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...come visit us at Cornell!
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The s-t path traveling salesman problem

THE s-t PATH TRAVELING SALESMAN PROBLEM (s-t PATH
TSP)
Input:

e A complete, undirected graph G = (V, E);
e Edge costs c(i,j) > 0 for all e = (i,j) € E;
e Vertices s,t € V.

Goal: Find the min-cost path that starts at s, ends at t, and visits
every other vertex exactly once.

Costs are symmetric (c(i,j) = c(j,i)) and obey the triangle
inequality (c(i, k) < c(i,j) + c(j, k)).
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Hoogeveen's algorithm

Let F be the min-cost spanning tree. Let T be the set of vertices
whose parity needs changing: s iff s has even degree in F, t iff t
has even degree in F, and v # s, t iff v has odd degree. Then find
a minimum-cost T-join J. Find Eulerian path on F U J; shortcut
to an s-t Hamiltonian path.
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Improvements

CU urse \

Hoogeveen's algorithm is a %-approximation algorithm. I

Recent improvements on Hoogeveen's algorithm.

Hoogeveen (1991) 3

: 145
An, Kleinberg, Shmoys (2012) +T\[ ~ 1.618
Sebd (2013) &=16
Vygen (2015) 1.599

Goal: Understand the An et al. and Sebé algorithm and analysis.



Davib P. WILLIAMSON s-t PATH TSP

A Linear Programming Relaxation

Min Z CeXe

ecE
. . )1, v=st,
subject to: x(0(v)) = { 2, v#s,t,
1, ‘50{5,1’}!217
>
x(o(5) = { 2, ISn{s,t} #1,
0 S Xe S 17 ve € E’

where 0(S) is the set of edges with exactly one endpoint in S, and
X(E") = Y ecpr Xe-
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The spanning tree polytope

The spanning tree polytope (convex hull of all spanning trees) is
defined by the following inequalities:
s

x(E) =|V| -1,
x(E(S)) < |S| -1, VS| V,[S] =2, @

Xe > 0, Ve € E,

where E(S) is the set of all edges with both endpoints in S.

Any solution x feasible for the s-t path TSP LP relaxation is in the
spanning tree polytope.

C‘uf Se \
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A warmup to the improvements

Let OPT,p be the value of an optimal solution x* to the LP
relaxation.

Hoogeveen's algorithm returns a solution of cost at most %OPTLP.
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An extremely useful lemma

Let F be a spanning tree, and let T be the vertices whose parity
needs fixing in F.

S'is an odd set if |SN T| is odd. I

Let S be an odd set. If |S N {s,t}| =1, then |F N(S)| is even. If
SN {s,t}| #1, then |F N4(S)| is odd.

[FA F6ll2 L

o TS edd
B;\{s,t“”‘l
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T-join LP

The solution to the following linear program is the minimum-cost
T-join for costs ¢ > O:

Min Z CeXe

ecE
subject to: x(0(S))>1, VSCV,SNT]|odd
Xe > 0, Vec E.
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Proof of theorem

Hoogeveen's algorithm returns a solution of cost at most %OPTLP.

Let S be an odd set. If |S N {s,t}| =1, then |F N(S)| is even. If
SN {s,t}| #1, then |F N4(S)| is odd.

Min Z CeXe

ecE
x(6(S)) > 1, VS C V,|SNT| odd
Xe > 0, Ve € E.

Basic idea: Show that y = 1y r + x* is feasible for T-join LP,
Yy =3X 3 J

where x* is solution to LP relaxation, and x g is characteristic

vector for spanning tree F.
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Convex combination

Let x* be an optimal LP solution. Let xg be the characteristic
vector of a set of edges F, so that

XF(e):{(l) 2;,,::

Since x* is in the spanning tree polytope, can write x* as a convex
combination of spanning trees Fi,..., F:

k
x* = Z )\iXF;a
i=1

such that K ;A =1, \; > 0.
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Best-of-Many Christofides’ Algorithm

An, Kleinberg, Shmoys (2012) propose the Best-of-Many
Christofides’ algorithm: given optimal LP solution x*, compute
convex combination of spanning trees

k
x* = Z AiXF;-
i=1

For each spanning tree F;, let T; be the set of vertices whose parity
needs fixing, let J; be the minimum-cost T;-join. Find s-t
Hamiltonian path by shortcutting F; U J;. Return the shortest path
found over all i.
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Best-of-Many Christofides’ Algorithm

k
x* = Z )‘iXF,--
i=1

For each spanning tree F;, let T; be the set of vertices whose parity
needs fixing, J; be the minimum-cost T;-join. Find s-t Hamiltonian
path by shortcutting F; U J;. Return the shortest path found over
all /.

