
Kirk Pruhs Green Computing

Algorithmics

Talk 2: Energy

Efficient Routing

ADFOCS 2015

My Sales Pitch for Green

Computing Algorithms

 Build a theory of energy as a computational

resource that allows software engineers to reason

abstractly about power, energy and temperature

as effectively as they can currently abstractly

reason about time and space

Current State Of Theory of Energy as a

Computational Resource:

Energy vs. Performance Tradeoffs

Performance

Metric
Energy

Design Space

Sweet

Spot ?

Common Energy

Management Mechanisms

 Shutdown

 Intra-device power heterogenity

 Inter-device power heterogenity

Network Routing Paradigms

 Datagram packet routing

 (Virtual) circuit routing

 Network Routing

Paradigm

 Datagram

packet routing

 hard?

 Circuit routing

Energy Efficient Network Routing Research Program:

This Talk

 Power
Management
Mechanism

 Intra-device power
heterogeneity

 Inter-device power
heterogeneity

 Future work

 Shutdown

Circuit Model

 Network = undirected multigraph

Circuit Model

 Network = undirected multigraph

 Input:

 Requests for connections arrive over time

 Request i consists of:

 Source node si

 Destination node ti

 Load (without great loss of generality assume

unit loads for this talk)

si

ti

Circuit Model
 Network = undirected multigraph

 Input:

 Requests for connections arrive over time

 Request i consists of:

 Source node si

 Destination node ti

 Load (without great loss of generality assume
unit loads for this talk)

 Output: In response to request i, a (si, ti) path
must be specified

si

ti

Standard Energy Model
 Power = static power + dynamic power

 = σ+ speedα

 Speed in [0, ∞)

 = σ+ loadα

 A shutdown device uses no power

 For reasons of mathematical tractability,
assume power management happens on
edges

 Later we’ll say something about about the case
where power management happens on nodes

Energy Efficient Routing Problem [AAZ2010]

 Feasible Solution: A routing of all

requests

 Objective: Minimize aggregate

power over all edges

 = Σedges e powered on (σ+ load(e)α)

Current State Of Theory of Energy as a

Computational Resource:

Energy vs. Performance Tradeoffs

Performance

Metric
Energy

Design Space

Sweet

Spot ?

Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based

routing

Warm-up Problem 1:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal

solution for this network?

s t

σ+ loadα

Warm-up Problem 1:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal

solution for this network?

 Answer: Put 1/3 of the paths on

each edge

s t

σ+ loadα

Warm-up Problem 2:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal

solution for this network, and how

would you compute it?

s t

σ+ loadα

Warm-up Problem 2:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal
solution for this network and how
would you compute it?

 Answer: The aggregate
hypopower (derivative of power
with respect to speed) on each
of the three s-t paths should be
identical. Greedy.

s t

σ+ loadα

Warm-up Problem 3:

 Assume static power σ= 0

 Question: What is a

reasonable candidate online

algorithm for a general

instance?

 Hint: Generalize the solution

for the previous warmup

problem

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 3:

 Assume static power σ= 0

 Greedy Algorithm: route each

request in such a way that the

aggregate increase in power is

minimized

 How do you compute this?

 How would you approach

analyzing this algorithm?

s1

t1

s2

t2

σ+ loadα

Recall Online Algorithm Design and

Analysis Technique

 Design
 Express the problem as a mathematical program

 View the online problem as constraints of this primal
program arriving online

 Consider the online greedy algorithm that raises the
primal variables to satisfy the newly arriving constraint so
as to minimize the increase in the primal objective

 Analysis (Dual fitting)
 Set the dual variable for the new constraint to be rate

that costs are increasing for online at that time

 Show that the dual cost isn’t too much less than the
online cost

Warm-up Problem 4:

 Assume static power σ= ∞

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal

solution for this network?

s t

σ+ loadα

Warm-up Problem 4:

 Assume static power σ= ∞

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal

solution for this network?

 Answer: Use only 1 edge, and

shutdown the rest

s t

σ+ loadα

Warm-up Problem 5:

 Assume static power σ= ∞

 Question: What is the optimal

solution for a general

network?

