
Kirk Pruhs Green Computing

Algorithmics

Talk 1: Introduction

and Speed Scaling

ADFOCS 2015

Dominant Computational

Resource

19501940 19701960 1980 1990 2000 20202010

Memory Time Energy

2030

Example: Computer Processors
 Intel Hits Thermal Wall
 Reuters Friday May 7, 2004
 SAN FRANCISCO, May 7 (Reuters) -

Intel Corp. said on Friday it has
scrapped the development of two
new computer chips (code-named
Tejas and Jayhawk) for
desktop/server systems in order to
rush to the marketplace a more
efficient chip technology more than
a year ahead of schedule. Analysts
said the move showed how eager
the world's largest chip maker was
to cut back on the heat its chips
generate. Intel's method of cranking
up chip speed was beginning to
require expensive and noisy cooling
systems for computers.

Example: Data Centers
 "What matters most to the computer

designers at Google is not speed, but

power, low power, because data centers

can consume as much electricity as a

city."--- Eric Schmidt, Google CEO in 2002

Example: High Performance Computing

 Finding: Making the transition to
exascale poses numerous
unavoidable scientific and
technological challenges. Three
challenges to be resolved are:

1. Reducing power requirements.
Based on current technology,
scaling today’s systems to an
exaflop level would consume more
than a gigawatt of power, roughly
the output of Hoover Dam.
Reducing the power requirement
by a factor of at least 100 is a
challenge for future hardware and
software technologies.

2. Coping with runtime errors

3. Dealing with massive parallelism

We are in a

Green Computing

Revolution

 During the last decade,
information technology is being
redesigned with energy
efficiency as a first order resource

 Technological reasons

 General societal trend toward
most sustainable technologies

Most Common Vision of Green

Computing Algorithmics

It would be great to

have a big Oh

theory for energy

Participant at generic

National Science Foundation

visioning workshop

Translation It would be nice to

have a algorithmic

complexity theory with

energy as a resource

directly analogous to

the algorithmic
complexity theory that

we have for time and

space as resources

Participant at generic

National Science Foundation

visioning workshop

Not going to Happen
It would be nice to

have a algorithmic

complexity theory with

energy as a resource

directly analogous to

the algorithmic
complexity theory that

we have for time and

space as resources

Participant at generic

National Science Foundation

visioning workshop

 What is something you learned about

time (or space) as a computational

resource from standard texts?

One Problem: How do you assign energies to

algorithms?

 BubbleSort

 Time = n2

 Space = n

 Energy = ?

 MergeSort

 Time = n log n

 Space = n

 Energy = ?

One Problem: How do you assign energies to

algorithms?

 BubbleSort

 Time = n2

 Space = n

 Energy = ?

 MergeSort

 Time = n log n

 Space = n

 Energy = ?

Option 1: Assume all operations take constant energy.

Problem?

One Problem: How do you assign energies to

algorithms?

 BubbleSort

 Time = n2

 Space = n

 Energy = ?

 MergeSort

 Time = n log n

 Space = n

 Energy = ?

Option 2: Assume some operations require more energy than

others. Which operations require energy?

What Operations Require Energy?

 Second Law of Thermodynamics:
Entropy can’t can’t decrease

 Landauer's principle: Irreversible
operations, like AND, require energy
because information is lost

 To erase a bit costs k T ln 2 units of
energy

 k = Boltzmann’s constant

 T = temperature in Kelvin

 Erasing 1 bit at room temperature costs
at least a millijoule

What Operations Require Energy

 Second Law of Thermodynamics:
Entropy can’t can’t decrease

 Landauer's principle: Irreversible
operations, like AND, require energy

 However, all computation can be
made reversible

 Thus thus no minimum energy for any
computation

 How would you make computation
reversible on a Turing Machine or RAM
model of computation?

Fredkin Gate

TSP is easy

 Arbitrary large

instances of TSP

can be solved

with arbitrarily

small energy

So ...

 We need different models

to study energy as a

computational resource

than we use for time and

space

Sales Pitch for Green

Computing Algorithms

 Build a theory of energy as a computational

resource that allows software engineers to reason

abstractly about power, energy and temperature

as effectively as they can currently abstractly

reason about time and space

Current State Of Theory of Energy as a

Computational Resource:

Energy vs. Performance Tradeoffs

Performance

Metric
Energy

Design Space

Sweet

Spot ?