The Best-of-Many Christofides’ algorithm returns a solution of cost
at most gOPTLp.
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Proof

s-t PATH TSP
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Improvement?

To do better, we need to improve the analysis for the costs of the
T;-joins; recall that we use that

1 1

Yi = 3XF; + 3%

is feasible for the T;-join LP.

Consider . T f{&;:lll{, L T&-j.,l.n
yi = axg + Bx". o

Then the cost of the best s-t Hamiltonian path is at most

(1 + a4+ B)OPTLP.
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Improvement?

Proof that y; feasible for T;-join LP had two cases. Assume S odd
(IS N T;| odd).

If |[SN{s,t} #1, then
1SN {s, t}] ) -

-

yi(6(5)) = alFind(S)| + Bx7(6(5)) = a +26.

We will want oo + 23 > 1, so the T;-join LP constraint is satisfied.
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Improvement?

If SN {s, t}| =1, then
72
¥i(0(5)) = alFi N 6(S)| + Bx*(6(S)) = 20+ Bx7((S)).
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Improvement?

If SN {s, t}| =1, then

yi(6(5)) = alFi N 6(S)[ + Bx*(6(S)) = 20+ Bx7(6(5)).

< |
Since we assume o + 23 > 1, we only run into problems if

1 -2«
B

Note that o = 0, 8 = 1 works if x*(§(S)) > 2 for all S C V, and
gives a tour of cost at most %OPTLP.

x*(8(5)) <
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Improvement?

If SN {s, t}| =1, then

yi(3(S)) = alFi N 5(S)| + Bx*(3(S)) = 20+ Bx*(3(S)).

Since we assume o + 23 > 1, we only run into problems if

1-2
X*(8(S)) < —=2.
B
Note that o = 0, 8 = 1 works if x*(§(S)) > 2 for all S C V, and
gives a tour of cost at most %OPTLP.

So focus on cuts for which x*(6(S)) < 2, and add an extra
“correction” term to y; to handle these cuts.
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7-Narrow Cuts

S is T-narrow if x*(8(S)) < 1+ 7 for fixed 7 < 1. l

Only S such that [SN{s, t}| =1 are 7-narrow.

Let C, be all 7-narrow cuts S with s € S. |
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7-Narrow Cuts

The 7-narrow cuts in C; have a nice structure.

CWrSt l

If51,5 €C;, S1 75 S,, then either S C S, or S, C S3.
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First need to show that

x*(6(51)) + x*(8(52)) = x*(0(51 — S2)) + x*(6(S2 — S1)).

AN
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Proof of theorem

1f51,5 €C;, S1 75 S,, then either S C S, or S» C S3. I
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Proof of theorem

1f51,5 €C;, S1 75 S,, then either S C S, or S» C S3. I

So the T-narrow cuts look like s € Q@1 C @ C--- C Qr C V.
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Correction Factor

Let eg be the minimum-cost edge in §(Q). Then consider the
following (from Gao (2014)):

Yi = OXF; +,3X* + Z (1 —204—,3X*(5(Q))) XeQ
QeC-,|QNT;| odd

for a, 5,7 > 0 such that

a+28=1 and T=

y; Is feasible for the T;-join LP.
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Proof
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Two Lemmas

Recall x* = Zf-‘zl AiXF;, with Z,’-‘Zl Ai=1land A\; > 0. So \;is a
probability distribution on the trees F;; probability of F; is A;.

Let F be a randomly sampled tree F;, and ‘T the corresponding
vertices T;. Let Q € C; be a T-narrow cut. Then

Prl6(Q)NF| =1] =2 —x*(6(Q))
PrllQ N T| odd] < x*(6(Q)) — 1.




