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My Sales Pitch for Green 

Computing Algorithms

 Build a theory of energy as a computational 

resource that allows software engineers to reason 

abstractly about power, energy and temperature 

as effectively as they can currently abstractly 

reason about time and space



Current State Of Theory of Energy as a 

Computational Resource: 

Energy vs. Performance Tradeoffs

Performance

Metric
Energy

Design Space

Sweet 

Spot ?



Common Energy 

Management Mechanisms

 Shutdown

 Intra-device power heterogenity

 Inter-device power heterogenity



Network Routing Paradigms

 Datagram packet routing

 (Virtual) circuit routing



 Network Routing 

Paradigm

 Datagram 

packet routing

 hard?

 Circuit routing

Energy Efficient Network Routing Research Program:

This Talk

 Power 
Management 
Mechanism

 Intra-device power 
heterogeneity

 Inter-device power 
heterogeneity

 Future work

 Shutdown



Circuit Model

 Network = undirected multigraph



Circuit Model

 Network = undirected multigraph

 Input: 

 Requests for connections arrive over time

 Request i consists of:

 Source node si

 Destination node  ti

 Load (without great loss of generality assume 

unit loads for this talk)

si

ti



Circuit Model
 Network = undirected multigraph

 Input: 

 Requests for connections arrive over time

 Request i consists of:

 Source node si

 Destination node  ti

 Load (without great loss of generality assume 
unit loads for this talk)

 Output: In response to request i, a (si, ti) path 
must be specified

si

ti



Standard Energy Model
 Power = static power + dynamic power

 = σ+ speedα

 Speed in [0, ∞ )

 = σ+ loadα

 A shutdown device uses no power

 For reasons of mathematical tractability, 
assume power management happens on 
edges

 Later we’ll say something about about the case 
where power management happens on nodes



Energy Efficient Routing Problem [AAZ2010]

 Feasible Solution: A routing of all 

requests

 Objective: Minimize aggregate 

power over all edges

 = Σedges e powered on (σ+ load(e)α)



Current State Of Theory of Energy as a 

Computational Resource: 

Energy vs. Performance Tradeoffs

Performance

Metric
Energy

Design Space

Sweet 

Spot ?



Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based 

routing



Warm-up Problem 1:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 

solution for this network?

s t

σ+ loadα



Warm-up Problem 1:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 

solution for this network?

 Answer: Put 1/3 of the paths on 

each edge

s t

σ+ loadα



Warm-up Problem 2:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 

solution for this network, and how 

would you compute it?

s t

σ+ loadα



Warm-up Problem 2:

 Assume static power σ= 0

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 
solution for this network and how 
would you compute it?

 Answer: The aggregate 
hypopower (derivative of power 
with respect to speed) on each 
of the three s-t paths should be 
identical. Greedy.

s t

σ+ loadα



Warm-up Problem 3:

 Assume static power σ= 0

 Question: What is a 

reasonable candidate online 

algorithm for a general 

instance?

 Hint: Generalize the solution 

for the previous warmup

problem

s1

t1

s2

t2

σ+ loadα



Warm-up Problem 3:

 Assume static power σ= 0

 Greedy Algorithm: route each 

request in such a way that the 

aggregate increase in power is 

minimized

 How do you compute this?

 How would you approach 

analyzing this algorithm?

s1

t1

s2

t2

σ+ loadα



Recall Online Algorithm Design and 

Analysis Technique

 Design
 Express the problem as a mathematical program

 View the online problem as constraints of this primal 
program arriving online

 Consider the online greedy algorithm that raises the 
primal variables to satisfy the newly arriving constraint so 
as to minimize the increase in the primal objective

 Analysis (Dual fitting)
 Set the dual variable for the new constraint to be rate 

that costs are increasing for online at that time

 Show that the dual cost isn’t too much less than the 
online cost



Warm-up Problem 4:

 Assume static power σ= ∞

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 

solution for this network?

s t

σ+ loadα



Warm-up Problem 4:

 Assume static power σ= ∞

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 

solution for this network?