Ubiquitous figure at Green

Computing Conferences

Road Map

 Wildly optimistic goal for the rest of this talk
 Brief digression on algorithmic research

 Managing speed scalable processors
 Offline algorithm design and analysis using KKT

conditions
 Online algorithm design and analysis using potential

functions
 Online algorithm design and analysis using dual fitting

of Lagrangian dual

 Talk 2: Routing in a network of routers that are
speed scalable and that may be shutdown

 Talk 3: Near-threshold computing and energy
efficient circuit design

Merriam-Webster Definition of

Research

 investigation or experimentation aimed at

the discovery and interpretation of facts,

revision of accepted theories or laws in

the light of new facts, or practical

application of such new or revised

theories or laws

One Type of

Algorithmic Research

 Solve a well-known hard/important open

problem that has stumped many

 Analogy: Climbing an unclimbable

mountain

 Examples:

 O(1)-approximation algorithm for ATSP

 4/3 approximation for TSP

 Advantages: Fame is virtually assured if

successful

 Disadvantages: Failure common

Another Type of

Algorithmic Research

 Applying known techniques to “easy” problems
where its not surprising these techniques work

 Analogy: Climbing an foothill that others have
bypassed

 Advantages:

 Often good way to get into research for students

 In some educational systems that emphasize
quantity over quality, this is a good strategy to
achieve promotion

 Disadvantages: Won’t get you invited as a speaker
at ADFOCS

Nondeterministic Automata for Progress

of Most Algorithms PhD Students

Solve

“Easy”

Problem

Solve

Famous

Hard

Problem

Type of Algorithmic Research that Green

Computing Has Fallen Into
 Problem Discovery/Mining. Starting new line of

research.
 Analogy: Discovering new lands

 Advantages: Can pay off big
 Disadvantages:

 Often difficult to find algorithmically interesting
problems.

 Often difficult to gain (rapid) acceptance within
established community.

 Requires additional skills

beyond problem solving.

You have to know how to search

Mine for problems. Requires a
Different mentality.

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and
speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Warmup problems

 Offline algorithm design and analysis using KKT
conditions

 Online algorithm design and analysis using
potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

Speed Scaling:

Power Heterogeneity

27

Power Heterogeneity

 Physics fact: Faster devices
(cars) are less energy efficient
than slower devices (cars)

 Energy efficiency = speed/power

 One reason to have cars of
different speed:

 Take the Ferrari if there is an
important event you need to get
to quickly, and take the Prius if
the event is less important or
time-critical.

Power Heterogeneity in

Processors
 Physics fact: Faster processing is generally less energy

efficient than slower processing

 Power heterogeneous computing technologies
 Speed scalable processors

 Heterogenous multiprocessors

 One reason to have processing of different speeds:
 Use high power processing for important tasks and energy

efficient processing for unimportant tasks

 Desired Theorem: Algorithm A gives a

near optimal tradeoff between energy

usage and performance (how long jobs

have to wait, weighted by importance of

the jobs).

 What do we have to do first?

Performance

Metric
Energy

Design Space

Sweet

Spot ?

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and
speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Warmup problems

 Offline algorithm design and analysis using KKT
conditions

 Online algorithm design and analysis using
potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

We Need To Model

 Processor environment

 Allowable Speeds

 Associated Powers

 Job environment

 Largely inherited

 Performance vs. energy
objective

 Partially inherited

•Accuracy

•Realism

•Predictive

Algorithmists’

View of Science/Theory

 Science research tries to model a

complex system by something simple,

accurate, amenable to math and

predictive. Muthu Muthukrishnan’s blog

33

•Simplicity

•Amenable to math

Which is the Best Theoretical

Algorithmic Model for Allowable

Speeds?

A. 1.6, 1.7, 1.8, 1.9, 2.2, 2.3, 2.4,

2.6, 2.7, 2.885, 2.94, 3.06

B. Arbitrary discrete speeds

s1, …, sk

C. Reals in a range [0, smax] for

an arbitrary constant smax

D. Any nonnegative reals

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT

conditions

 Online algorithm design and analysis using

potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

Formal Model (0)

 Setting: Speed scalable processor

 Allowable speeds [0, ∞)

 Power function P(s) specifying power as a

function of speed s

Formal Model (0)
 Setting: Speed scalable processor

 Allowable speeds [0, ∞)

 Power function P(s) specifying power as a function of

speed s

 Standard Architectural Model

 Power = dynamic power + static power

 Static power =constant

 now comparable to dynamic power.

