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Asymmetric TSP, Cycle Cover Algorithm,  Thin trees

Continuation of asymmetric TSP, Local-Connectivity Algorithm, Open Problems
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The Irresistible Traveling Salesman Problem

33 city contest that Proctor and Gamble ran in 1962



Rich History

• Variants studied in mathematics by Hamilton and Kirkman already in the 

1800’s

• Benchmark problem in computer science from the “beginning”

• Today, probably the most studied NP-hard optimization problem

• Intractable: (current) exact algorithms require exponential time

Major open problem what efficient computation can accomplish 



HOW TO EVALUATE AN 

ALGORITHM



Solving intractable problems

• Heuristics

• good for “typical” instances

• bad instances do not happen too often

1
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50's 70's 80's 90's 00's

Dantzig, Fulkerson, and Johnson solve a 49-

city instance to optimality

Applegate, Bixby, Chvatal, Cook, 

and Helsgaun solve a

24978-city instance 

!
Sweden has only 9 

million inhabitants

≈ 360 persons/city



Solving intractable problems

• Approximation Algorithms

• Perhaps we can efficiently find a reasonably good solution in polytime?

Approximation Ratio:

worst case over all instances

• α=1 is an exact polynomial time algorithm

• α=1.01 then algorithm finds a solution with at most 1% higher cost



MOTIVATION OF TODAY’S 

LECTURE



Approximation algorithms for symmetric TSP

What is the best possible algorithm?



1970’s

Christofides: 1.5-approximation algorithm for metric 

distances

Held & Karp: Heuristic for calculating lower bound on a 

tour

Coincides with the value of a linear 

program known as Held-Karp or Subtour

Elimination Relaxation



1980’s



1990’s

Arora & Mitchell independently:

PTAS for Euclidian TSP



1990’s

Arora & Mitchell independently:

PTAS for Euclidian TSP

Arora et al.  and Grigni et al.

PTAS for planar TSP



2000’s

Papadimitriou & Vempala:

NP-hard to approximate metric TSP within 220/219 

Simplified and slightly improved by Lampis’12



Today

Major open problem to understand 

the approximability of TSP

• NP-hard to approximate metric TSP within 220/219

• Christofides’ 1.5-approximation algorithm still best

• Held-Karp relaxation conjectured to give 4/3-approximation



TODAY’S Lecture

• The first approximation algorithm for TSP

• Christofides’ Algorithm

• Recent techniques that improve upon Christofides’ algorithm for 

important special cases



OUR FIRST APPROXIMATION 

ALGORITHM



The Traveling Salesman Problem

INPUT: 𝑛 cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once
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The Traveling Salesman Problem

INPUT: 𝑛 cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once



How to analyze an approximation algorithm?

• Recall that we measure its performance by

Approximation Ratio:

worst case over all instances

• But calculating the cost of the optimal solution is NP-hard…

SOLUTION: Compare with a lower bound on OPT!
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What is a Lower bound on OPT?

PROOF:

The weight of a minimum spanning tree is at most OPT:

𝒘 𝑴𝑺𝑻 ≤ 𝑶𝑷𝑻

• Take an optimal tour of cost OPT

• Drop an edge to obtain a tree T

• Distances/weights are non-negative 

so 𝑤 𝑇 ≤ 𝑂𝑃𝑇

• Hence, 𝑤 𝑀𝑆𝑇 ≤ 𝑂𝑃𝑇
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Double Tree Algorithm
Find minimum spanning tree T

Duplicate T

Return Eulerian tour plus shortcutting

A

B

D

H

E

I

C

F G

A,B,D,H,D,I,D,B,E,B,F,B,A,C,G,C,A

Eulerian tour: a walk that traverses each edge exactly once 

Short cut to visit each vertex exactly once. By triangle inequality this doesn’t increase cost

Cost of tour is at most

2 ⋅ 𝑤 𝑇 ≤ 2 ⋅ 𝑂𝑃𝑇

Hence, Double Tree Algorithm is a 

2-approximation algorithm for TSP



CHRISTOFIDES ALGORITHM



The recipe

• Hence, to solve TSP it is sufficient to find a cheap connected subgraph so 

that each vertex has even degree

• Double spanning tree algorithm does this by simply duplicating a spanning 

tree

• Christofides algorithm will also ensure connectivity by taking a MST but 

then be more clever in the correction of the parity of vertices

A graph has an Eulerian walk iff each vertex has even degree

Euler’1736
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Christofides Algorithm
Find minimum spanning tree T

