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Example: Computer Processors
 Intel Hits Thermal Wall
 Reuters Friday May 7, 2004
 SAN FRANCISCO, May 7 (Reuters) -

Intel Corp. said on Friday it has 
scrapped the development of two 
new computer chips ( code-named 
Tejas and Jayhawk) for 
desktop/server systems in order to 
rush to the marketplace a more 
efficient chip technology more than 
a year ahead of schedule. Analysts 
said the move showed how eager 
the world's largest chip maker was 
to cut back on the heat its chips 
generate. Intel's method of cranking 
up chip speed was beginning to 
require expensive and noisy cooling 
systems for computers. 



Example: Data Centers
 "What matters most to the computer 

designers at Google is not speed, but 

power, low power, because data centers 

can consume as much electricity as a 

city."--- Eric Schmidt, Google CEO in 2002



Example: High Performance Computing

 Finding: Making the transition to 
exascale poses numerous 
unavoidable scientific and 
technological challenges. Three 
challenges to be resolved are: 

1. Reducing power requirements. 
Based on current technology, 
scaling today’s systems to an 
exaflop level would consume more 
than a gigawatt of power, roughly 
the output of Hoover Dam. 
Reducing the power requirement 
by a factor of at least 100 is a 
challenge for future hardware and 
software technologies. 

2. Coping with runtime errors

3. Dealing with massive parallelism



We are in a

Green Computing

Revolution

 During the last decade, 
information technology is being 
redesigned with energy 
efficiency as a first order resource

 Technological reasons

 General societal trend toward 
most sustainable technologies



Most Common Vision of Green 

Computing Algorithmics

It would be great to 

have a big Oh 

theory for energy

Participant at generic

National Science Foundation

visioning workshop



Translation It would be nice to 

have a algorithmic 

complexity theory with 

energy as a resource 

directly analogous to 

the algorithmic 
complexity theory that 

we have for time and 

space as resources

Participant at generic

National Science Foundation

visioning workshop



Not going to Happen
It would be nice to 

have a algorithmic 

complexity theory with 

energy as a resource 

directly analogous to 

the algorithmic 
complexity theory that 

we have for time and 

space as resources

Participant at generic

National Science Foundation

visioning workshop



 What is something you learned about 

time (or space) as a computational 

resource from standard texts?



One Problem: How do you assign energies to 

algorithms?

 BubbleSort

 Time = n2

 Space = n

 Energy = ?

 MergeSort

 Time = n log n

 Space = n

 Energy = ?



One Problem: How do you assign energies to 

algorithms?

 BubbleSort

 Time = n2

 Space = n

 Energy = ?

 MergeSort

 Time = n log n

 Space = n

 Energy = ?

Option 1: Assume all operations take constant energy.

Problem?



One Problem: How do you assign energies to 

algorithms?

 BubbleSort

 Time = n2

 Space = n

 Energy = ?

 MergeSort

 Time = n log n

 Space = n

 Energy = ?

Option 2:  Assume some operations require more energy than

others. Which operations require energy?



What Operations Require Energy?

 Second Law of Thermodynamics: 
Entropy can’t can’t decrease

 Landauer's principle: Irreversible 
operations, like AND,  require energy 
because information is lost

 To erase a bit costs k T ln 2 units of 
energy

 k = Boltzmann’s constant

 T = temperature in Kelvin

 Erasing 1 bit at room temperature costs 
at least a millijoule



What Operations Require Energy

 Second Law of Thermodynamics: 
Entropy can’t can’t decrease

 Landauer's principle: Irreversible 
operations, like AND,  require energy

 However, all computation can be 
made reversible

 Thus thus no minimum energy for any 
computation

 How would you make computation 
reversible on a Turing Machine or RAM 
model of computation?

Fredkin Gate



TSP is easy

 Arbitrary large 

instances of TSP 

can be solved 

with arbitrarily 

small energy



So ...

 We need different models

to study energy as a 

computational resource 

than we use for time and 

space 



Sales Pitch for Green 

Computing Algorithms

 Build a theory of energy as a computational 

resource that allows software engineers to reason 

abstractly about power, energy and temperature 

as effectively as they can currently abstractly 

reason about time and space



Current State Of Theory of Energy as a 

Computational Resource: 

Energy vs. Performance Tradeoffs

Performance

Metric
Energy

Design Space

Sweet 

Spot ?