 Ignore static power for now

 Dynamic power ≈ speedα, α ≈ 3

 So for now, think P(s)=s3

 Of course Energy is power integrated over time

Formal Model (1)
 Setting: Speed scalable processor

 Allowable speeds [0, ∞)

 Power function P(s) specifying power as a function
of speed s

 Input: Jobs, each j having an

 Arrival/release time r j

 Size/volume/work p j
 Importance/weight w j

 Output: A schedule that specifies for each time

 The job that is run

 The speed the processor is run

Height

=

speed

Schedule

Online Scheduling

A

Speed

2

1

0 Time2 4 86 10

Input
Jobs have

• Release time (left end)

• Volume (rectangle volume)

• Weight/importance

(not depicted here)

Online Scheduling

A

A

Speed

2

1

0 Time2 4 86 10

Input

Online Scheduling

A

B

Speed

2

1

0 Time2 4 86 10

Input

A

Online Scheduling

A

B

A

Speed

2

1

0 Time2 4 86 10

Input

Online Scheduling

A

B

A

Speed

2

1

0 Time2 4 86 10

Input

B

Online Scheduling

A

B

A

Speed

2

1

0 Time2 4 86 10

Input

B

C

Online Scheduling

A

B

A

Speed

2

1

0 Time2 4 86 10

Input

B

C

C

Online Scheduling

A

B

A

Speed

2

1

0 Time2 4 86 10

Input

B

C

C

Online Scheduling

A

B

B
BA

Speed

2

1

0 Time2 4 86 10

C

C

 Performance Objectives

 Primarily: Weighted Fractional Waiting Time:

Total (weighed by importance) time

instructions have to wait to be executed

 Secondarily: Weighted Waiting Time: Total

(weighted by importance) time job have to

wait to be finished

Formal Model (2)

Height

=

speed

Schedule

B
B

C

A

Speed

2

1

0 Time2 4 86

rB = 1

wB = 5

10

• Size/work/volume of job B = ?

• Waiting time for job B = ?

• Weighted waiting time for job B = ?

• Fractional weighted waiting time for job A = ?

• Fractional weighted waiting time for job B = ?

rA = 0

wA = 3

B
B

C

A

Speed

2

1

0 Time2 4 86 10

• Size/work/volume of job B = 2*1 + 4*2 = 10

• Waiting time for job B = 10 – 1 = 9

• Weighted waiting time for job B = 9* 5 = 45

• Fractional weighted waiting time for job A = 3*1

• Fractional weighted waiting time for job B =

5((2/10)(3-1) + (8/ 10) (8-1))

rB = 1

wB = 5

rA = 0

wA = 3

 Performance Objective

 Weighted Fractional Waiting Time: Total

(weighed by importance) time instructions

have to wait to be executed

 Weighted Waiting Time: Total (weighted by

importance) time job have to wait to be

finished

Digression: For Which Objective Can the Optimal

Schedule Be Easily Computed if The Speed is Constant?

 Performance Objective

 Weighted Fractional Waiting Time: : Total

(weighed by importance) time instructions have

to wait to be executed

 Online algorithm Highest Density First (HDF) is

optimal.

 HDF always runs the job with the highest density

 Density = weight/work

 Weighted Waiting Time: Total (weighted by

importance) time job have to wait to be

finished

 NP-hard by reduction from partition

Digression: For Which Objective Can the Optimal

Schedule Be Easily Computed if The Speed is Fixed?

Local Competitiveness

 Theorem: HDF is optimal for fractional

weighted waiting time

 Proof: ?

Local Competitiveness

 Theorem: HDF is optimal for fractional

weighted waiting time

 Proof:

Fractional

weight
of alive

jobs

Time

HDF

Arbitrary Schedule

Fractional weighted waiting time=

∫t Fractional weight of alive jobs at time t dt

55

 Slider specifying β, relative importance of

energy to waiting time

 βspecifies how much improvement in

weighted waiting time is sufficient to justify

the expenditure of one more unit of energy

βLow High

Formal Model (3)

56

 Slider specifying β, relative importance of

energy to waiting time

 βspecifies how much improvement in

weighted waiting time is sufficient to justify

the expenditure of one more unit of energy

βLow High

Formal Model (3)

57

 Slider specifying β, relative importance of

energy to waiting time

 βspecifies how much improvement in

performance is sufficient to justify the

expenditure of one more unit of energy

βLow High

Formal Model (3)

58

 Final objective: minimize weighted fractional

waiting time + β* energy

Weighted

Instruction

Waiting

Time

Energy

Speed

Sweet

Spot

βLow High

Formal Model (4)

Height

=

speed

Schedule

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT

conditions

 Online algorithm design and analysis using

potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

 For weighted waiting time + energy:

 Is red or blue schedule better?

 Which schedules have the “right” shape?

 For weighted fractional waiting time + energy

 Is red or blue schedule better?

 Which schedules have the “right” shape?

Consider Following 3

Schedules for 1 Job

Speed

2

1

Consider Following 3

Schedules for 1 Job

 For weighted waiting time + energy:

 Is red or blue schedule better? same

 Which schedules have the “right” shape? green

 For weighted fractional waiting time + energy

 Is red or blue schedule better? red

 Which schedules have the “right” shape? red

Speed

2

1

What is the Optimal Schedule for one

with the Objective of Weighted Job

Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s

 Objective value = ?