Find …

Return T + M     (with shortcutting)
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F G

Hint:  A graph has always an even 

number of vertices (exercise)
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Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

We have 𝒘 𝑴 ≤
𝑶𝑷𝑻

𝟐

PROOF:

• Take an optimal tour of cost OPT

• Consider vertices that are odd in T

• Shortcut to obtain tour on odd-degree 

vertices of no larger cost

• These edges partition into two 

matchings 𝑀1and 𝑀2 such that 

𝑤 𝑀1 + 𝑤 𝑀2 ≤ 𝑂𝑃𝑇

• Hence the minimum has weight ≤
𝑂𝑃𝑇

2



Summary sofar

• Saw our first approximation algorithm

• We were a little bit more clever to obtain Christofides algorithm

• This is the best known in spite of a lot of research!



Today

Major open problem to understand 

the approximability of TSP

• NP-hard to approximate metric TSP within 220/219

• Christofides’ 1.5-approximation algorithm still best

• Held-Karp relaxation conjectured to give 4/3-approximation



4

Cost = #edges

Graph-TSP

Given an unweighted undirected graph G=(V,E)

Find shortest tour where

d(u,v) = shortest path between u and v 
Find spanning Eulerian multigraph with minimum #edges
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1.5

2000

Major open problem to understand 

the approximability of TSP

• NP-hard to approximate metric TSP within 
𝟐𝟐𝟎

𝟐𝟏𝟗
≈ 𝟏. 𝟎𝟎𝟓

• Christofides’ 1.5-approximation algorithm still best

• Held-Karp relaxation conjectured to give 4/3-

approximation

2005 2010

Gamarnik, Lewenstein & Sviridenko’05:

1.487-approximation for cubic 3-edge connected graphs

4/3 – approximation for cubic graphs

7/5 – approximation for subcubic graphs

Boyd, Sitters, van der Star & Stougie’10:

Oveis Gharan, Saberi & Singh:

𝟏. 𝟓 − 𝝐 -approximation algorithm for graph-TSP

1.5-ε

1,461

Progress on TSP vs mobiles
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1.5 1.5-ε

1,461

2000 2005 2010

Sebö & Vygen:

1.4-approximation algorithm for graph-TSP

1.444

1.4

?



Oveis Gharan, Saberi, Singh

Sampling spanning trees

Mömke & S.

Removable pairings

Sebö & Vygen

Ear decompositions

Further results and future directions

Christofides Algorithm’76
Frederickson & Ja’Ja’82

Monma, Munson & Pulleyblank’90



Approximating TSP by removable pairings

• Different more “graph theoretic approach”

• Promising applications (apart from 1.4 approximation for graph-TSP)

• Among other things settled a conjecture by Boyd et al.

Subcubic 2-edge connected graphs have a tour of length 4n/3-2/3

We will illustrate the techniques by proving above statement for cubic graphs



Relating 2-VC and Tours

A 2-VC (cubic) graph G=(V,E) has a tour of length at most 4/3|E| 

Frederickson & Ja’Ja’82 and Monma, Munson & Pulleyblank’90
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each edge is take with prob. 1/3
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Relating 2-VC and Tours
Sample perfect matching M so that

each edge is take with prob. 1/3

Return E + M

Input

Berge-Fulkerson Conjecture: 

Any cubic 2-edge connected graph has 6 matchings so that each 

edge appears in exactly two of them?
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Relating 2-VC and Tours
Sample perfect matching M so that

each edge is take with prob. 1/3

Return E + M

Input

How to sample M in general? 

Edmond’s perfect matching polytope

 𝑒∈𝛿(𝑣) 𝑥𝑒 = 1 ∀𝑣 ∈ 𝑉

 𝑒∈𝛿(𝑆) 𝑥𝑒 ≥ 1 ∀𝑆 ⊆ 𝑉, 𝑆 odd 

𝑥 ≥ 0
Every extreme point  perfect matching

• For 2-connected cubic graphs 𝑥𝑒
∗ = 1/3 for is a feasible solution (exercise)

• By Edmond, 𝑥∗ =  𝜆𝑖𝑀
(𝑖) can be written as a convex combination of perfect matchings

• Sampling 𝑀(𝑖) with probability 𝜆𝑖 gives a distribution of perfect matchings where each 

edge is taken with probability 1/3

𝑥∗



Relating 2-VC and Tours
Sample perfect matching M so that

each edge is take with prob. 1/3

Return E + M

Input

2n = 4/3|E| edges

Output: E+M

2n = 4/3|E| edges

Output: E+M

2n = 4/3|E| edges

Output: E+M

=> A 2-VC (cubic) graph G=(V,E) has a tour of length at most 4/3|E| 



Instead of just adding edges from matching 

remove some of them

Output: E+M



Instead of just adding edges from matching 

remove some of them

Output: E+M

Need to keep connectivity!