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 5:

 Assume static power σ= ∞

 Question: What is the optimal

solution for a general

network?

 Answer: Buy a Steiner tree

with a minimum number of

edges

 NP-hard but O(1)-

approximation is possible in

polynomial time

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 6:

 k requests

 Many parallel edges

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal

solution for this network?

s t

σ+ loadα

Warm-up Problem 6:

 k requests

 Many parallel edges

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal
solution for this network?

 Answer: Have q paths on each of
k/q edges, and shutdown the rest
of the edges

 q = σ1/α is load at which dynamic
power = static power

s t

σ+ loadα

Warm-up Problem 7:

 Assume static power σ= 1

=flow per request pair

 Question: How to get an

O(1)-approximate routing in

poly-time?

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 7:

 Assume static power σ= 1

=flow per request pair

 Question: How to get an O(1)-

approximate routing in poly-

time?

 Answer: Greedy unsplittable

routing

 Dual fitting analysis for greedy

splittable routing can be

adapted to unsplittable routing

s1

t1

s2

t2

σ+ loadα

Warm-up Problem 8:

 All sinks are identical.

Multicast routing

 Question: How to get an

O(1)-approximate offline

poly-time algorithm?

 What edges can you afford

for sure to power on?

s1= s2

t1

t2

σ+ loadα

Warm-up Problem 8:

 All sinks are identical.

Multicast routing

 Offline Algorithm:

 power on a Steiner tree

 Now what?

s1= s2=s3

t1

t2

σ+ loadα

t3

Warm-up Problem 8:

 All sinks are identical.

Multicast routing

 Offline Algorithm:

 power on a Steiner tree

 Aggregate demands from

sources into groups of size q

= σ1/α by routing on the

Steiner tree

 Use greedy to route from

aggregated sources to

common sink

s1= s2=s3

t1

t2

σ+ loadα

t3

Real Problem:

 Question: What is the optimal

solution for a general

network?

s1

t1

s2

t2

σ+ loadα

Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based

routing

Offline Algorithm

 What edges can we afford to power on

for sure?

Offline Algorithm

 Power-on a Steiner forest to guarantee
minimal connectivity

 In multicast routing, we finished by
aggregating on the tree, and then using
greedy routing. Why won’t that work here?

 Still the Steiner tree may not have enough
capacity. How might we decide what
additional capacity to add?

Offline Algorithm

 Power-on a Steiner forest to guarantee

minimal connectivity

 Hallucination:

 Sparsification: With probability Θ(log k)/q each
request pair hallucinates its demand is q

 Greedy algorithm is used to unsplittably route

this “hallucinated flow”

 The “hallucinated” edges used to route

hallucinated flow are powered on

 Greedy algorithm is used to route flow on the

“powered on” edges

The Powered-on Edges in the

Hallucination Algorithm

• Steiner Forrest

• Insure connectivity

• Intuitively, high capacity

highways

• Hallucinated edges

• Greedy paths between

randomly selected

pairs

• Intuitively, lower capacity

si

ti

sj

tj

Offline Analysis

 Theorem: The algorithm is O(logαk)-

approximate

 Proof: Both the static power and the

dynamic power are O(logαk)*Opt

Offline Analysis: Static Power

 Lemma: The static power for the Steiner

forest edges is O(1)*Opt

 Proof?

 Lemma: The static power for the

hallucinated edges is O(logα k) * Opt

 Proof?

Offline Analysis: Static Power

 Lemma: The static power for the Steiner
forest edges is O(1)*Opt

 Proof: Property of Steiner tree
approximation algorithm

 Lemma: The static power for the
hallucinated edges is O(logα k) * Opt

 Proof:

 The greedy algorithm that is used to route
hallucinated flow is O(1)-competitive

 Sparsification doesn’t increase the expected
cost for Opt on any edge by more than
O(logα k) factor on

Offline Analysis: Dynamic Power: via Congestion

 Capacification: Each Steiner edge is given capacity

q log k and each hallucinated edge is given

capacity q

 Lemma: This is enough capacity to route all the flow

 Corollary: The dynamic power used by the algorithm

is O(logαk) *Opt

 Proof?

si

ti

sj

tj

Offline Analysis: Dynamic Power: via Congestion

 Defn: Sparsity of a cut Q = capacity of edges in Q /

demand across Q

 Main Lemma: The sparsity of every cut is Ω(log k)

 Corollary: There is a O(1)-congestion routing

 Proof: flow-cut gap for multi-commodity flow. The one

big hammer

Offline Analysis: Dynamic Power: via Congestion

 Lemma: The sparsity of every cut is Ω(log k)

 Proof:

 Tree edges have enough capacity if there is low

demand across a cut.