Ubiquitous figure at Green 

Computing Conferences



Road Map

 Wildly optimistic goal for the rest of this talk
 Brief digression on algorithmic research

 Managing speed scalable processors
 Offline algorithm design and analysis using KKT 

conditions
 Online algorithm design and analysis using potential 

functions
 Online algorithm design and analysis using dual fitting 

of Lagrangian dual

 Talk 2: Routing in a network of routers that are 
speed scalable and that may be shutdown

 Talk 3: Near-threshold computing and energy 
efficient circuit design



Merriam-Webster Definition of 

Research

 investigation or experimentation aimed at 

the discovery and interpretation of facts, 

revision of accepted theories or laws in 

the light of new facts, or practical 

application of such new or revised 

theories or laws 



One Type of 

Algorithmic Research

 Solve a well-known hard/important open 

problem that has stumped many

 Analogy: Climbing an unclimbable

mountain

 Examples: 

 O(1)-approximation algorithm for ATSP

 4/3 approximation for TSP

 Advantages: Fame is virtually assured if 

successful

 Disadvantages: Failure common



Another Type of 

Algorithmic Research

 Applying known techniques to “easy” problems 
where its not surprising these techniques work

 Analogy: Climbing an foothill that others have 
bypassed

 Advantages: 

 Often good way to get into research for students

 In some educational systems that emphasize 
quantity over quality, this is a good strategy to 
achieve promotion

 Disadvantages: Won’t get you invited as a speaker 
at ADFOCS



Nondeterministic Automata for Progress 

of Most Algorithms PhD Students

Solve

“Easy”

Problem

Solve

Famous

Hard

Problem



Type of Algorithmic Research that Green 

Computing Has Fallen Into
 Problem Discovery/Mining. Starting new line of 

research.
 Analogy: Discovering new lands

 Advantages: Can pay off big
 Disadvantages: 

 Often difficult to find algorithmically interesting 
problems. 

 Often difficult to gain (rapid) acceptance within 
established community. 

 Requires additional skills

beyond problem solving.

You have to know how to search

Mine for problems. Requires a 
Different mentality.



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 
speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Warmup problems

 Offline algorithm design and analysis using KKT 
conditions

 Online algorithm design and analysis using 
potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual



Speed Scaling:

Power Heterogeneity

27



Power Heterogeneity

 Physics fact: Faster devices 
(cars) are less energy efficient 
than slower devices (cars)

 Energy efficiency = speed/power

 One reason to have cars of 
different speed: 

 Take the Ferrari if there is an 
important event you need to get 
to quickly, and take the Prius if 
the event is less important or 
time-critical.



Power Heterogeneity in 

Processors
 Physics fact: Faster processing is generally less energy 

efficient than slower processing

 Power heterogeneous computing technologies
 Speed scalable processors

 Heterogenous multiprocessors

 One reason to have processing of different speeds: 
 Use high power processing for important tasks and energy 

efficient processing for unimportant tasks



 Desired Theorem: Algorithm A gives a 

near optimal tradeoff between energy 

usage and performance (how long jobs 

have to wait, weighted by importance of 

the jobs).

 What do we have to do first?

Performance

Metric
Energy

Design Space

Sweet 

Spot ?



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 
speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Warmup problems

 Offline algorithm design and analysis using KKT 
conditions

 Online algorithm design and analysis using 
potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual



We Need To Model

 Processor environment

 Allowable Speeds

 Associated Powers

 Job environment

 Largely inherited

 Performance vs. energy 
objective

 Partially inherited



•Accuracy

•Realism

•Predictive

Algorithmists’

View of Science/Theory

 Science research tries to model a 

complex system by something simple, 

accurate, amenable to math and 

predictive. Muthu Muthukrishnan’s blog

33

•Simplicity

•Amenable to math



Which is the Best Theoretical 

Algorithmic Model for Allowable 

Speeds?

A. 1.6, 1.7, 1.8, 1.9, 2.2, 2.3, 2.4, 

2.6, 2.7, 2.885, 2.94, 3.06

B. Arbitrary discrete speeds   

s1, …, sk

C. Reals in a range [0, smax] for 

an arbitrary constant smax

D. Any nonnegative reals



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT 

conditions

 Online algorithm design and analysis using 

potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual



Formal Model (0)

 Setting: Speed scalable processor

 Allowable speeds [0, ∞)

 Power function P(s) specifying power as a 

function of speed s



Formal Model (0)
 Setting: Speed scalable processor

 Allowable speeds [0, ∞)

 Power function P(s) specifying power as a function of 

speed s

 Standard Architectural Model

 Power = dynamic power + static power

 Static power =constant

 now comparable to dynamic power.