 Answer: Use only 1 edge, and 

shutdown the rest

s t

σ+ loadα



Warm-up Problem 5:

 Assume static power σ= ∞

 Question: What is the optimal 

solution for a general 

network?

s1

t1

s2

t2

σ+ loadα



Warm-up Problem 5:

 Assume static power σ= ∞

 Question: What is the optimal 

solution for a general 

network?

 Answer: Buy a Steiner tree 

with a minimum number of 

edges

 NP-hard but O(1)-

approximation is possible in 

polynomial time

s1

t1

s2

t2

σ+ loadα



Warm-up Problem 6:

 k requests

 Many parallel edges

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 

solution for this network?

s t

σ+ loadα



Warm-up Problem 6:

 k requests

 Many parallel edges

 Assume all si = s

 Assume all ti = t

 Question: What is the optimal 
solution for this network?

 Answer: Have q paths on each of 
k/q edges, and shutdown the rest 
of the edges

 q = σ1/α is load at which dynamic 
power = static power

s t

σ+ loadα



Warm-up Problem 7:

 Assume static power σ= 1 

=flow per request pair

 Question: How to get an 

O(1)-approximate routing in 

poly-time?

s1

t1

s2

t2

σ+ loadα



Warm-up Problem 7:

 Assume static power σ= 1 

=flow per request pair

 Question: How to get an O(1)-

approximate routing in poly-

time?

 Answer: Greedy unsplittable

routing

 Dual fitting analysis for greedy 

splittable routing can be 

adapted to unsplittable routing

s1

t1

s2

t2

σ+ loadα



Warm-up Problem 8:

 All sinks are identical. 

Multicast routing

 Question: How to get an 

O(1)-approximate offline 

poly-time algorithm?

 What edges can you afford 

for sure to power on?

s1= s2

t1

t2

σ+ loadα



Warm-up Problem 8:

 All sinks are identical. 

Multicast routing

 Offline Algorithm: 

 power on a Steiner tree

 Now what?

s1= s2=s3

t1

t2

σ+ loadα

t3



Warm-up Problem 8:

 All sinks are identical. 

Multicast routing

 Offline Algorithm: 

 power on a Steiner tree

 Aggregate demands from 

sources into groups of size q 

= σ1/α by routing on the 

Steiner tree

 Use greedy to route from 

aggregated sources to 

common sink

s1= s2=s3

t1

t2

σ+ loadα

t3



Real Problem:

 Question: What is the optimal 

solution for a general 

network?

s1

t1

s2

t2

σ+ loadα



Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based 

routing



Offline Algorithm

 What edges can we afford to power on 

for sure?



Offline Algorithm

 Power-on a Steiner forest to guarantee 
minimal connectivity

 In multicast routing, we finished by 
aggregating on the tree, and then using 
greedy routing. Why won’t that work here?

 Still the Steiner tree may not have enough 
capacity. How might we decide what 
additional capacity to add?



Offline Algorithm

 Power-on a Steiner forest to guarantee 

minimal connectivity

 Hallucination: 

 Sparsification: With probability Θ(log k)/q each 
request pair hallucinates its demand is q

 Greedy algorithm is used to unsplittably route 

this “hallucinated flow”

 The “hallucinated” edges used to route 

hallucinated flow are powered on

 Greedy algorithm is used to route flow on the 

“powered on” edges



The Powered-on Edges in the 

Hallucination Algorithm

• Steiner Forrest 

• Insure connectivity

• Intuitively, high capacity 

highways

• Hallucinated edges

• Greedy paths between 

randomly selected

pairs

• Intuitively, lower capacity

si

ti

sj

tj



Offline Analysis

 Theorem: The algorithm is O(logαk)-

approximate

 Proof: Both the static power and the 

dynamic power are O(logαk)*Opt



Offline Analysis: Static Power

 Lemma: The static power for the Steiner 

forest edges is O(1)*Opt

 Proof?

 Lemma: The static power for the 

hallucinated edges is O(logα k) * Opt

 Proof?



