta(Q)|=1] \geq 2-x^{*}(\delta(Q))
$$

for a τ-narrow cut Q.
Lemma (Sebő (2013))

$$
\sum_{Q \in \mathcal{C}_{\tau}}\left(2-x^{*}(\delta(Q))\right) c_{e_{Q}} \leq E\left[c\left(\mathcal{F}^{s t}\right)\right]
$$

Sebő (2013)

Theorem (Sebő (2013))

Best-of-Many Christofides' is an $\frac{8}{5}$-approximation algorithm.

Proof of Sebő

For the proof, recall that e_{Q} is min-cost edge in $\delta(Q), \mathcal{C}_{\tau}$ are the cuts Q with $x^{*}(\delta(Q))<1+\tau$,

$$
y_{i}=\alpha \chi_{F_{i}}+\beta x^{*}+\sum_{Q \in \mathcal{C}_{\tau},\left|Q \cap T_{i}\right| \text { odd }}\left(1-2 \alpha-\beta x^{*}(\delta(Q))\right) \chi_{e_{Q}}
$$

is feasible for the T_{i}-join LP, and

Lemma

Let \mathcal{F} be a randomly sampled tree F_{i}, and \mathcal{T} the corresponding vertices T_{i}. Let $Q \in \mathcal{C}_{\tau}$ be a τ-narrow cut. Then

$$
\begin{aligned}
\operatorname{Pr}[|\delta(Q) \cap \mathcal{F}|=1] & \geq 2-x^{*}(\delta(Q)) \\
\operatorname{Pr}[|Q \cap \mathcal{T}| \text { odd }] & \leq x^{*}(\delta(Q))-1
\end{aligned}
$$

Lemma

$$
\sum_{Q \in \mathcal{C}_{\tau}}\left(2-x^{*}(\delta(Q))\right) c_{e_{Q}} \leq E\left[c\left(\mathcal{F}^{s t}\right)\right]
$$

maximize	function	$x \times \frac{3-4 x}{9-9 x}$
	domain	$0.75 \geq x \geq 0$

Global maximum:

$$
\max \left\{\left.\frac{x(3-4 x)}{9-9 x} \right\rvert\, 0.75 \geq x \geq 0\right\} \approx 0.111111 \text { at } x \approx 0.5
$$

Vygen's Improvement

Vygen (2015) gives a 1.599-approximation algorithm.

Vygen's Improvement

Vygen (2015) gives a 1.599-approximation algorithm.
Key idea: Modify the initial convex combination of trees into another one that avoids certain bad properties.

Integrality Gap

The performance of Best-of-Many Christofides' cannot do better than the integrality gap of the LP relaxation.

The performance of Best-of-Many Christofides' cannot do better than the integrality gap of the LP relaxation.

The integrality gap is

$$
\mu \equiv \sup \frac{O P T}{O P T_{L P}}
$$

over all instances of the problem.

The performance of Best-of-Many Christofides' cannot do better than the integrality gap of the LP relaxation.

The integrality gap is

$$
\mu \equiv \sup \frac{O P T}{O P T_{L P}}
$$

over all instances of the problem.
Note that we have shown $\mu \leq \frac{8}{5}$, since we find a tour of cost at most $\frac{8}{5} O P T_{L P}$.

Integrality Gap

We can show a lower bound on the integrality gap using an instance of graph TSP: input is a graph $G=(V, E)$, cost c_{e} for $e=(i, j)$ is number of edges in a shortest $i-j$ path in G.

Integrality Gap

We can show a lower bound on the integrality gap using an instance of graph TSP: input is a graph $G=(V, E)$, cost c_{e} for $e=(i, j)$ is number of edges in a shortest $i-j$ path in G.

$O P T_{L P} \approx 2 k$

Integrality Gap

We can show a lower bound on the integrality gap using an instance of graph TSP: input is a graph $G=(V, E)$, cost c_{e} for $e=(i, j)$ is number of edges in a shortest $i-j$ path in G.

$$
O P T \approx 3 k
$$

Integrality Gap

We can show a lower bound on the integrality gap using an instance of graph TSP: input is a graph $G=(V, E)$, cost c_{e} for $e=(i, j)$ is number of edges in a shortest $i-j$ path in G.

$$
\frac{O P T}{O P T_{L P}} \rightarrow \frac{3}{2} \text { as } k \rightarrow \infty
$$

Graph Instances

Sebő and Vygen (2014) show that for graph TSP instances of $s-t$ path TSP, can get a $\frac{3}{2}$-approximation algorithm (i.e. the algorithm produces a solution of cost at most $\frac{3}{2} O P T_{L P}$), so the integrality gap is tight for these instances.