What is the Optimal Schedule for one

with the Objective of Weighted Job

Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s

 Objective value = w p/s + (p/s) s3

 Optimal Solution: s ≈

What is the Optimal Schedule for one

with the Objective of Weighted Job

Waiting Time plus Energy?

 Inputs:
 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:
 Speed s

 Objective: w p/s + (p/s) s3

 Optimal Solution: s ≈ (w)1/3

 Or s = (w)1/3/(2)1/3

What is the Optimal Schedule for one

with the Objective of Weighted Job

Waiting Time plus Energy?

 Inputs:
 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:
 Speed s

 Objective: w p/s + (p/s) s3

 Solution: s ≈ (w)1/3

 Optimal objective value ≈ p w2/3

 ≈ p w(1-1/α) for general α

 ≈ w(2-1/α) in unit density case that p=w

What is the Optimal Schedule for one

with the Objective of Fractional

Weighted Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s(t) at time t

 Objective value = ?

 Subject to ?

What is the Optimal Schedule for one

with the Objective of Fractional

Weighted Waiting Time plus Energy?

 Inputs:

 w = weight importance of job

 p = work/volume of job

 Assume power = speed cubed

 Output:

 Speed s(t) at time t

 Objective: Σt (w t s(t)/p + s(t)3)

 Subject to: Σt s(t) dt = p

 How do you solve this sort of optimization
problem?

Method of Lagrange

Mulitpliers

 Min f(x, y, z) subject to g(x, y, z) =0

 A necessary condition for optimality is that

there there exist Lagrange multiplier λ

such that:

 d f(x, y, z)/dx + λ d g(x, y, z)/dx =0,

 d f(x, y, z)/dy + λ d g(x, y, z)/dy =0, and

 d f(x, y, z)/dz + λ d g(x, y, z)/dz =0

Method of Lagrange

Mulitpliers

 Min f(x, y, z) subject to g(x, y, z) =0

 A necessary condition for optimality is that

there there exist Lagrange multiplier λ

such that:

 d f(x, y, z)/dx = λ d g(x, y, z)/dx,

 d f(x, y, z)/dy = λ d g(x, y, z)/dy, and

 d f(x, y, z)/dz = λ d g(x, y, z)/dz

What is the Optimal Schedule for one

with the Objective of Fractional

Weighted Waiting Time plus Energy?

 Objective: Σt (w t s(t)/p + s(t)3)

 Subject to: Σt s(t) dt = p

 Solution via method of Lagrange

multipliers:

w t/p + 3s(t)2 = λ

 So, Hypopower 3s(t)2 = (λ- w t/p)

Hypopower =

Deriviative of

Power wrt speed

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT

conditions

 Online algorithm design and analysis using

potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

72

Convex Programming Formulation

 Recall problem: Find schedule that minimizes

weighted fractional waiting time plus energy

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time

 Convex Optimization:

 Min convex function f(x)

 Subject to x in some convex region

 Always key question: What should the variables

be?

73

Convex Programming Formulation

 Recall problem: Find schedule that minimizes
weighted fractional waiting time plus energy

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time

 Convex Optimization:

 Min convex function f(x)

 Subject to x in some convex region

 Variable xjt = number of instructions of job j done at
time t

 What are the constraints?

74

Convex Programming Formulation

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(Σj xjt)

 Subject to

 Σt xjt ≥ pj [each job is finished]

 xjt ≥ 0

 Variable xjt = number of instructions of job j done at

time t

 Variable st = speed at time t

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time

75

Convex Programming Formulation

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to

 Σt xjt ≥ pj [each job is finished]

 Σj xjt = st [speed = total work]

 xjt ≥ 0

 Variable xjt = number of instructions of job j done at
time t

 Variable st = speed at time t

 P is power function, think P(s) ≈ s3

 wj = importance, pj =size, and rj = arrival time

76
KKT Optimality Conditions:
Generalizes Lagrangian Multipliers and

Complementary Slackness Optimality Conditions for

Linear Programs

Consider a strictly-feasible convex differentiable program

A necessary and sufficient condition for a solution x to be optimal

is the existence of Lagrange multipliers λi such that

Complementary slackness

Key equation: from method

of Lagrange multipliers

77

Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to

 pj - Σt xjt ≤ 0 Dual variable λj

 - xjt ≤ 0 Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0

78

Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to

 pj - Σt xjt ≤ 0 Dual variable λj

 - xjt ≤ 0 Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0
• If job j is run at time t then δjt =?