 Ignore static power for now

 Dynamic power ≈ speedα,  α ≈ 3

 So for now, think P(s)=s3

 Of course Energy is power integrated over time



Formal Model (1)
 Setting: Speed scalable processor

 Allowable speeds [0, ∞)

 Power function P(s) specifying power as a function 
of speed s

 Input: Jobs, each j having an

 Arrival/release time r j

 Size/volume/work p j
 Importance/weight w j

 Output: A schedule that specifies for each time

 The job that is run

 The speed the processor is run

Height 

= 

speed

Schedule



Online Scheduling

A

Speed

2

1

0 Time2 4 86 10

Input
Jobs have

• Release time (left end)

• Volume (rectangle volume)

• Weight/importance 

(not depicted here)



Online Scheduling

A

A

Speed

2

1

0 Time2 4 86 10

Input



Online Scheduling

A

B

Speed

2

1

0 Time2 4 86 10

Input

A



Online Scheduling
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Online Scheduling
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Speed

2

1

0 Time2 4 86 10

Input

B



Online Scheduling
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Speed

2

1

0 Time2 4 86 10

Input

B
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Online Scheduling
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Online Scheduling

A

B

A

Speed

2

1

0 Time2 4 86 10

Input

B

C

C



Online Scheduling

A

B

B
BA

Speed

2

1

0 Time2 4 86 10

C

C



 Performance Objectives

 Primarily: Weighted Fractional Waiting Time: 

Total (weighed by importance) time 

instructions have to wait to be executed

 Secondarily: Weighted Waiting Time: Total 

(weighted by importance) time job have to 

wait to be finished

Formal Model (2)

Height 

= 

speed

Schedule



B
B

C

A

Speed

2

1

0 Time2 4 86

rB = 1

wB = 5

10

• Size/work/volume of job B = ?

• Waiting time for job B = ?

• Weighted waiting time for job B = ?

• Fractional weighted waiting time for job A = ? 

• Fractional weighted waiting time for job B = ? 

rA = 0

wA = 3



B
B

C

A

Speed

2

1

0 Time2 4 86 10

• Size/work/volume of job B = 2*1 + 4*2 = 10

• Waiting time for job B = 10 – 1 = 9 

• Weighted waiting time for job B = 9* 5 = 45

• Fractional weighted waiting time for job A = 3*1

• Fractional weighted waiting time for job B = 

5( (2/10)(3-1) + (8/ 10) (8-1))

rB = 1

wB = 5

rA = 0

wA = 3



 Performance Objective

 Weighted Fractional Waiting Time: Total 

(weighed by importance) time instructions

have to wait to be executed

 Weighted Waiting Time: Total (weighted by 

importance) time job have to wait to be 

finished

Digression: For Which Objective Can the Optimal 

Schedule Be Easily Computed if The Speed is Constant?



 Performance Objective

 Weighted Fractional Waiting Time: : Total 

(weighed by importance) time instructions have 

to wait to be executed

 Online algorithm Highest Density First (HDF) is 

optimal. 

 HDF always runs the job with the highest density

 Density = weight/work

 Weighted Waiting Time: Total (weighted by 

importance) time job have to wait to be 

finished

 NP-hard by reduction from partition

Digression: For Which Objective Can the Optimal 

Schedule Be Easily Computed if The Speed is Fixed?



Local Competitiveness

 Theorem: HDF is optimal for fractional 

weighted waiting time

 Proof: ?



Local Competitiveness

 Theorem: HDF is optimal for fractional 

weighted waiting time

 Proof:

Fractional

weight 
of alive

jobs

Time 

HDF

Arbitrary Schedule

Fractional weighted waiting time= 

∫t Fractional weight  of alive jobs at time t dt



55

 Slider specifying β, relative importance of 

energy to waiting time

 βspecifies how much improvement in 

weighted waiting time is sufficient to justify 

the expenditure of one more unit of energy

βLow High

Formal Model (3)



56

 Slider specifying β, relative importance of 

energy to waiting time

 βspecifies how much improvement in 

weighted waiting time is sufficient to justify 

the expenditure of one more unit of energy

βLow High

Formal Model (3)
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 Slider specifying β, relative importance of 

energy to waiting time

 βspecifies how much improvement in 

performance is sufficient to justify the 

expenditure of one more unit of energy

βLow High

Formal Model (3)



58

 Final objective: minimize weighted fractional 

waiting time + β* energy

Weighted

Instruction

Waiting

Time

Energy

Speed

Sweet 

Spot 

βLow High

Formal Model (4)

Height 

= 

speed

Schedule



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT 

conditions

 Online algorithm design and analysis using 

potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual



 For weighted waiting time + energy:

 Is red or blue schedule better?

 Which schedules have the “right” shape?

