Lecture I: Symmetric Traveling Salesman Problem

Ola Svensson

ADFOCS 2015

Vho? Variable </table

WHO AM I AND WHAT WILL I TALK ABOUT?

About Me

- Ola Svensson
 - <u>ola.svensson@epfl.ch</u>
 - <u>http://theory.epfl.ch/osven</u>
- Assistant Prof at EPFL
 - Research on algorithms

 Happy to get feedback and answer questions

LECTURE I: Traveling Salesman Problem

LECTURE 2: Traveling Salesman Problem

LECTURE 3: Traveling Salesman Problem

Outline

LECTURE I: Traveling Salesman Problem

Symmetric TSP, Christofides' Algorithm, Removable Edges, Open Problems

LECTURE 2: Traveling Salesman Problem

Asymmetric TSP, Cycle Cover Algorithm, Thin trees

LECTURE 3: Traveling Salesman Problem

Continuation of asymmetric TSP, Local-Connectivity Algorithm, Open Problems

What is the cheapest way to visit these cities?

What is the cheapest way to visit these cities?

33 city contest that Proctor and Gamble ran in 1962

Rich History

- Variants studied in mathematics by Hamilton and Kirkman already in the 1800's
- Benchmark problem in computer science from the "beginning"
- Today, probably the most studied NP-hard optimization problem
- Intractable: (current) exact algorithms require exponential time

Major open problem what efficient computation can accomplish

HOW TO EVALUATE AN ALGORITHM

Solving intractable problems

- Heuristics
 - good for "typical" instances
 - bad instances do not happen too often

Solving intractable problems

- Approximation Algorithms
 - Perhaps we can efficiently find a reasonably good solution in polytime?

- $\alpha = 1$ is an exact polynomial time algorithm
- $\alpha = 1.01$ then algorithm finds a solution with at most 1% higher cost

MOTIVATION OF TODAY'S LECTURE

Approximation algorithms for symmetric TSP

What is the best possible algorithm?

Held & Karp: Heuristic for calculating lower bound on a tour Coincides with the value of a linear program known as Held-Karp or Subtour Elimination Relaxation

PTAS for Euclidian TSP

Arora & Mitchell independently:

PTAS for Euclidian TSP

Arora et al. and Grigni et al.

PTAS for planar TSP

Papadimitriou & Vempala:

NP-hard to approximate metric TSP within 220/219

Simplified and slightly improved by Lampis' I 2

Major open problem to understand the approximability of TSP

- **NP-hard** to approximate metric TSP within 220/219
- Christofides' **I.5-approximation algorithm** still best
- Held-Karp relaxation conjectured to give **4/3-approximation**

TODAY'S Lecture

• The first approximation algorithm for TSP

Christofides' Algorithm

• Recent techniques that improve upon Christofides' algorithm for important special cases

OUR FIRST APPROXIMATION ALGORITHM

The Traveling Salesman Problem

INPUT: *n* cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once

The Traveling Salesman Problem

INPUT: *n* cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once

The Traveling Salesman Problem

INPUT: *n* cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once

How to analyze an approximation algorithm?

• Recall that we measure its performance by

• But calculating the cost of the optimal solution is NP-hard...

SOLUTION: Compare with a lower bound on OPT!

The weight of a minimum spanning tree is at most OPT: $w(MST) \le OPT$

The weight of a minimum spanning tree is at most OPT: $w(MST) \le OPT$

PROOF:

The weight of a minimum spanning tree is at most OPT: $w(MST) \le OPT$

PROOF:

- Take an optimal tour of cost OPT
- Drop an edge to obtain a tree T
- Distances/weights are non-negative so $w(T) \le OPT$
- Hence, $w(MST) \le OPT$

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Find minimum spanning tree **T**

Duplicate \mathbf{T}

Find minimum spanning tree **T**

Duplicate **T**

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

 $\mathsf{Duplicate}\; \mathbf{T}$

Return Eulerian tour plus shortcutting

Eulerian tour: a walk that traverses each edge exactly once

Short cut to visit each vertex exactly once. By triangle inequality this doesn't increase cost