We'll present a simplified version of this result due to Gao (2013).

Graph Instances

Given the input graph $G=(V, E)$ and an optimal solution, can replace any edge (i, j) in the optimal solution with the $i-j$ path in G since these have the same cost.

So finding an optimal solution is equivalent to finding a multiset F of edges such that (V, F) is connected, $\operatorname{deg}_{F}(s)$ and $\operatorname{deg}_{F}(t)$ are odd, $\operatorname{deg}_{F}(v)$ is even for all $v \in V-\{s, t\}$, and $|F|$ is minimum.

LP Relaxation

$$
\operatorname{Min} \sum_{e \in E} x_{e}
$$

subject to:

$$
\begin{aligned}
& x(\delta(S)) \geq \begin{cases}1, & |S \cap\{s, t\}|=1, \\
2, & |S \cap\{s, t\}| \neq 1,\end{cases} \\
& x_{e} \geq 0,
\end{aligned} \forall e \in E . ~ \$
$$

Let x^{*} be an optimal LP solution.

Narrow Cuts

As before, focus on narrow cuts S such that $x^{*}(\delta(S))<2$ (i.e. a τ-narrow cut for $\tau=1$). Recall:

Theorem (An, Kleinberg, Shmoys (2012))
If S_{1}, S_{2} are narrow cuts, $S_{1} \neq S_{2}$, then either $S_{1} \subset S_{2}$ or $S_{2} \subset S_{1}$.
So the narrow cuts look like $s \in S_{1} \subset S_{2} \subset \cdots \subset S_{k} \subset V$.

(t)

Let $S_{0} \equiv \emptyset, S_{k+1} \equiv V, L_{i} \equiv S_{i}-S_{i-1}$.

Key Idea

Find a tree spanning L_{i} in the support of x^{*} for each i. Connect each of these via a single edge from L_{i} to L_{i+1}. Let F be the resulting tree, T the vertices in F whose parity needs changing.

Then $|F|=n-1$ and $\left|\delta\left(S_{i}\right) \cap F\right|=1$ for each narrow cut S_{i}.

(t)

Key Lemma

Recall:
Lemma
Let S be an odd set. If $|S \cap\{s, t\}|=1$, then $|F \cap \delta(S)|$ is even.
subject to:

$$
\begin{array}{lll}
\operatorname{Min} & \sum_{e \in E} c_{e} x_{e} & \\
& x(\delta(S)) \geq 1, & \forall S \subseteq V,|S \cap T| \text { odd } \\
& x_{e} \geq 0, & \forall e \in E
\end{array}
$$

Lemma

$y=\frac{1}{2} x^{*}$ is feasible for the the T-join LP.

Theorem (Gao (2013))

For spanning tree F constructed by the algorithm, let J be a minimum-cost $T_{\text {-join. Then }} c(F \cup J) \leq \frac{3}{2} O P T_{L P}$.
$\operatorname{Min} \sum_{e \in E} x_{e}$
subject to:

$$
\begin{aligned}
& x(\delta(S)) \geq \begin{cases}1, & |S \cap\{s, t\}|=1, \\
2, & |S \cap\{s, t\}| \neq 1,\end{cases} \\
& x_{e} \geq 0,
\end{aligned} \forall e \in E . ~ \$
$$

Last Lemma

Let $E\left(x^{*}\right)=\left\{e \in E: x_{e}^{*}>0\right\}$ be the support of LP solution x^{*}, $H=\left(V, E\left(x^{*}\right)\right)$ the support graph of $x^{*}, H(S)$ the graph induced by a set S of vertices.

Lemma (Gao (2013))

For $1 \leq p \leq q \leq k+1, H\left(U_{p \leq i \leq q} L_{i}\right)$ is connected.

The Big Question

Is there a $\frac{3}{2}$-approx. alg. for $s-t$ path TSP for general costs?

One Idea

Idea: Construct a spanning tree F just as in Gao's algorithm for the graph case. Then again $y=\frac{1}{2} x^{*}$ is feasible for the T-join LP, and the overall cost of F plus the T-join is at most $c(F)+\frac{1}{2} \sum_{e \in E} c_{e} X_{e}^{*}$.