Offline Analysis: Static Power

 Lemma: The static power for the Steiner 
forest edges is O(1)*Opt

 Proof: Property of Steiner tree 
approximation algorithm

 Lemma: The static power for the 
hallucinated edges is O(logα k) * Opt

 Proof: 

 The greedy algorithm that is used to route 
hallucinated flow is O(1)-competitive

 Sparsification doesn’t increase the expected 
cost for Opt on any edge by more than 
O(logα k) factor on 



Offline Analysis: Dynamic Power: via Congestion 

 Capacification: Each Steiner edge is given capacity 

q log k and each hallucinated edge is given 

capacity q

 Lemma: This is enough capacity to route all the flow

 Corollary: The dynamic power used by the algorithm 

is O(logαk) *Opt

 Proof?

si

ti

sj

tj



Offline Analysis: Dynamic Power: via Congestion

 Defn: Sparsity of a cut Q = capacity of edges in Q / 

demand across Q

 Main Lemma: The sparsity of every cut is Ω(log k)

 Corollary: There is a O(1)-congestion routing

 Proof: flow-cut gap for multi-commodity flow. The one 

big hammer



Offline Analysis: Dynamic Power: via Congestion

 Lemma: The sparsity of every cut is Ω(log k)

 Proof: 

 Tree edges have enough capacity if there is low 

demand across a cut. 

 Sublemma: Hallucinated edges have enough 

capacity  in expectation if there is high demand 

across a cut. Nontrivial union bound.



Offline Analysis: Dynamic Power: via Congestion

 Sublemma: Hallucinated 

edges have enough 

capacity  in expectation if 

there is high demand across 

a cut.

 How many cuts with j Steiner 

tree edges across the cut?

 WLOG, Steiner tree has at 

most 4k nodes

j tree edges

across cut



Offline Analysis: Dynamic Power: via Congestion

 Sublemma: Hallucinated edges have 

enough capacity  in expectation if there is 

high demand across a cut.

 At most C(4k, j) 2k ≈ kj such cuts

 Assume r >> jq request pairs across the cut
j tree edges

across cut

 Then the expected number of hallucinated pairs across 

cut = r log k /q

 And the probability this is << expectation 

 < exp( C r log k /q)  (Chernoff bound)

 < exp( C j log k)  (since r is large)

 << kj (Since constant C is large)



Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based 

routing



 Offline Algorithm

 Power-on a Steiner forest to guarantee 
minimal connectivity

 Hallucination: 

 Sparsification: With probability Θ(log k)/q 
each request pair hallucinates its demand is q

 Greedy algorithm is used to unsplittably route 
this “hallucinated flow”

 The “hallucinated” edges used to route 
hallucinated flow are powered on

 Greedy algorithm is used to route flow on 
the “powered on” edges

 Online algorithm?



Online Algorithm

 For each new request (sj, tj)

 Turn on a minimal number of routers so that sj

and tj are connected (Greedy Steiner Forrest)

 Hallucination: 

 Sparsification: With probability Θ(log k)/q 

request j hallucinates its demand is q

 Greedy algorithm is used to unsplittably route 

this “hallucinated flow”

 The “hallucinated” edges used to route 

hallucinated flow are powered on

 Greedy algorithm is used to route flow on the 
“powered on” edges



What Has to Change for 

Analysis of Online Algorithm?

 Offline Analysis

 Static power of Steiner tree is O(1) Opt

 Static power of hallucinated edges is 
O(polylog) Opt

 Dynamic power is O(polylog) Opt since 
there is a low congestion routing

 Hint: One doesn’t change, one changes 
in a minor way, one changes in a major 
way



What Has to Change for 

Analysis of Online Algorithm?