 For weighted fractional waiting time + energy

 Is red or blue schedule better?

 Which schedules have the “right” shape?

Consider Following 3 

Schedules for 1 Job

Speed

2

1



Consider Following 3 

Schedules for 1 Job

 For weighted waiting time + energy:

 Is red or blue schedule better? same

 Which schedules have the “right” shape? green

 For weighted fractional waiting time + energy

 Is red or blue schedule better? red

 Which schedules have the “right” shape? red

Speed

2

1



What is the Optimal Schedule for one 

with the Objective of Weighted Job 

Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s

 Objective value = ?



What is the Optimal Schedule for one 

with the Objective of Weighted Job 

Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s

 Objective value = w p/s + (p/s) s3

 Optimal Solution: s ≈ 



What is the Optimal Schedule for one 

with the Objective of Weighted Job 

Waiting Time plus Energy?

 Inputs:
 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:
 Speed s

 Objective: w p/s + (p/s) s3

 Optimal Solution: s ≈ (w)1/3

 Or s = (w)1/3/(2)1/3



What is the Optimal Schedule for one 

with the Objective of Weighted Job 

Waiting Time plus Energy?

 Inputs:
 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:
 Speed s

 Objective: w p/s + (p/s) s3

 Solution: s ≈ (w)1/3

 Optimal objective value ≈ p w2/3

 ≈ p w(1-1/α)  for general α

 ≈ w(2-1/α) in unit density case that p=w



What is the Optimal Schedule for one 

with the Objective of Fractional 

Weighted  Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s(t) at time t

 Objective value = ? 

 Subject to ?



What is the Optimal Schedule for one 

with the Objective of Fractional 

Weighted  Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s(t) at time t

 Objective: Σt ( w t s(t)/p + s(t)3 )

 Subject to: Σt s(t) dt = p

 How do you solve this sort of optimization 
problem?



Method of Lagrange 

Mulitpliers

 Min f(x, y, z) subject to g(x, y, z) =0

 A necessary condition for optimality is that 

there there exist Lagrange multiplier λ

such that:

 d f(x, y, z)/dx  +   λ d g(x, y, z)/dx =0, 

 d f(x, y, z)/dy +   λ d g(x, y, z)/dy =0, and 

 d f(x, y, z)/dz +   λ d g(x, y, z)/dz =0



Method of Lagrange 

Mulitpliers

 Min f(x, y, z) subject to g(x, y, z) =0

 A necessary condition for optimality is that 

there there exist Lagrange multiplier λ

such that:

 d f(x, y, z)/dx  =   λ d g(x, y, z)/dx, 

 d f(x, y, z)/dy =   λ d g(x, y, z)/dy, and 

 d f(x, y, z)/dz =   λ d g(x, y, z)/dz



What is the Optimal Schedule for one 

with the Objective of Fractional 

Weighted  Waiting Time plus Energy?

 Objective: Σt ( w t s(t)/p + s(t)3 ) 

 Subject to: Σt s(t) dt = p

 Solution via method of Lagrange 

multipliers: 

w t/p +  3s(t)2 = λ

 So, Hypopower 3s(t)2 = (λ- w t/p )

Hypopower =

Deriviative of 

Power wrt speed



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT 

conditions

 Online algorithm design and analysis using 

potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual
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Convex Programming Formulation

 Recall problem: Find schedule that minimizes 

weighted fractional waiting time plus energy

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time

 Convex Optimization:

 Min convex function f(x)

 Subject to x in some convex region

 Always key question: What should the variables 

be?
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Convex Programming Formulation

 Recall problem: Find schedule that minimizes 
weighted fractional waiting time plus energy

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time

 Convex Optimization:

 Min convex function f(x)

 Subject to x in some convex region

 Variable xjt = number of instructions of job j done at 
time t

 What are the constraints?
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Convex Programming Formulation

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(Σj xjt )

 Subject to 

 Σt xjt ≥ pj [each job is finished]

 xjt ≥ 0

 Variable xjt = number of instructions of job j done at 

time t

 Variable st = speed at time t

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time
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Convex Programming Formulation

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to 

 Σt xjt ≥ pj [each job is finished]

 Σj xjt = st [speed = total work]

 xjt ≥ 0

 Variable xjt = number of instructions of job j done at 
time t

 Variable st = speed at time t

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time
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KKT Optimality Conditions:
Generalizes Lagrangian Multipliers and