79

Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to

 pj - Σt xjt ≤ 0 Dual variable λj

 - xjt ≤ 0 Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0

• By complementary slackness, δjt=0 if job j is run at t

• By some algebra, at all times t when j is run:

P’(st)= λj – (wj/βpj)(t-rj)

Characterization of Optimal Schedule From

KKT Conditions (1)

 By some algebra, at all times t when j is run:

P’(st)= λj – (wj/βpj)(t-rj)

hypopower

time

Slope = - (wj/pj)/β

Initial hypopower

81

Applying KKT

 Min Σj (wj/pj)Σj (t – rj)xjt+ βΣt P(st)

 Subject to

 pj - Σt xjt ≤ 0 Dual variable λj

 - xjt ≤ 0 Dual variable δjt

Complementary slackness

Key equation

• Key equation: (wj/pj)(t-rj) + β P’(st) – λj - δjt =0

• At all times t when j is run: P’(st)= λj – (wj/βpj)(t-rj)

• By nonnegativity of the δ dual variables, if j is not

run at time t, then P’(st) > λj– (wj/βpj)(t-rj)

Characterization of Optimal Schedule From

KKT Conditions (1)

 If j is run at time t, then it is run at the hypopower on its

hypopower liner

 If a job j is not run at a time t, then hypopower of processor

at time t lies above j’s hypopower line.

 What job is run at this time in optimal schedule?

hypopower

time

Characterization of Optimal Schedule From

KKT Conditions (2)

 Schedule is upper envelope of hypopower

functions and

 Each job j is processed the right amount

(feasibility)

time

Slope = - (wj/pj)/β

hypopower

Initial hypopower

Polytime Algorithm for Discrete

Speeds[ABCKNPS2014]: Continuous

evolution as Job Sizes Increase

Open Question
 What is the complexity (in P or NP-

equivalent or something else) of

computing the optimal (unweighted

integer) total waiting time plus energy

schedule?

 Shortest Remaining Processing Time

is optimal for total waiting time for

a fixed speed processor. So

hardness must come from speed

setting.

 NP-hard to minimize waiting time

subject to an energy constraint.

 I don’t know how to solve this in

poly time even when processor has

only 2 speeds.

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and

speedy scaling

 Philosophical discussion about modeling

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT

conditions

 Online algorithm design and analysis using

potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

Natural Online Algorithm

 Job selection policy to determine which

job to run

 Natural candidate policy is ?

 Speed selection policy to determine the

speed to run at

 Natural candidate policy is ?

Natural Online Algorithm A
 Job selection policy to determine which job

to run

 Natural candidate policy is HDF, running the job
with highest weight/size ratio

 Speed selection policy to determine the
speed to run at

 Natural candidate policy is power = unfinished
fractional weight

 Recall, this is approximately optimal if no more
jobs arrive

Local Competitiveness Proof

 Theorem: Natural Algorithm A is 2-

competitive for fractional weighted waiting

time plus energy

 Proof:

?

Time

A

Arbitrary

Fractional weighted waiting time + energy =

∫t ? dt

?

Local Competitiveness Proof

 Theorem: Natural Algorithm A is 2-

competitive for fractional weighted waiting

time plus energy

 Proof:

2(Fractional

weight

of alive

Jobs +

Power)

Time

A

Arbitrary

Fractional weighted waiting time + energy =

∫t (Fractional weight of alive jobs at time t + power)dt

Fractional

weight

of alive

Jobs +

power

Why Won’t Local

Competitiveness work?

 Theorem: Natural Algorithm A is 2-

competitive for fractional weighted waiting

time plus energy

 Proof:

2(Fractional

weight

of alive

Jobs +

Power)

Time

A

Arbitrary

Fractional

weight

of alive

Jobs +

power

Why Won’t Local

Competitiveness work?

 Theorem: Natural Algorithm A is 2-

competitive for fractional weighted waiting

time plus energy

 Proof:

2(Fractional

weight

of alive

Jobs +

Power)

Time

A

Arbitrary

Fractional

weight

of alive

Jobs +

power

Why Won’t Local

Competitiveness work?

 Theorem: Natural Algorithm A is 2-

competitive for fractional weighted waiting

time plus energy

 Proof:

A

Arbitrary

Why Won’t Local

Competitiveness work?

 Theorem: Natural Algorithm A is 2-

competitive for fractional weighted waiting

time plus energy

 Proof:

A

Arbitrary

Do you recall seeing this issue come up in CLRS text?

If so, what chapter? And how did CLRS resolve the issue?