One Idea

Idea: Construct a spanning tree F just as in Gao's algorithm for the graph case. Then again $y=\frac{1}{2} x^{*}$ is feasible for the T-join LP, and the overall cost of F plus the T-join is at most $c(F)+\frac{1}{2} \sum_{e \in E} c_{e} x_{e}^{*}$.
Problem: Not clear how to bound the cost of F. Gao (2014) has an example showing that F can have cost greater than $O P T_{L P}$.

The Bigger Question

Best-of-Many Christofides' is provably better than Christofides' for $s-t$ path TSP. What about the standard TSP?

An empirical answer

Did some computational work with Cornell CS undergraduate Kyle Genova to see whether Best-of-Many Christofides is any better than standard Christofides in practice. Paper to appear in upcoming ESA.

The algorithms

We implement algorithms to do the following:

- Run the standard Christofides' algorithm (Christofides 1976);
- Construct explicit convex combination via column generation (An 2012);
- Construct explicit convex combination via splitting off (Frank 2011, Nagamochi, Ibaraki 1997);
- Add sampling scheme SwapRound to both of above; gives negative correlation properties (Chekuri, Vondrák, Zenklusen 2010);
- Compute and sample from maximum entropy distribution (Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010).

The experiments

The algorithms were implemented in $\mathrm{C}++$, run on a machine with a 4.00 Ghz Intel i7-875-K processor with 8GB DDR3 memory.

We run these algorithms on several types of instances:

- 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103 vertices (avg. 524);
- 5 non-Euclidean TSPLIB instances (gr120, si175, si535, pa561, si1032);
- 39 Euclidean VLSI instances (Rohe) up to 3694 vertices (avg. 1473);
- 9 graph TSP instances (Kunegis 2013) up to 1615 vertices (avg. 363).

The results

	Std	ColGen		ColGen+SR	
		Best	Ave	Best	Ave
TSPLIB (E)	9.56%	4.03%	6.44%	3.45%	6.24%
VLSI	9.73%	7.00%	8.51%	6.40%	8.33%
TSPLIB (N)	5.40%	2.73%	4.41%	2.22%	4.08%
Graph	12.43%	0.57%	1.37%	0.39%	1.29%

	MaxEnt		Split		Split+SR	
	Best	Ave	Best	Ave	Best	Ave
TSPLIB (E)	3.19%	6.12%	5.23%	6.27%	3.60%	6.02%
VLSI	5.47%	7.61%	6.60%	7.64%	5.48%	7.52%
TSPLIB (N)	2.12%	3.99%	2.92%	3.77%	1.99%	3.82%
Graph	0.31%	1.23%	0.88%	1.77%	0.33%	1.20%

Costs given as percentages in excess of optimal.

The results

Standard Christofides MST (Rohe VLSI instance XQF131)

Splitting off + SwapRound

The results

BoMC yields more vertices in the tree of degree two.

The results

So while the tree costs more (as percentage of optimal tour)...

	Std	BOM
TSPLIB (E)	87.47%	98.57%
VLSI	89.85%	98.84%
TSPLIB (N)	92.97%	99.36%
Graph	79.10%	98.23%

The results

...the matching costs much less.

	Std	CG	CG+SR	MaxE	Split	Sp+SR
TSPLIB (E)	31.25%	11.43%	11.03%	10.75%	10.65%	10.41%
VLSI	29.98%	14.30%	14.11%	12.76%	12.78%	12.70%
TSPLIB (N)	24.15%	9.67%	9.36%	8.75%	8.77%	8.56%
Graph	39.31%	5.20%	4.84%	4.66%	4.34%	4.49%

Q: Are there empirical reasons to think BoMC might be provably better than Christofides' algorithm?

Q: Are there empirical reasons to think BoMC might be provably better than Christofides' algorithm?
A: Yes.
Maximum entropy sampling, or splitting off with SwapRound seem like the best candidates.

Conclusion

However, we have to be careful, as the following, very recent, example of Schalekamp and van Zuylen shows.

Conclusions

So it seems that randomization, or at least, careful construction of the convex combination is needed.

Conclusions

So it seems that randomization, or at least, careful construction of the convex combination is needed.

Vygen (2015) also uses careful construction to improve s-t path TSP from 1.6 to 1.5999 .

Conclusions

So it seems that randomization, or at least, careful construction of the convex combination is needed.

Vygen (2015) also uses careful construction to improve s-t path TSP from 1.6 to 1.5999 .

If we want to use the best sample from Max Entropy or SwapRound, then might need to prove some tail bounds.