Complementary Slackness Optimality Conditions for 

Linear Programs

Consider a strictly-feasible convex differentiable program 

A necessary and sufficient condition for a solution x to be optimal 

is the existence of Lagrange multipliers λi such that

Complementary slackness

Key equation: from method

of Lagrange multipliers
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Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to 

 pj - Σt xjt ≤ 0    Dual variable λj

 - xjt ≤ 0                Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0
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Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to 

 pj - Σt xjt ≤ 0    Dual variable λj

 - xjt ≤ 0                Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0
• If job j is run at time t then δjt =?
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Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to 

 pj - Σt xjt ≤ 0    Dual variable λj

 - xjt ≤ 0                Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0

• By complementary slackness, δjt=0 if job j is run at t

• By some algebra, at all times t when j is run: 

P’(st)= λj – (wj/βpj)(t-rj)



Characterization of Optimal Schedule From 

KKT Conditions (1)

 By some algebra, at all times t when j is run: 

P’(st)= λj – (wj/βpj)(t-rj)

hypopower

time

Slope =  - (wj/pj)/β

Initial hypopower
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Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to 

 pj - Σt xjt ≤ 0    Dual variable λj

 - xjt ≤ 0                Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0

• At all times t when j is run: P’(st)= λj – (wj/βpj)(t-rj)

• By nonnegativity of the δ dual variables, if j is not 

run at time t, then P’(st) >  λj– (wj/βpj)(t-rj)



Characterization of Optimal Schedule From 

KKT Conditions (1)

 If j is run at time t, then it is run at the hypopower on its 

hypopower liner

 If a job j is not run at a time t, then hypopower of processor 

at time t lies above j’s hypopower line.

 What job is run at this time in optimal schedule?

hypopower

time



Characterization of Optimal Schedule From 

KKT Conditions (2)

 Schedule is upper envelope of hypopower

functions and

 Each job j is processed the right amount 

(feasibility)

time

Slope = - (wj/pj)/β

hypopower

Initial hypopower



Polytime Algorithm for Discrete 

Speeds[ABCKNPS2014]: Continuous 

evolution as Job Sizes Increase



Open Question
 What is the complexity (in P or NP-

equivalent or something else) of 

computing the optimal (unweighted

integer) total waiting time plus energy 

schedule?

 Shortest Remaining Processing Time 

is optimal for total waiting time for 

a fixed speed processor. So 

hardness must come from speed 

setting.

 NP-hard to minimize waiting time 

subject to an energy constraint. 

 I don’t know how to solve this in 

poly time even when processor has 

only 2 speeds.



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT 

conditions

 Online algorithm design and analysis using 

potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual



Natural Online Algorithm

 Job selection policy to determine which 

job to run

 Natural candidate policy is ?

 Speed selection policy to determine the 

speed to run at

 Natural candidate policy is ?



Natural Online Algorithm A
 Job selection policy to determine which job 

to run

 Natural candidate policy is HDF, running the job 
with highest weight/size ratio

 Speed selection policy to determine the 
speed to run at

 Natural candidate policy is power = unfinished 
fractional weight

 Recall, this is approximately optimal if no more 
jobs arrive



Local Competitiveness Proof

 Theorem: Natural  Algorithm A is 2-

competitive for fractional weighted waiting 

time plus energy

 Proof:

?

Time 

A

Arbitrary 

Fractional weighted waiting time + energy = 

∫t ?    dt

?



Local Competitiveness Proof

 Theorem: Natural  Algorithm A is 2-

competitive for fractional weighted waiting 

time plus energy

 Proof:

2(Fractional

weight 

of alive

Jobs + 

Power)

Time 

A

Arbitrary

Fractional weighted waiting time + energy = 

∫t (Fractional weight  of alive jobs at time t + power )dt

Fractional

weight 

of alive

Jobs + 

power



Why Won’t Local 

Competitiveness work?

 Theorem: Natural  Algorithm A is 2-

competitive for fractional weighted waiting 

time plus energy

 Proof:

2(Fractional

weight 

of alive

Jobs + 

Power)

Time 

A

Arbitrary

Fractional

weight 

of alive

Jobs + 

power



Why Won’t Local 

Competitiveness work?

 Theorem: Natural  Algorithm A is 2-

competitive for fractional weighted waiting 

time plus energy

 Proof:

2(Fractional

weight 

of alive

Jobs + 

Power)

Time 

A

Arbitrary

Fractional

weight 

of alive

Jobs + 

power



Why Won’t Local 

Competitiveness work?

 Theorem: Natural  Algorithm A is 2-

competitive for fractional weighted waiting 

time plus energy

 Proof:

A

Arbitrary



Why Won’t Local 

Competitiveness work?

 Theorem: Natural  Algorithm A is 2-

competitive for fractional weighted waiting 

time plus energy

 Proof:

A

Arbitrary

Do you recall seeing this issue come up in CLRS text?