 Sublemma: Hallucinated edges have enough

capacity in expectation if there is high demand

across a cut. Nontrivial union bound.

Offline Analysis: Dynamic Power: via Congestion

 Sublemma: Hallucinated

edges have enough

capacity in expectation if

there is high demand across

a cut.

 How many cuts with j Steiner

tree edges across the cut?

 WLOG, Steiner tree has at

most 4k nodes

j tree edges

across cut

Offline Analysis: Dynamic Power: via Congestion

 Sublemma: Hallucinated edges have

enough capacity in expectation if there is

high demand across a cut.

 At most C(4k, j) 2k ≈ kj such cuts

 Assume r >> jq request pairs across the cut
j tree edges

across cut

 Then the expected number of hallucinated pairs across

cut = r log k /q

 And the probability this is << expectation

 < exp(C r log k /q) (Chernoff bound)

 < exp(C j log k) (since r is large)

 << kj (Since constant C is large)

Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based

routing

 Offline Algorithm

 Power-on a Steiner forest to guarantee
minimal connectivity

 Hallucination:

 Sparsification: With probability Θ(log k)/q
each request pair hallucinates its demand is q

 Greedy algorithm is used to unsplittably route
this “hallucinated flow”

 The “hallucinated” edges used to route
hallucinated flow are powered on

 Greedy algorithm is used to route flow on
the “powered on” edges

 Online algorithm?

Online Algorithm

 For each new request (sj, tj)

 Turn on a minimal number of routers so that sj

and tj are connected (Greedy Steiner Forrest)

 Hallucination:

 Sparsification: With probability Θ(log k)/q

request j hallucinates its demand is q

 Greedy algorithm is used to unsplittably route

this “hallucinated flow”

 The “hallucinated” edges used to route

hallucinated flow are powered on

 Greedy algorithm is used to route flow on the
“powered on” edges

What Has to Change for

Analysis of Online Algorithm?

 Offline Analysis

 Static power of Steiner tree is O(1) Opt

 Static power of hallucinated edges is
O(polylog) Opt

 Dynamic power is O(polylog) Opt since
there is a low congestion routing

 Hint: One doesn’t change, one changes
in a minor way, one changes in a major
way

What Has to Change for

Analysis of Online Algorithm?

 Offline Analysis

 Static power of Steiner tree is O(polylog)
Opt

 Well known analysis for online Steiner tree

 Static power of hallucinated edges is
O(polylog) Opt

 Dynamic power is O(polylog) Opt since
there is a low congestion priority routing

 Priority routing = each path only routes along
edges powered on by the online algorithm by
the time that request arrived

Online Analysis: Dynamic Power

 Lemma: The greedy algorithm is O(1)-
approximate for dynamic power for
priority routings

 Proof: Same dual fitting analysis as
nonpriority routing

 Essentially all the technical difficulty: Need
to prove that Opt can’t greatly profit from
powering on edges before online does

 To mimic the analysis in the offline case, we
need to show that there is a low congestion
priority routing

Strategy to Show Low Congestion Priority Routing

Big

small

Optimal Primal Maximum

Priority Flow LP Value

Optimal Dual Sparsest

Priority Cut LP Value

Optimal Primal Maximum

Priority Flow ILP Value

Optimal Dual Sparsest

Priority Cut “ILP” Value

Ω(1)

integrality gap is Õ(log2 k)

=

O(1) integrality gap

Strategy to Show Low Congestion Priority Routing

Big

small

Optimal Primal Maximum

Priority Flow LP Value

Optimal Dual Sparsest

Priority Cut LP Value

Optimal Primal Maximum

Priority Flow ILP Value

Optimal Dual Sparsest

Priority Cut “ILP” Value

Ω(1)

integrality gap is Õ(log2 k)

O(1) integrality gap

=

Conclusion: There is a priority flow of 1/log3 k

of the demand the respects the capacity

constraints.