 Theorem: A is 2-competitive for the objective of fractional

weighted waiting time plus energy

 Proof: Amortized Local Competitiveness

 1.Potential function Φ initially 0,

 2. Φ finally positive, and

 3. For all t, A(t) + dΦ/dt ≤ 2*Opt(t)

95

Amortized Local Competitiveness

Time

A + dΦ/dt

2*Opt

The Subtle Magic of Potential

Functions

 Most natural to define Φ(t)

in terms of Φ(t-1) and ΔΦ

 Potential function method:

Define ΔΦ in terms of Φ(t-

1) and Φ(t)

Potential Functions in Speed

Scaling
 There is a standard potential

function [BPS07]
 Most potential functions used in

the speed scaling literature are
variations thereof [IMP2011]

 The use of this standard potential
function has now become a
standard technique for
analyzing scheduling problems
that are unrelated to energy
 e.g. Broadcast scheduling

Now Standard Potential

Function [BPS07]

 Semi-formal definition: Φ = Future online cost where
the size of each job is how far the online algorithm is
behind on that job

 For our running example, future cost = Σxj Wj
(1-1/α) where

 xj is size of jth most dense job

 Wj is weight of jobs less dense than j

 Then standard potential function Φ = Σyj Vj
(1-1/α)

 Where yj is how far the online algorithm is behind on job j

 Vj is the amount of weight in work that is less dense than the
density of job j and that online is behind on

Unit Density Jobs with α= 2.

 Recall that we calculated cost for A with n

unit work unit weight jobs to be n2-1/α, which

equals n3/2 when α=2.

 Standard potential function

Φ= (8/3) (max(0, na – no))3/2

 na and no are the fractional number of

unfinished jobs for algorithm and optimal

 From here we will assume the hard case that

na > no

Unit Density Jobs with α= 2.

 Potential function Φ= (8/3) (na – no)3/2

 na and no are the fractional number of
unfinished jobs for algorithm and optimal

 Key Equation:

A(t) + dΦ/dt ≤ 2*Opt(t)

 sa is speed of algorithm and so is speed of
optima.

 What is cost A(t) is incurring at time t?

 What is cost Opt incurring at time t?

Unit Density Jobs with α= 2.
 Potential function Φ= (8/3) (na – no)3/2

 na and no are the fractional unfinished jobs

 Key Equation: sa
2 +na + dΦ/dt ≤ 2*(so

2+ no)

 sa is speed of algorithm and so is speed of optima.

 Simple things to check:

 Φ initially 0

 Φ finally nonnegative

 Key equation holds when job arrives

 Key equation holds when A finishes a job

 Key equation holds when Opt finishes a job

 Nontrivial thing to check is it holds due A and Opt

running jobs

Unit Density Jobs with α= 2

 Standard potential function Φ= (8/3) (na –
no)3/2

 na and no are the fractional number of
unfinished jobs for algorithm and optimal. sa is
speed of algorithm and so is speed of
optima.

 Key Equation: sa
2 +na + dΦ/dt ≤ 2*(so

2+ no)

 How are sa
2 and na related?

 What is dΦ/dt ?

Unit Density Jobs with α= 2

 Standard potential function Φ= (8/3) (na –
no)3/2

 na and no are the fractional number of
unfinished jobs for algorithm and optimal. sa is
speed of algorithm and so is speed of
optima.

 Key Equation: sa
2 +na + dΦ/dt ≤ 2*(so

2+ no)

 sa
2 = na by the definition of algorithm A

 dΦ/dt = 4 (na – no)1/2 (-sa + so)

Unit Density Jobs with α= 2

 Need to verify 2na + 4(na – no)1/2 (so-na
1/2) ≤

2*(so
2+ no)

 By simple algebra

 2na - 4(na – no) + 4(na – no)1/2 so ≤ 2*(so
2+ no)

 -2na + 4(na – no)1/2 so ≤ 2*so
2- 2 no

 (na – no)1/2 so ≤ ((na – no) + so
2)/2

 Since ab ≤ a2/2 + b2/2

 Plugging in: -2na + 2((na – no) + 2so
2≤ 2*so

2- 2 no

 Theorem: Natural algorithm is 2-competitive for the

objective of fractional weighted waiting time plus energy

 Proof: Amortized Local Competitiveness

 1. Φ initially 0,

 2. Φ finally positive, and

 3. For all t, A(t) + dΦ/dt ≤ 2*Opt(t)

105

Amortized Local Competitiveness

Time

A + ΔΦ

2*Opt

 Theorem: Natural algorithm is 2-competitive for the

objective of fractional weighted waiting time plus energy

 Theorem: There is a 16-competitive algorithm for the
objective of (integer) weighted waiting time plus energy

when P(s)=s3

 Proof: Hint, think of one job. How can you get waiting time

≤ fractional waiting time while increasing flow by at most
a factor of 8?