If so, what chapter? And how did CLRS resolve the issue?



 Theorem: A is 2-competitive for the objective of fractional 

weighted waiting time plus energy

 Proof:  Amortized Local Competitiveness

 1.Potential function Φ initially 0, 

 2. Φ finally positive, and

 3. For all t, A(t) + dΦ/dt ≤ 2*Opt(t)

95

Amortized Local Competitiveness

Time 

A + dΦ/dt

2*Opt



The Subtle Magic of Potential 

Functions

 Most natural to define Φ(t) 

in terms of Φ(t-1) and ΔΦ

 Potential function method: 

Define ΔΦ in terms of Φ(t-

1) and Φ(t)



Potential Functions in Speed 

Scaling
 There is a standard potential 

function [BPS07]
 Most potential functions used in 

the speed scaling literature are 
variations thereof [IMP2011]

 The use of this standard potential 
function has now become a 
standard technique for 
analyzing scheduling problems 
that are unrelated to energy 
 e.g. Broadcast scheduling



Now Standard Potential 

Function [BPS07]

 Semi-formal definition: Φ = Future online cost where 
the size of each job is how far the online algorithm is 
behind on that job

 For our running example, future cost = Σxj Wj
(1-1/α) where 

 xj is size of jth most dense job

 Wj is weight of jobs less dense than j

 Then standard potential function Φ = Σyj Vj
(1-1/α) 

 Where yj is how far the online algorithm is behind on job j

 Vj is the amount of weight in work that is less dense than the 
density of job j and that online is behind on



Unit Density Jobs with α= 2.

 Recall that we calculated cost for A with n 

unit work unit weight jobs to be n2-1/α, which 

equals n3/2 when α=2.

 Standard potential function                               

Φ= (8/3) (max(0, na – no))3/2

 na and no are the fractional number of 

unfinished jobs for algorithm and optimal

 From here we will assume the hard case that 

na > no



Unit Density Jobs with α= 2.

 Potential function Φ= (8/3) (na – no)3/2

 na and no are the fractional number of 
unfinished jobs for algorithm and optimal

 Key Equation: 

A(t) + dΦ/dt ≤ 2*Opt(t)

 sa is speed of algorithm and so is speed of 
optima.

 What is cost A(t) is incurring at time t?

 What is cost Opt incurring at time t?



Unit Density Jobs with α= 2.
 Potential function Φ= (8/3) (na – no)3/2

 na and no are the fractional unfinished jobs

 Key Equation: sa
2 +na + dΦ/dt ≤ 2*(so

2+ no) 

 sa is speed of algorithm and so is speed of optima.

 Simple things to check:

 Φ initially 0

 Φ finally nonnegative

 Key equation holds when job arrives

 Key equation holds when A finishes a job

 Key equation holds when Opt finishes a job

 Nontrivial thing to check is it holds due A and Opt 

running jobs



Unit Density Jobs with α= 2

 Standard potential function Φ= (8/3) (na –
no)3/2

 na and no are the fractional number of 
unfinished jobs for algorithm and optimal. sa is 
speed of algorithm and so is speed of 
optima.

 Key Equation: sa
2 +na + dΦ/dt ≤ 2*(so

2+ no)  

 How are sa
2 and na related?

 What is dΦ/dt ?



Unit Density Jobs with α= 2

 Standard potential function Φ= (8/3) (na –
no)3/2

 na and no are the fractional number of 
unfinished jobs for algorithm and optimal. sa is 
speed of algorithm and so is speed of 
optima.

 Key Equation: sa
2 +na + dΦ/dt ≤ 2*(so

2+ no)  

 sa
2 = na by the definition of algorithm A

 dΦ/dt = 4 (na – no)1/2 (-sa + so)



Unit Density Jobs with α= 2

 Need to verify 2na + 4(na – no)1/2 (so-na
1/2) ≤ 

2*(so
2+ no)

 By simple algebra

 2na - 4(na – no) + 4(na – no)1/2 so ≤ 2*(so
2+ no)

 -2na + 4(na – no)1/2 so ≤ 2*so
2- 2 no

 (na – no)1/2 so ≤ ((na – no) + so
2)/2

 Since ab ≤ a2/2 + b2/2

 Plugging in: -2na + 2((na – no) + 2so
2≤ 2*so

2- 2 no



 Theorem: Natural algorithm is 2-competitive for the 

objective of fractional weighted waiting time plus energy

 Proof:  Amortized Local Competitiveness

 1. Φ initially 0, 

 2. Φ finally positive, and

 3. For all t, A(t) + dΦ/dt ≤ 2*Opt(t)

105

Amortized Local Competitiveness

Time 

A + ΔΦ

2*Opt



 Theorem: Natural algorithm is 2-competitive for the 

objective of fractional weighted waiting time plus energy

 Theorem: There is a 16-competitive algorithm for the 
objective of (integer) weighted waiting time plus energy 

when P(s)=s3

 Proof: Hint, think of one job. How can you get waiting time 

≤ fractional waiting time while increasing flow by at most 
a factor of 8?