 Offline Analysis

 Static power of Steiner tree is O(polylog) 
Opt

 Well known analysis for online Steiner tree

 Static power of hallucinated edges is 
O(polylog) Opt

 Dynamic power is O(polylog) Opt since 
there is a low congestion priority routing

 Priority routing =  each path only routes along 
edges powered on by the online algorithm by 
the time that request arrived



Online Analysis: Dynamic Power

 Lemma: The greedy algorithm is O(1)-
approximate for dynamic power for 
priority routings

 Proof: Same dual fitting analysis as 
nonpriority routing

 Essentially all the technical difficulty: Need 
to prove that Opt can’t greatly profit from 
powering on edges before online does

 To mimic the analysis in the offline case, we 
need to show that there is a low congestion 
priority routing



Strategy to Show Low Congestion Priority Routing

Big

small

Optimal Primal Maximum 

Priority Flow LP Value

Optimal Dual Sparsest 

Priority Cut LP Value

Optimal Primal Maximum 

Priority Flow ILP Value

Optimal Dual Sparsest 

Priority Cut “ILP” Value

Ω(1)

integrality gap is Õ(log2 k)

=

O(1) integrality gap



Strategy to Show Low Congestion Priority Routing

Big

small

Optimal Primal Maximum 

Priority Flow LP Value

Optimal Dual Sparsest 

Priority Cut LP Value

Optimal Primal Maximum 

Priority Flow ILP Value

Optimal Dual Sparsest 

Priority Cut “ILP” Value

Ω(1)

integrality gap is Õ(log2 k)

O(1) integrality gap

=

Conclusion: There is a priority flow of 1/log3 k 

of the demand the respects the capacity 

constraints.



Maximum Priority Multicommodity Flow LP

 f(p) = flow routed on path p

 Priority component: P
i

= priority (si, ti) paths 

 Objective: Fractionally route as large of a fraction of 

each unit demand as possible

 wlog capacities are 1 by duplicating edges



Taking the Dual

Dual Variables

ηi

de

Primal variables

γ

f(p)



Dual LP:  Sparsest Priority Cut

 “ILP” = sparsest priority cut problem

 de = 1/(number of priority cut requests) if e is 

in Q,  and 0 otherwise

 ηi = 1/(number of priority cut requests) if 

request i is cut, and 0 otherwise

 Defn: (si, ti) are priority 

cut by edges Q if 

removing Q makes them 

disconnected at time i

 Defn: Priority sparsity of

cut Q = |Q|/ (number of 

requests priority 

separated by Q



Roadmap

 Many warmup problems to build intuition

 Offline algorithm almost full analysis

 Online algorithm and hint at analysis

 Merest of hints on difficulty of node based 

routing



Vertex Version
 Assume now the energy used 

by a vertex with load L is:

 0 if L=0

 σ +Lα if L > 0

 Consider single sink version

 What was the algorithm for a 

single sink when vertices were 

free?

s1= s2

t1

t2

σ+ loadα



Vertex Version
 Assume now the energy used by 

a vertex with load L is:
 0 if L=0

 σ +Lα if L > 0

 Consider single sink version

 Algorithm:
 Power-on a minimum Steiner tree

 Aggregate sources  into groups 
of size q=σ1/α in tree

 Route greedily from aggregated 
locations

 What doesn’t work in vertex 
version?

s1= s2

t1

t2

σ+ loadα



Vertex Version
 Assume now the energy used by 

a vertex with load L is:
 0 if L=0

 σ +Lα if L > 0

 Consider single sink version

 Algorithm:
 Power-on a minimum Steiner tree

 Aggregate sources  into groups 
of size q=σ1/α in tree

 Route greedily from aggregated 
locations

 Low cost aggregation isn’t 
possible if Steiner tree was

s1= s2

t1

t2

σ+ loadα

Steiner Tree



First Step to Getting an 

Algorithm

 Theorem: There is a Steiner tree where this 

approach will work.

 Proof: Consider how optimal routes flow



After Many Big Hammers …

 Theorem [STOC 2014]: There is a poly-time 

poly-log-approximate algorithm for energy 

efficient routing if the power management 

happens at the nodes



Many Open Questions: 

Roughly Ranked

1. For offline edge version get poly-log 
approximation where poly doesn’t depend 
on α

2. Get an analysis that reasons about energy 
directly (not via congestion)

3. An analysis for the offline node version that is 
not ridiculously complicated

4. An online algorithm and analysis for the 
node version

5. Tighten-up priority sparsity lower bound 
and/or priority sparsest cut integrality gap 
bounds to get better bounds for online edge 
version
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Thanks to all my collaborators!

Thanks for listening!