(o) = E[13nr@1]) 2 P (13aF01=0 ¢
2 P (130 FW]2 2]

od P (130 d@=1]4 C[(3nf12T] = |
0 13.401=T] 22 < (F()
P13 00 (27] < v *(fC0) )

Real 10nTledd = [Find®)z2

L1 oad] € B3 d0012] ¢ ()
1
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Two Lemmas

Recall eq is the cheapest edge crossing a 7-narrow cut Q € C,.

2.Ceo < wsT MST
het

C

< é\{-cff
ell
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8inc
Sol'(.-\.'- Fo, LML OLC-P‘,_{ ap w V“l:ﬂL{fI Lotge, £ ﬂp m hk’ O mee
T \'nﬂud'( vt €, oatrast § cnd v, stpest Cea € Ce
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An-Kleinberg-Shmoys

ka ‘{"5

Best-of-Many Christofides’ is a lﬁz@-approximation algorithm for
s-t path TSP.
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Proof of AKS

For the proof, recall that eq is min-cost edge in 6(Q), C; are the
cuts Q with x*(6(Q)) <1+,

i = axf + fx* + > (1 —=2a = Bx"(6(Q))) Xeq
QeC,,|QNT;| odd
is feasible for the T;-join LP, and

Let F be a randomly sampled tree F;, and T the corresponding
vertices T;. Let Q € C, be a T-narrow cut. Then

PrI5(Q) N F| = 1] > 2 — x*(5(Q))
Pr[|Q N 7] odd] < x*(3(Q)) — 1.

Lemma
Z Ceq < Z CeXa.

QeCr eeE
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Global minimum:

142
min{2—x+u |x:z[]}=—1 [1+V€}| at x = L
4 x 2 v
Plot:
1ok
5_
1 1 1 1 1 1 {x from —0.1 to 0.5)
—0.1 0.1 0.2 0.3 0.4 0.5




Davib P. WILLIAMSON s-t PATH TSP

Sebd's Improvement

Seb& (2013) gives a tighter analysis of the Best-of-Many
Christofides’ algorithm. For spanning tree F;, let F* be the set of
edges in the s-t path in F;. Recall from the proof of Hoogeven's
algorithm that F; — F* is also a T;-join, so c(J;) < c(F; — F7t).

1
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1
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One More Lemma

Let F be a random spanning tree (tree F; with probability \;), and
Fst its associated s-t path. Let c(F*") be the cost of this path.
Recall that

PriFné(Q) =1] = 2 - x*(6(Q))

for a 7-narrow cut Q.

> (2= x7(8(Q)))ceq < E[c(F)].

QeC-
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Sebd (2013)

Best-of-Many Christofides’ is an g—approximation algorithm.
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Proof of Sebd

For the proof, recall that eq is min-cost edge in 6(Q), C; are the
cuts Q with x*(6(Q)) <1+,

i = axf + fx* + > (1 —=2a = Bx"(6(Q))) Xeq
QeC,,|QNT;| odd
is feasible for the T;-join LP, and

Let F be a randomly sampled tree F;, and T the corresponding
vertices T;. Let Q € C, be a T-narrow cut. Then

PrI5(Q) N F| = 1] > 2 — x*(5(Q))
Pr[|Q N 7] odd] < x*(3(Q)) — 1.

Lemma
> (2 x*(6(Q)))ceq < Elc(F*)].

QeC~
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3-4x

function X
maximize 9-9x

domain 0.75=2zx=10

Global maximum:

3 -
ax{“—‘m | 0.75 = x = D} % 0.111111 2t x~ 0.5
9-9x
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Vygen's Improvement

Vygen (2015) gives a 1.599-approximation algorithm.
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Vygen's Improvement

Vygen (2015) gives a 1.599-approximation algorithm.

Key idea: Modify the initial convex combination of trees into
another one that avoids certain bad properties.
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Integrality Gap

The performance of Best-of-Many Christofides' cannot do better
than the integrality gap of the LP relaxation.
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Integrality Gap

The performance of Best-of-Many Christofides' cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

_oPT
H=3UP opT, 5

over all instances of the problem.
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Integrality Gap

The performance of Best-of-Many Christofides' cannot do better
than the integrality gap of the LP relaxation.