Removing Edges
Take a DFS spanning tree T

Same algorithm as before but 

return

Input



Removing Edges
Take a DFS spanning tree T

Same algorithm as before but 

return

Input

5/3n = 10/9|E| edges

Output

5/3n = 10/9|E| edges

Output

4/3n = 8/10|E| edges

Output

=> A 2-VC (cubic) graph G=(V,E) has a tour of length at most 2/3(n-1) + 2/3|E| 



Increasing number of removable edges

• Use structure of perfect matching to increase the set of removable edges

• Define a “removable pairing”

• Pair of edges: only one edge in each pair can occur in a matching

• Graph obtained by removing at most one edge in each pair is connected

𝑅 contains all back edges 

and paired tree edges

2𝑏 − 1 removable edges 

where 𝑏 is number of 

back edges



Removable Pairings
Take a DFS spanning tree T

Same algorithm as before but 

return

Input

4/3n = 8/10|E| edges

Output

4/3n = 8/10|E| edges

Output

n = 2/3|E| edges

Output

=> A 2-VC subcubic graph G=(V,E) has a tour of length at most 4/3n-2/3



Oveis Gharan, Saberi, Singh

Sampling spanning trees

Mömke & S.

Removable pairings

Sebö & Vygen

Ear decompositions

Further results and future directions

Christofides Algorithm’76
Frederickson & Ja’Ja’82

Monma, Munson & Pulleyblank’90



Instead of minimum spanning tree

sample one from the Held-Karp relaxation
Inspired by work on asymmetric traveling salesman problem (Asadpour et al’10)



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Held-Karp Relaxation

A tour (after shortcutting) has |V| edges

No subtours



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Held-Karp Relaxation Spanning-Tree Polytope

=> Sample spanning tree whose expected cost equals value of Held-Karp 



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 

Cost of matching is at most  



Sample Spanning Tree

• Involved proof by Oveis Gharan et al

• maximum entropy distribution of spanning trees

• Structure of near-min cuts etc.

Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 

Cost of matching is at most  



Summary sofar

• Two very different approaches for improved algorithms for graph-TSP

• Many different concepts from graph theory

• Structure of perfect matchings, Ear decompositions … hopefully more

1,33
1,35
1,37
1,39
1,41
1,43
1,45
1,47
1,49



Future results and future directions



GENERAL METRICS



No progress on TSP yet but …

A proof of the Boyd-Carr conjecture (Schalekamp, Williamson, van Zuylen’12)

• Tight analysis of cost of 2-matching vs Held-Karp relaxation

Improved algorithms for st-path TSP (An, Kleinberg, Shmoys’12, Sebö’13)

• Tight analysis of cost of 2-matching vs Held-Karp relaxation



2-Matching Extreme Points

• A graph consisting of disjoint odd cycles connected a matching of paths

• Arbitrary distances on edges

• Held-Karp value = half the weight of cycles + total weight of paths

Can you always find a tour of cost at most 4/3 of Held-Karp?

2 2

3

2 3

1

1

1

2

2

2



2-Matching Extreme Points

• A graph consisting of disjoint odd cycles connected a matching of paths

• Arbitrary distances on edges

• Held-Karp value = half the weight of cycles + total weight of paths

Can you always find a tour of cost at most 4/3 of Held-Karp?



Node-Weighted Symmetric TSP

• distance of 𝑢, 𝑣 ∈ 𝐸 is w 𝑢 + 𝑤 𝑣

1

3

13

23

5

5

4

4

4

Can you do better than Christofides (1.5)?



Summary

• Classic algorithms for TSP

• Our first approximation algorithm + Christofides

• Two new approaches

• Nice technique: Interpreting a fractional solution in an integral polytope as 

a distribution

• Great open questions!