Cost of tour is at most

 $2 \cdot w(T) \le 2 \cdot OPT$

Hence, Double Tree Algorithm is a 2-approximation algorithm for TSP

CHRISTOFIDES ALGORITHM

Euler' 1736

A graph has an Eulerian walk iff each vertex has even degree

- Hence, to solve TSP it is sufficient to find a cheap connected subgraph so that each vertex has even degree
- Double spanning tree algorithm does this by simply duplicating a spanning tree
- Christofides algorithm will also ensure connectivity by taking a MST but then be more clever in the correction of the parity of vertices

Find minimum spanning tree **T**

Find ...

Find minimum spanning tree **T**

Find ...

Find minimum spanning tree T

Find ...

Return **T + M**

(with shortcutting)

Hint: A graph has always an even number of vertices (exercise)

Find minimum spanning tree T

Find min matching **M** of odd degree vertices

Find minimum spanning tree T

Find min matching \mathbf{M} of odd degree vertices

Find minimum spanning tree T

Find min matching \mathbf{M} of odd degree vertices

Find minimum spanning tree T

Find min matching \mathbf{M} of odd degree vertices

Find minimum spanning tree **T**

Find min matching \mathbf{M} of odd degree vertices

Return **T** + **M** (with shortcutting)

Cost of tour is at most

 $w(T) + w(M) \le w(OPT) + w(M)$

Find minimum spanning tree T

Find min matching ${\boldsymbol{\mathsf{M}}}$ of odd degree vertices

Return **T** + **M** (with shortcutting)

 $w(T) + w(M) \le w(OPT) + w(M)$

How can we bound w(M)?

PROOF:

• Take an optimal tour of cost OPT

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

Find min matching \mathbf{M} of odd degree vertices

Return **T** + **M** (with shortcutting)

- Take an optimal tour of cost OPT
- Consider vertices that are odd in T

Find minimum spanning tree **T**

Find min matching \mathbf{M} of odd degree vertices

Return **T** + **M** (with shortcutting)

We have $w(M) \leq \frac{OPT}{2}$

- Take an optimal tour of cost OPT
- Consider vertices that are odd in T
- Shortcut to obtain tour on odd-degree vertices of no larger cost

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

Find min matching \mathbf{M} of odd degree vertices

Return **T** + **M** (with shortcutting)

We have $w(M) \leq \frac{OPT}{2}$

- Take an optimal tour of cost OPT
- Consider vertices that are odd in T
- Shortcut to obtain tour on odd-degree vertices of no larger cost
- These edges partition into two matchings M_1 and M_2 such that $w(M_1) + w(M_2) \le OPT$

Find minimum spanning tree ${\boldsymbol{\mathsf{T}}}$

Find min matching ${\boldsymbol{\mathsf{M}}}$ of odd degree vertices

Return **T** + **M** (with shortcutting)

We have $w(M) \leq \frac{OPT}{2}$

- Take an optimal tour of cost OPT
- Consider vertices that are odd in T
- Shortcut to obtain tour on odd-degree vertices of no larger cost
- These edges partition into two matchings M_1 and M_2 such that $w(M_1) + w(M_2) \le OPT$
- Hence the minimum has weight $\leq \frac{OPT}{2}$

Summary sofar

• Saw our first approximation algorithm

• We were a little bit more clever to obtain Christofides algorithm

• This is the best known in spite of a lot of research!

Major open problem to understand the approximability of TSP

- **NP-hard** to approximate metric TSP within 220/219
- Christofides' **I.5-approximation algorithm** still best
- Held-Karp relaxation conjectured to give **4/3-approximation**

Graph-TSP

Given an unweighted undirected graph **G=(V,E)**

Find shortest tour where
Find spanning Eulerian multigraph with minimum #edges
d(u,v) = shortest path between u and v

2010

Oveis Gharan, Saberi & Singh: Progress on TSP vs mobiles Gamarnik, Lewenstein & Sviridenko'05: $(1.5 - \epsilon)$ -approximation algorithm for graph-TSP

Boyd, sitters, van der star & stougie

4/3 – approximation for cubic graphs

7/5 – approximation for subcubic graphs

Mucha: I.444-approximation algorithm for graph-TSP 0. ١.5 1.5-ε 1,**461** 1.444 4/3 0 $^{\circ}{}_{O}$ 90 16 *'*0

Sebö & Vygen:

I.4-approximation algorithm for graph-TSP

Sebö & Vygen:

I.4-approximation algorithm for graph-TSP

Approximating TSP by removable pairings

- Different more "graph theoretic approach"
- Promising applications (apart from I.4 approximation for graph-TSP)
- Among other things settled a conjecture by Boyd et al.