The integrality gap is

OPT

= sup

over all instances of the problem.

Note that we have shown p < %, since we find a tour of cost at
most %OPTLP.
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V/, E), cost ¢, for
e = (i,j) is number of edges in a shortest i-j path in G.

()——(— M)
(A 2

()——(— M)
(A 2
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V/, E), cost ¢, for
e = (i,j) is number of edges in a shortest i-j path in G.

O—O0-0+-0Q
[ﬁ'i \@

vy
O—0O0—0—0—0 %

OPTLP ~ 2k
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V/, E), cost ¢, for
e = (i,j) is number of edges in a shortest i-j path in G.

A

(Sf)uuu
r\r\r\c)/@
O—0UO—0)

OPT =~ 3k
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Integrality Gap

We can show a lower bound on the integrality gap using an
instance of graph TSP: input is a graph G = (V, E), cost ¢, for
e = (i,j) is number of edges in a shortest i-j path in G.

AN
@/Duuu




Davib P. WILLIAMSON s-t PATH TSP

Graph Instances

Sebd and Vygen (2014) show that for graph TSP instances of s-t
path TSP, can get a %—approximation algorithm (i.e. the algorithm
produces a solution of cost at most %OPTLP), so the integrality
gap is tight for these instances.

We'll present a simplified version of this result due to Gao (2013).
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Graph Instances

Given the input graph G = (V, E) and an optimal solution, can
replace any edge (/,/) in the optimal solution with the i-j path in
G since these have the same cost.

So finding an optimal solution is equivalent to finding a multiset F
of edges such that (V/, F) is connected, degr(s) and degg(t) are
odd, degr(v) is even for all v € V — {s, t}, and |F| is minimum.
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LP Relaxation

ecE
. 17 |5ﬂ{$,t}|:17
: >
subject to x(6(5)) = { 2, [SN{s, t}|#1,
xe > 0, Ve e E.

Let x* be an optimal LP solution.



Davib P. WILLIAMSON s-t PATH TSP

Narrow Cuts

As before, focus on narrow cuts S such that x*(4(S)) < 2 (i.e. a
7-narrow cut for 7 = 1). Recall:

If S1, S are narrow cuts, S1 # Sp, then either S C Sp or S, C 5. I

So the narrow cuts look likese S C S, C---C S, C V.

Let 5o = @, 5k+1 =V, Li=S5-5_1.
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Key ldea

Find a tree spanning L; in the support of x* for each i. Connect
each of these via a single edge from L; to L;11. Let F be the
resulting tree, T the vertices in F whose parity needs changing.

Then |F| =n—1 and [6(5;) N F| = 1 for each narrow cut S;.

Lo Ly
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Key Lemma

Recall:

Let S be an odd set. If |SN {s,t}| =1, then |F N(S)| is even.

Min Z CeXe

ecE
subject to: x(0(S))>1, VSCV,SNT]|odd
Xe > 0, Ve € E.

y = 3x* is feasible for the the T-join LP. I
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Gao (2013)

For spanning tree F constructed by the algorithm, let J be a
minimum-cost T-join. Then c(F U J) < %OPTLP.

Min er

. 1, |Sn{st} =1,
subject to: x(4(5)) > { 5 ISﬂ }s tﬂ 21
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Last Lemma

Let E(x*) = {e € E : x; > 0} be the support of LP solution x*,
H = (V, E(x*)) the support graph of x*, H(S) the graph induced
by a set S of vertices.

Fori1<p<qg<k+1 H (Upgigq L,-) is connected.

Ly Ly
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The Big Question

Is there a %—approx. alg. for s-t path TSP for general costs?