Maximum Priority Multicommodity Flow LP

 f(p) = flow routed on path p

 Priority component: P
i

= priority (si, ti) paths

 Objective: Fractionally route as large of a fraction of

each unit demand as possible

 wlog capacities are 1 by duplicating edges

Taking the Dual

Dual Variables

ηi

de

Primal variables

γ

f(p)

Dual LP: Sparsest Priority Cut

 “ILP” = sparsest priority cut problem

 de = 1/(number of priority cut requests) if e is

in Q, and 0 otherwise

 ηi = 1/(number of priority cut requests) if

request i is cut, and 0 otherwise

 Defn: (si, ti) are priority

cut by edges Q if

removing Q makes them

disconnected at time i

 Defn: Priority sparsity of

cut Q = |Q|/ (number of

requests priority

separated by Q

Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based

routing

Vertex Version
 Assume now the energy used

by a vertex with load L is:

 0 if L=0

 σ +Lα if L > 0

 Consider single sink version

 What was the algorithm for a

single sink when vertices were

free?

s1= s2

t1

t2

σ+ loadα

Vertex Version
 Assume now the energy used by

a vertex with load L is:
 0 if L=0

 σ +Lα if L > 0

 Consider single sink version

 Algorithm:
 Power-on a minimum Steiner tree

 Aggregate sources into groups
of size q=σ1/α in tree

 Route greedily from aggregated
locations

 What doesn’t work in vertex
version?

s1= s2

t1

t2

σ+ loadα

Vertex Version
 Assume now the energy used by

a vertex with load L is:
 0 if L=0

 σ +Lα if L > 0

 Consider single sink version

 Algorithm:
 Power-on a minimum Steiner tree

 Aggregate sources into groups
of size q=σ1/α in tree

 Route greedily from aggregated
locations

 Low cost aggregation isn’t
possible if Steiner tree was

s1= s2

t1

t2

σ+ loadα

Steiner Tree

First Step to Getting an

Algorithm

 Theorem: There is a Steiner tree where this

approach will work.

 Proof: Consider how optimal routes flow

After Many Big Hammers …

 Theorem [STOC 2014]: There is a poly-time

poly-log-approximate algorithm for energy

efficient routing if the power management

happens at the nodes

Many Open Questions:

Roughly Ranked

1. For offline edge version get poly-log
approximation where poly doesn’t depend
on α

2. Get an analysis that reasons about energy
directly (not via congestion)

3. An analysis for the offline node version that is
not ridiculously complicated

4. An online algorithm and analysis for the
node version

5. Tighten-up priority sparsity lower bound
and/or priority sparsest cut integrality gap
bounds to get better bounds for online edge
version

Covered Papers
 [WAOA2012] Anupam Gupta, Ravishankar Krishnaswamy, Kirk

Pruhs: Online Primal-Dual for Non-linear Optimization with
Applications to Speed Scaling. Workshop on Approximation
and Online Algorithms, 2012: 173-186

 [MedAlg2012] Nikhil Bansal, Anupam Gupta, Ravishankar
Krishnaswamy, Viswanath Nagarajan, Kirk Pruhs, Cliff Stein:
Multicast Routing for Energy Minimization Using Speed Scaling.
Mediterranean Conference on Algorithms 2012: 37-51

 [SODA2014] Antonios Antoniadis, Sungjin Im, Ravishankar
Krishnaswamy, Benjamin Moseley, Viswanath Nagarajan, Kirk
Pruhs, Cliff Stein, Hallucination Helps: Energy Efficient Virtual
Circuit Routing, ACM-SIAM Symposium on Discrete Algorithms
2014.

 [STOC2014] Ravishankar Krishnaswamy, Viswanath Nagarajan,
Kirk Pruhs, Cliff Stein, Cluster before you hallucinate:
approximating node-capacitated network design and energy
efficient routing. STOC 2014: 734-743

Thanks to all my collaborators!

Thanks for listening!