Subcubic 2-edge connected graphs have a tour of length 4n/3-2/3

We will illustrate the techniques by proving above statement for cubic graphs

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

A 2-VC (cubic) graph **G=(V,E)** has a tour of length at most **4/3|E|**

Sample perfect matching \mathbf{M} so that

each edge is take with prob. 1/3

Return **E + M**

Sample perfect matching \mathbf{M} so that

each edge is take with prob. 1/3

Return **E + M**

Berge-Fulkerson Conjecture:

Any cubic 2-edge connected graph has 6 matchings so that each edge appears in exactly two of them?

How to sample M in general?

Sample perfect matching **M** so that

each edge is take with prob. 1/3

Return **E + M**

How to sample M in general?

Sample perfect matching **M** so that

each edge is take with prob. 1/3

Return **E + M**

$$\begin{split} &\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V \\ &\sum_{e \in \delta(S)} x_e \geq 1 \qquad \forall S \subseteq V, |S| \text{ odd} \\ &x \geq 0 \end{split}$$

Edmond's perfect matching polytope

How to sample M in general?

Sample perfect matching **M** so that

each edge is take with prob. 1/3

Return **E + M**

$$\begin{split} \sum_{e \in \delta(v)} x_e &= 1 & \forall v \in V \\ \sum_{e \in \delta(S)} x_e &\geq 1 & \forall S \subseteq V, |S| \text{ odd} \\ & x \geq 0 \end{split}$$

Edmond's perfect matching polytope

Every extreme point \Leftrightarrow perfect matching

Sample perfect matching **M** so that

$\sum_{e\in\delta(v)}x_e=1$	$\forall v \in V$	
$\sum_{e \in \delta(S)} x_e \ge 1$	$\forall S \subseteq V, S \text{ odd}$	
$x \ge 0$		Eve
		Eve

Every extreme point \Leftrightarrow perfect matching

For 2-connected cubic graphs $x_e^* = 1/3$ for is a feasible solution (exercise)

How to sample M in general?

Sample perfect matching **M** so that

each edge is take with prob. 1/3

Return **E + M**

Edmond's perfect matching polytope $\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V$ $\sum_{e \in \delta(S)} x_e \ge 1 \qquad \forall S \subseteq V, |S| \text{ odd}$ $x \ge 0$ Every ex

 χ^*

- Every extreme point \Leftrightarrow perfect matching
- For 2-connected cubic graphs $x_e^* = 1/3$ for is a feasible solution (exercise)
- By Edmond, $x^* = \sum \lambda_i M^{(i)}$ can be written as a convex combination of perfect matchings

How to sample M in general?

Sample perfect matching **M** so that

each edge is take with prob. 1/3

Return **E + M**

Edmond's perfect matching polytope

 $\sum_{e \in \delta(v)} x_e = 1 \qquad \forall v \in V$

 $x \ge 0$

 $\sum_{e \in \delta(S)} x_e \ge 1$ $\forall S \subseteq V, |S| \text{ odd}$

Every extreme point \Leftrightarrow perfect matching

- For 2-connected cubic graphs $x_e^* = 1/3$ for is a feasible solution (exercise)
- By Edmond, $x^* = \sum \lambda_i M^{(i)}$ can be written as a convex combination of perfect matchings
- Sampling $M^{(i)}$ with probability λ_i gives a distribution of perfect matchings where each edge is taken with probability 1/3

Sample perfect matching \mathbf{M} so that

each edge is take with prob. 1/3

Return **E + M**

=> A 2-VC (cubic) graph G=(V,E) has a tour of length at most 4/3|E|

Instead of just adding edges from matching remove some of them

Need to keep connectivity!