Davib P. WILLIAMSON s-t PATH TSP

One ldea

Idea: Construct a spanning tree F just as in Gao's algorithm for
the graph case. Then again y = %x* is feasible for the T-join LP,
and the overall cost of F plus the T-join is at most

c(F)+ 3 Xeer cext-
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One ldea

Idea: Construct a spanning tree F just as in Gao's algorithm for
the graph case. Then again y = %x* is feasible for the T-join LP,
and the overall cost of F plus the T-join is at most

C(F) + 3 Xeck CeXt-

Problem: Not clear how to bound the cost of F. Gao (2014) has
an example showing that F can have cost greater than OPT,p.
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The Bigger Question

Best-of-Many Christofides’ is provably better than Christofides' for
s-t path TSP. What about the standard TSP?
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An empirical answer

Did some computational work with Cornell CS undergraduate Kyle
Genova to see whether Best-of-Many Christofides is any better
than standard Christofides in practice. Paper to appear in
upcoming ESA.
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The algorithms

We implement algorithms to do the following:
¢ Run the standard Christofides’ algorithm (Christofides 1976);
e Construct explicit convex combination via column generation
(An 2012);
e Construct explicit convex combination via splitting off (Frank
2011, Nagamochi, Ibaraki 1997);

e Add sampling scheme SwapRound to both of above; gives
negative correlation properties (Chekuri, Vondrék, Zenklusen
2010);

e Compute and sample from maximum entropy distribution
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010).
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The experiments

The algorithms were implemented in C4++, run on a machine with
a 4.00Ghz Intel i7-875-K processor with 8GB DDR3 memory.

We run these algorithms on several types of instances:

¢ 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices (avg. 524);

e 5 non-Euclidean TSPLIB instances (gr120, sil75, si535,
pab61, sil032);

¢ 39 Euclidean VLSI instances (Rohe) up to 3694 vertices (avg.
1473);

¢ 9 graph TSP instances (Kunegis 2013) up to 1615 vertices
(avg. 363).
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The results

s-t PATH TSP

Std ColGen ColGen+SR
Best Ave Best Ave
TSPLIB (E) 0.56% | 4.03% 6.44% | 3.45% 6.24%
VLSI 0.73% | 7.00% 8.51% | 6.40% 8.33%
TSPLIB (N) | 5.40% | 2.73% 4.41% | 2.22% 4.08%
Graph 12.43% | 0.57% 1.37% | 0.39% 1.29%
MaxEnt Split Split+SR
Best Ave Best Ave Best Ave
TSPLIB (E) | 3.19% 6.12% | 5.23% 6.27% | 3.60% 6.02%
VLSI 547% 7.61% | 6.60% 7.64% | 5.48% 7.52%
TSPLIB (N) | 2.12% 3.99% | 2.92% 3.77% | 1.99% 3.82%
Graph 031% 1.23% | 0.88% 1.77% | 0.33% 1.20%

Costs given as percentages in excess of optimal.
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The results

Standard Christofides MST (Rohe VLSI instance XQF131)

Splitting off + SwapRound
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The results

BoMC yields more vertices in the tree of degree two.
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So while the tree costs more (as percentage of optimal tour)...

Std BOM
TSPLIB (E) | 87.47% | 98.57%
VLSI 89.85% | 98.84%
TSPLIB (N) | 92.97% | 99.36%
Graph 79.10% | 98.23%
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...the matching costs much less.

Std CG CG+SR | MaxE Split Sp+SR
TSPLIB (E) | 31.25% | 11.43% | 11.03% | 10.75% | 10.65% | 10.41%
VLSI 29.98% | 14.30% | 14.11% | 12.76% | 12.78% | 12.70%
TSPLIB (N) | 24.15% | 9.67% | 9.36% | 8.75% | 8.77% | 8.56%
Graph 30.31% | 5.20% | 4.84% | 4.66% | 4.34% | 4.49%
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Conclusion

Q: Are there empirical reasons to think BoMC might be provably
better than Christofides’ algorithm?
A: Yes.

Maximum entropy sampling, or splitting off with SwapRound seem
like the best candidates.
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Conclusion

However, we have to be careful, as the following, very recent,
example of Schalekamp and van Zuylen shows.
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So it seems that randomization, or at least, careful construction of
the convex combination is needed.
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Conclusions

So it seems that randomization, or at least, careful construction of
the convex combination is needed.

Vygen (2015) also uses careful construction to improve s-t path
TSP from 1.6 to 1.5999.

If we want to use the best sample from Max Entropy or
SwapRound, then might need to prove some tail bounds.
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