106

Amortized Local Competitiveness

 Theorem: Natural algorithm is 2-competitive for the

objective of fractional weighted waiting time plus energy

 Theorem: There is a 16-competitive algorithm for the
objective of (integer) weighted waiting time plus energy

when P(s)=s3

 Proof: Run same job as fractional algorithm at twice the

speed

107

Amortized Local Competitiveness

 Theorem: A is 2-competitive for the objective of fractional

weighted waiting time plus energy

 Theorem[BCP09]: Natural algorithm is a 2-competitive
algorithm for the objective of (integer) unweighted

waiting time plus energy for any power function

 Proof: Non-standard potential function

108

Amortized Local Competitiveness

Which is the Best Theoretical Algorithmic

Model for Allowable Speeds?

A. 1.6, 1.7, 1.8, 1.9, 2.2, 2.3, 2.4, …, 3.06

 Too specific

B. Arbitrary discrete speeds s1, …, sk

 Optimal online algorithm: Do what algorithm would
do for continuous speeds, and then round to nearest

discrete speed

C. Reals in a range [0, smax] for an arbitrary constant smax

 Optimal online algorithm: Run at the minimum of

what the continuous speed algorithm would run at

and smax

D. Any nonnegative reals

 In hindsight, best theoretical/algorithmic model

Road Map

 Managing speed scalable processors

 Introduction to power heterogeneity and

speedy scaling

 Philosophical discussion about model

 Unfortunately long introduction formal model

 Offline algorithm design and analysis using KKT

conditions

 Online algorithm design and analysis using

potential functions

 Online algorithm design and analysis using dual
fitting of Lagrangian dual

Online Algorithm Design and Analysis

Technique

 Design

 Express the problem as a mathematical
program

 View the online problem as constraints of this
primal program arriving online

 Consider the online greedy algorithm that
raises the primal variables to satisfy the newly
arriving constraint so as to minimize the
increase in the primal objective

 Analysis (Dual fitting)

112

Recall Convex Programming Formulation

 Min Σj Σt cj,t xjt+ βΣt (Σj xj,t)
α

 Subject to

 Σt xjt ≥ 1 [each job is finished]

 Variable xjt = number of instructions of job j

done at time t

 cj,t = cost for finishing work at time t

 Note that we abstract out the specific

scheduling objective

 Job arrival equivalent to new constraint

Greedy Algorithm
 Min Σt (Σj xj,t)

α + Σt Σj cj,t xj,t

 Subject to Σt xj,t ≥ 1

 Online Greedy Algorithm: When a new job j
arrives raise the primal variables so that the
increase in the kludged primal objectiveδΣt (Σj
xj,t)

α + Σt Σj cj,t xj,t is minimal
 Kludge: δ < 1 is a discount factor for energy

costs

 Let yjt be final setting of variables for online

Greedy Algorithm

A

Speed

2

1

0 Time2 4 86 10

Input

Online Scheduling

A

Speed

2

1

0 Time2 4 86 10

Input

A

Online Scheduling

A

B

Speed

2

1

0 Time2 4 86 10

Input

A

Online Scheduling

A

B

Speed

2

1

0 Time2 4 86 10

Input

A
B

Online Algorithm Design and Analysis

Technique

 Design

 Express the problem as a mathematical
program

 View the online problem as constraints of this
primal program arriving online

 Consider the online greedy algorithm that
raises the primal variables to satisfy the newly
arriving constraint so as to minimize the
increase in the primal objective

 Analysis (Dual fitting)

Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions

to (primal)

mathematical

programming

formulation of

minimization

problem

Feasible solutions to

dual maximization

problem

Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions

to (primal)

mathematical

programming

formulation of

minimization

problem

Feasible solutions to

dual maximization

problem

How can you prove a particular primal

feasible solution is optimal using the

dual?

Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions

to (primal)

mathematical

programming

formulation of

minimization

problem

How can you prove a particular primal

feasible solution is optimal using the

dual?
Show existence of dual feasible

solution with the same objective value

Feasible solutions to

dual maximization

problem

Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions

to (primal)

mathematical

programming

formulation of

minimization

problem

Feasible solutions to

dual maximization

problem

How can you prove a particular primal
feasible solution is at most twice

optimal using the dual?

Dual Fitting Ideal

High

Objective

value

Low

Feasible solutions

to (primal)

mathematical

programming

formulation of

minimization

problem

Feasible solutions to

dual maximization

problem

How can you prove a particular primal
feasible solution is at most twice

optimal using the dual?