Instead of just adding edges from matching remove some of them

Removing Edges

Take a DFS spanning tree **T**

Same algorithm as before but

return $E + (M \cap T) - (M \setminus T)$

Removing Edges

Take a DFS spanning tree **T**

Same algorithm as before but

return $E + (M \cap T) - (M \setminus T)$

=> A 2-VC (cubic) graph G=(V,E) has a tour of length at most 2/3(n-1) + 2/3|E|

Increasing number of removable edges

- Use structure of perfect matching to increase the set of removable edges
- Define a "removable pairing"
 - Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing at most one edge in each pair is connected

R contains all back edges and paired tree edges

2b - 1 removable edges where b is number of back edges

Removable Pairings

Take a DFS spanning tree **T**

Same algorithm as before but

return $E + (M \setminus R) - (M \cap R)$

=> A 2-VC subcubic graph G=(V,E) has a tour of length at most 4/3n-2/3

Further results and future directions

Instead of minimum spanning tree sample one from the Held-Karp relaxation

Inspired by work on asymmetric traveling salesman problem (Asadpour et al'10)

Sample Spanning Tree

Solve Held-Karp relaxation

Sample spanning tree **T** from solution

Run Christofides starting from **T**

Sample Spanning Tree

Solve Held-Karp relaxation

Sample spanning tree **T** from solution

Run Christofides starting from T

Solve Held-Karp relaxation

Sample spanning tree **T** from solution

Run Christofides starting from T

=> Sample spanning tree whose expected cost equals value of Held-Karp

Solve Held-Karp relaxation

Sample spanning tree **T** from solution

Run Christofides starting from T

Solve Held-Karp relaxation

Sample spanning tree ${\boldsymbol{\mathsf{T}}}$ from solution

Run Christofides starting from T

Cost of spanning tree

|V| - 1

Solve Held-Karp relaxation

Sample spanning tree ${\boldsymbol{\mathsf{T}}}$ from solution

Run Christofides starting from T

Cost of spanning tree

|V| - 1

Solve Held-Karp relaxation

Sample spanning tree **T** from solution

Run Christofides starting from T

- Involved proof by Oveis Gharan et al
 - maximum entropy distribution of spanning trees
 - Structure of near-min cuts etc.

Solve Held-Karp relaxation

Sample spanning tree **T** from solution

Run Christofides starting from **T**

Cost of spanning tree |V|-1

Cost of matching is at most

Summary sofar

- Two very different approaches for improved algorithms for graph-TSP
- Many different concepts from graph theory
 - Structure of perfect matchings, Ear decompositions ... hopefully more

Future results and future directions

GENERAL METRICS

No progress on TSP yet but ...

A proof of the Boyd-Carr conjecture (Schalekamp, Williamson, van Zuylen'12)

• Tight analysis of cost of 2-matching vs Held-Karp relaxation

Improved algorithms for st-path TSP (An, Kleinberg, Shmoys'12, Sebö'13)

• Tight analysis of cost of 2-matching vs Held-Karp relaxation

2-Matching Extreme Points

- A graph consisting of disjoint odd cycles connected a matching of paths
- Arbitrary distances on edges
- Held-Karp value = half the weight of cycles + total weight of paths

Can you always find a tour of cost at most 4/3 of Held-Karp?

2-Matching Extreme Points

- A graph consisting of disjoint odd cycles connected a matching of paths
- Arbitrary distances on edges
- Held-Karp value = half the weight of cycles + total weight of paths

Can you always find a tour of cost at most 4/3 of Held-Karp?

Node-Weighted Symmetric TSP

• distance of $\{u, v\} \in E$ is w(u) + w(v)

Can you do better than Christofides (1.5)?

Summary

- Classic algorithms for TSP
 - Our first approximation algorithm + Christofides
- Two new approaches
- Nice technique: Interpreting a fractional solution in an integral polytope as a distribution
- Great open questions!

#