106

Amortized Local Competitiveness



 Theorem: Natural algorithm is 2-competitive for the 

objective of fractional weighted waiting time plus energy

 Theorem: There is a 16-competitive algorithm for the 
objective of (integer) weighted waiting time plus energy 

when P(s)=s3

 Proof: Run same job as fractional algorithm at twice the 

speed

107

Amortized Local Competitiveness



 Theorem: A is 2-competitive for the objective of fractional 

weighted waiting time plus energy

 Theorem[BCP09]: Natural algorithm is a 2-competitive 
algorithm for the objective of (integer) unweighted

waiting time plus energy for any power function

 Proof: Non-standard potential function

108

Amortized Local Competitiveness



Which is the Best Theoretical Algorithmic 

Model for Allowable Speeds?

A. 1.6, 1.7, 1.8, 1.9, 2.2, 2.3, 2.4, …, 3.06

 Too specific

B. Arbitrary discrete speeds   s1, …, sk

 Optimal online algorithm: Do what algorithm would 
do for continuous speeds, and then round to nearest 

discrete speed

C. Reals in a range [0, smax] for an arbitrary constant smax

 Optimal online algorithm: Run at the minimum of 

what the continuous speed algorithm would run at 

and smax

D. Any nonnegative reals

 In hindsight, best theoretical/algorithmic model



Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and 

speedy scaling

 Philosophical discussion about model

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT 

conditions

 Online algorithm design and analysis using 

potential functions

 Online algorithm design and analysis using dual 
fitting of Lagrangian dual



Online Algorithm Design and Analysis 

Technique

 Design

 Express the problem as a mathematical 
program

 View the online problem as constraints of this 
primal program arriving online

 Consider the online greedy algorithm that 
raises the primal variables to satisfy the newly 
arriving constraint so as to minimize the 
increase in the primal objective

 Analysis (Dual fitting)



112

Recall Convex Programming Formulation

 Min Σj Σt cj,t xjt+ βΣt (Σj xj,t)
α 

 Subject to 

 Σt xjt ≥ 1   [each job is finished]

 Variable xjt = number of instructions of job j 

done at time t

 cj,t = cost for finishing work at time t

 Note that we abstract out the specific 

scheduling objective

 Job arrival equivalent to new constraint



Greedy Algorithm
 Min Σt (Σj xj,t)

α + Σt Σj cj,t xj,t

 Subject to Σt xj,t ≥ 1

 Online Greedy Algorithm: When a new job j 
arrives raise the primal variables so that the 
increase in the kludged primal objectiveδΣt (Σj
xj,t)

α + Σt Σj cj,t xj,t is minimal
 Kludge: δ < 1 is a discount factor for energy 

costs

 Let yjt be final setting of variables for online 



Greedy Algorithm

A

Speed

2

1

0 Time2 4 86 10

Input



Online Scheduling

A

Speed

2

1

0 Time2 4 86 10

Input

A



Online Scheduling

A

B

Speed

2

1

0 Time2 4 86 10

Input

A



Online Scheduling

A

B

Speed

2

1

0 Time2 4 86 10

Input

A
B



Online Algorithm Design and Analysis 

Technique

 Design

 Express the problem as a mathematical 
program

 View the online problem as constraints of this 
primal program arriving online

 Consider the online greedy algorithm that 
raises the primal variables to satisfy the newly 
arriving constraint so as to minimize the 
increase in the primal objective

 Analysis (Dual fitting)



Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions 

to (primal) 

mathematical 

programming 

formulation of 

minimization 

problem

Feasible solutions to 

dual maximization 

problem



Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions 

to (primal) 

mathematical 

programming 

formulation of 

minimization 

problem

Feasible solutions to 

dual maximization 

problem

How can you prove a particular primal 

feasible solution is optimal using the 

dual?



Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions 

to (primal) 

mathematical 

programming 

formulation of 

minimization 

problem

How can you prove a particular primal 

feasible solution is optimal using the 

dual?
Show existence of dual feasible 

solution with the same objective value

Feasible solutions to 

dual maximization 

problem



Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions 

to (primal) 

mathematical 

programming 

formulation of 

minimization 

problem

Feasible solutions to 

dual maximization 

problem

How can you prove a particular primal 
feasible solution is at most twice 

optimal using the dual?



Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions 

to (primal) 

mathematical 

programming 

formulation of 

minimization 

problem

Feasible solutions to 

dual maximization 

problem

How can you prove a particular primal 
feasible solution is at most twice 

optimal using the dual?

Dual feasible solution with objective 

value within a factor of 2

Ratio of ≤ 2



For Our Speed Scaling Problem

High

Objective

value

Low

Convex program

Lagrangrian

Dual

Ratio of ≤ 2



Lagrangian Relaxation

 Primal: Minx f(x) subject to h(x) ≤ 0

 Lagrangian dual: g(λ) = minx [f(x) +λh(x)]

 If λ≥ 0 then g(λ) is lower bound to primal



Lagrangian Dual g(λ)

Primal

Minx Σt (Σj xj,t)
α + Σt Σj cj,t xj,t

Subject to Σt xj,t ≥ 1

Lagrangian dual: 

g(λ) = Minx (Σt (Σj xj,t)
α + Σt Σj cj,t xj,t + 

Σjλj (1 – Σt xj,t) )



Dual Fitting Strategy
 Theorem: Online algorithm A is αα competitive

 Proof Strategy: 

 Opt ≥ g(λ) 

 ≥ something involving only dual variablesλ

 Requires determining optimal solution z of g(λ) in 

terms of λ

 ≥ something involving online solution y but not λ

 Requires dual variables λbe defined in terms of y

 ≥ A/αα



Dual Fitting Strategy
 Theorem: Online algorithm A is αα competitive

 Proof Strategy: 

 Opt ≥ g(λ) 

 ≥ something involving only dual variablesλ

 Requires determining optimal solution z of g(λ) in terms of 
λ

 ≥ something involving online solution y but not λ

 Requires dual variables λbe defined in terms of y

 ≥ A/αα

 Harder for Lagrangian dual of convex program than 
standard dual of linear program because you have 3 
types of variables floating around:

 Setting of primal variables by online algorithm y

 Dual variablesλ

 Setting of primal variables in the dual z



To Do List

 Online solution y defined (done)

 Define dual variables λ in terms of y

 Determine optimal solution z to g(λ) in 

terms of λ

 Calculate g(λ) in terms of y’s



Dual Variable Setting

 λj = the rate at which “kludged primal 

objective” δΣt (Σj xj,t)
α + Σt Σj cj,t xj,t is 

increasing for the last bit of work for job j



To Do List

 Online solution y defined 

 Define dual variables λ in terms of y

 Determine optimal solution z to g(λ) in 

terms of λ

 Key insight: g(λ) can be solved by simple 

greedy algorithm

 Calculate g(λ) in terms of y’s



Interpretation of Lagrangian Dual g(λ)

g(λ) = Minx (Σt (Σj xj,t)
α + Σt Σj cj,t xj,t + Σjλj (1 

– Σt xj,t) )

No constraint on how much work is 
scheduled for each job

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each  
unit of job j that is scheduled



Interpretation of Lagrangian Dual g(λ)

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each  
unit of job j that is scheduled

 Why doesn’t optimal dual schedule 
way more stuff than online 
algorithm?

 Why doesn’t optimal dual schedule 
way less stuff than online algorithm?



Consider 1 Job and 1 Time 

where cjt=0

 Online algorithm schedules L units of 
work from job j at time t, i.e. yjt = L

 Thus λ ≈ rate of increase of energy 
cost at the end ≈αLα-1

 Thus the optimal solution zjt ≈ L since 
this is where the energy costs start to 
exceed the payment rate λ



Interpretation of Lagrangian Dual g(λ)

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each  
unit of job j that is scheduled

 Optimal greedy algorithm for this 
dual problem? Consider a 
particular time t.



Interpretation of Lagrangian Dual g(λ)

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each  
unit of job j that is scheduled

 Greedy algorithm for dual problem: 
For each time, schedule work from 
the job that is most profitable for 
that time until costs start to exceed 
payments



To Do List

 Online solution y defined (done)

 Define dual variables λ in terms of y

 Determine optimal solution z to g(λ) in 

terms of λ

 Calculate g(λ) in terms of y’s  (exercise)



Review

 Power heterogeneity, speed scaling

 Relationship of energy, power, speed

 KKT conditions

 Amortized local competitiveness, and the 

standard potential function

 Lagrangian relaxation

 Dual fitting
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Thanks for listening!