Dual feasible solution with objective

value within a factor of 2

Ratio of ≤ 2

For Our Speed Scaling Problem

High

Objective

value

Low

Convex program

Lagrangrian

Dual

Ratio of ≤ 2

Lagrangian Relaxation

 Primal: Minx f(x) subject to h(x) ≤ 0

 Lagrangian dual: g(λ) = minx [f(x) +λh(x)]

 If λ≥ 0 then g(λ) is lower bound to primal

Lagrangian Dual g(λ)

Primal

Minx Σt (Σj xj,t)
α + Σt Σj cj,t xj,t

Subject to Σt xj,t ≥ 1

Lagrangian dual:

g(λ) = Minx (Σt (Σj xj,t)
α + Σt Σj cj,t xj,t +

Σjλj (1 – Σt xj,t))

Dual Fitting Strategy
 Theorem: Online algorithm A is αα competitive

 Proof Strategy:

 Opt ≥ g(λ)

 ≥ something involving only dual variablesλ

 Requires determining optimal solution z of g(λ) in

terms of λ

 ≥ something involving online solution y but not λ

 Requires dual variables λbe defined in terms of y

 ≥ A/αα

Dual Fitting Strategy
 Theorem: Online algorithm A is αα competitive

 Proof Strategy:

 Opt ≥ g(λ)

 ≥ something involving only dual variablesλ

 Requires determining optimal solution z of g(λ) in terms of
λ

 ≥ something involving online solution y but not λ

 Requires dual variables λbe defined in terms of y

 ≥ A/αα

 Harder for Lagrangian dual of convex program than
standard dual of linear program because you have 3
types of variables floating around:

 Setting of primal variables by online algorithm y

 Dual variablesλ

 Setting of primal variables in the dual z

To Do List

 Online solution y defined (done)

 Define dual variables λ in terms of y

 Determine optimal solution z to g(λ) in

terms of λ

 Calculate g(λ) in terms of y’s

Dual Variable Setting

 λj = the rate at which “kludged primal

objective” δΣt (Σj xj,t)
α + Σt Σj cj,t xj,t is

increasing for the last bit of work for job j

To Do List

 Online solution y defined

 Define dual variables λ in terms of y

 Determine optimal solution z to g(λ) in

terms of λ

 Key insight: g(λ) can be solved by simple

greedy algorithm

 Calculate g(λ) in terms of y’s

Interpretation of Lagrangian Dual g(λ)

g(λ) = Minx (Σt (Σj xj,t)
α + Σt Σj cj,t xj,t + Σjλj (1

– Σt xj,t))

No constraint on how much work is
scheduled for each job

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each
unit of job j that is scheduled

Interpretation of Lagrangian Dual g(λ)

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each
unit of job j that is scheduled

 Why doesn’t optimal dual schedule
way more stuff than online
algorithm?

 Why doesn’t optimal dual schedule
way less stuff than online algorithm?

Consider 1 Job and 1 Time

where cjt=0

 Online algorithm schedules L units of
work from job j at time t, i.e. yjt = L

 Thus λ ≈ rate of increase of energy
cost at the end ≈αLα-1

 Thus the optimal solution zjt ≈ L since
this is where the energy costs start to
exceed the payment rate λ

Interpretation of Lagrangian Dual g(λ)

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each
unit of job j that is scheduled

 Optimal greedy algorithm for this
dual problem? Consider a
particular time t.

Interpretation of Lagrangian Dual g(λ)

Objective:

Primal costs as before

There is a cost λj for each job j

One gains a payment λj of for each
unit of job j that is scheduled

 Greedy algorithm for dual problem:
For each time, schedule work from
the job that is most profitable for
that time until costs start to exceed
payments

To Do List

 Online solution y defined (done)

 Define dual variables λ in terms of y

 Determine optimal solution z to g(λ) in

terms of λ

 Calculate g(λ) in terms of y’s (exercise)

Review

 Power heterogeneity, speed scaling

 Relationship of energy, power, speed

 KKT conditions

 Amortized local competitiveness, and the

standard potential function

 Lagrangian relaxation

 Dual fitting

Covered Papers

 Daniel Cole, Dimitrios Letsios, Michael Nugent, Kirk
Pruhs: Optimal energy trade-off schedules. IGCC
2012: 1-10

 Antonios Antoniadis, Neal Barcelo, Mario E.
Consuegra, Peter Kling, Michael Nugent, Kirk Pruhs,
Michele Scquizzato: Efficient Computation of
Optimal Energy and Fractional Weighted Flow Trade-
off Schedules. STACS 2014: 63-74

 Nikhil Bansal, Kirk Pruhs, Clifford Stein: Speed Scaling
for Weighted Flow Time. SIAM J. Comput. 39(4): 1294-
1308 (2009)

 Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs: Speed
Scaling with an Arbitrary Power Function. ACM
Transactions on Algorithms 9(2): 18 (2013)

 Anupam Gupta, Ravishankar Krishnaswamy, Kirk
Pruhs: Online Primal-Dual for Non-linear Optimization
with Applications to Speed Scaling. Workshop on
Approximation and Online Algorithms, 2012: 173-186

Thanks to all my collaborators!

Thanks for listening!

