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Asymmetric TSP, Cycle Cover Algorithm,  Thin trees

Continuation of asymmetric TSP, Local-Connectivity Algorithm, Open Problems



The Irresistible Traveling Salesman Problem

What is the cheapest way 

to visit these cities?



The Irresistible Traveling Salesman Problem

What is the cheapest way 

to visit these cities?



The Irresistible Traveling Salesman Problem

What is the cheapest way 

to visit these cities?

Traveling Salesman Problem



The Irresistible Traveling Salesman Problem



The Irresistible Traveling Salesman Problem

33 city contest that Proctor and Gamble ran in 1962



Rich History

• Variants studied in mathematics by Hamilton and Kirkman already in the 

1800’s

• Benchmark problem in computer science from the “beginning”

• Today, probably the most studied NP-hard optimization problem

• Intractable: (current) exact algorithms require exponential time

Major open problem what efficient computation can accomplish 



HOW TO EVALUATE AN 

ALGORITHM



Solving intractable problems

• Heuristics

• good for “typical” instances

• bad instances do not happen too often

1
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16384

50's 70's 80's 90's 00's

Dantzig, Fulkerson, and Johnson solve a 49-

city instance to optimality

Applegate, Bixby, Chvatal, Cook, 

and Helsgaun solve a

24978-city instance 

!
Sweden has only 9 

million inhabitants

≈ 360 persons/city



Solving intractable problems

• Approximation Algorithms

• Perhaps we can efficiently find a reasonably good solution in polytime?

Approximation Ratio:

worst case over all instances

• α=1 is an exact polynomial time algorithm

• α=1.01 then algorithm finds a solution with at most 1% higher cost



MOTIVATION OF TODAY’S 

LECTURE



Approximation algorithms for symmetric TSP

What is the best possible algorithm?



1970’s

Christofides: 1.5-approximation algorithm for metric 

distances

Held & Karp: Heuristic for calculating lower bound on a 

tour

Coincides with the value of a linear 

program known as Held-Karp or Subtour

Elimination Relaxation



1980’s



1990’s

Arora & Mitchell independently:

PTAS for Euclidian TSP



1990’s

Arora & Mitchell independently:

PTAS for Euclidian TSP

Arora et al.  and Grigni et al.

PTAS for planar TSP



2000’s

Papadimitriou & Vempala:

NP-hard to approximate metric TSP within 220/219 

Simplified and slightly improved by Lampis’12



Today

Major open problem to understand 

the approximability of TSP

• NP-hard to approximate metric TSP within 220/219

• Christofides’ 1.5-approximation algorithm still best

• Held-Karp relaxation conjectured to give 4/3-approximation



TODAY’S Lecture

• The first approximation algorithm for TSP

• Christofides’ Algorithm

• Recent techniques that improve upon Christofides’ algorithm for 

important special cases



OUR FIRST APPROXIMATION 

ALGORITHM



The Traveling Salesman Problem

INPUT: 𝑛 cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once
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The Traveling Salesman Problem

INPUT: 𝑛 cities with pairwise distances that satisfy the triangle inequality

OUTPUT: a tour of minimum total distance that visits each city once



How to analyze an approximation algorithm?

• Recall that we measure its performance by

Approximation Ratio:

worst case over all instances

• But calculating the cost of the optimal solution is NP-hard…

SOLUTION: Compare with a lower bound on OPT!
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What is a Lower bound on OPT?

PROOF:

The weight of a minimum spanning tree is at most OPT:

𝒘 𝑴𝑺𝑻 ≤ 𝑶𝑷𝑻

• Take an optimal tour of cost OPT

• Drop an edge to obtain a tree T

• Distances/weights are non-negative 

so 𝑤 𝑇 ≤ 𝑂𝑃𝑇

• Hence, 𝑤 𝑀𝑆𝑇 ≤ 𝑂𝑃𝑇
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Double Tree Algorithm
Find minimum spanning tree T

Duplicate T

Return Eulerian tour plus shortcutting

A

B

D

H

E

I

C

F G

A,B,D,H,D,I,D,B,E,B,F,B,A,C,G,C,A

Eulerian tour: a walk that traverses each edge exactly once 

Short cut to visit each vertex exactly once. By triangle inequality this doesn’t increase cost

Cost of tour is at most

2 ⋅ 𝑤 𝑇 ≤ 2 ⋅ 𝑂𝑃𝑇

Hence, Double Tree Algorithm is a 

2-approximation algorithm for TSP



CHRISTOFIDES ALGORITHM



The recipe

• Hence, to solve TSP it is sufficient to find a cheap connected subgraph so 

that each vertex has even degree

• Double spanning tree algorithm does this by simply duplicating a spanning 

tree

• Christofides algorithm will also ensure connectivity by taking a MST but 

then be more clever in the correction of the parity of vertices

A graph has an Eulerian walk iff each vertex has even degree

Euler’1736



Christofides Algorithm
Find minimum spanning tree T

Find …

Return T + M (with shortcutting)

A

B

D

G

E

H

C

F G



Christofides Algorithm
Find minimum spanning tree T

Find …

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G



Christofides Algorithm
Find minimum spanning tree T

Find …

Return T + M     (with shortcutting)
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F G

Hint:  A graph has always an even 

number of vertices (exercise)



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G

Cost of tour is at most

𝑤 𝑇 + 𝑤 𝑀 ≤ 𝑤 𝑂𝑃𝑇 + 𝑤(𝑀)

How can we bound 𝒘 𝑴 ?



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

A

B

D

G

E

H

C

F G

Cost of tour is at most

𝑤 𝑇 + 𝑤 𝑀 ≤ 𝑤 𝑂𝑃𝑇 + 𝑤(𝑀)

How can we bound 𝒘 𝑴 ?



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

We have 𝒘 𝑴 ≤
𝑶𝑷𝑻

𝟐

PROOF:

• Take an optimal tour of cost OPT



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

We have 𝒘 𝑴 ≤
𝑶𝑷𝑻

𝟐

PROOF:

• Take an optimal tour of cost OPT

• Consider vertices that are odd in T



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

We have 𝒘 𝑴 ≤
𝑶𝑷𝑻

𝟐

PROOF:

• Take an optimal tour of cost OPT

• Consider vertices that are odd in T

• Shortcut to obtain tour on odd-degree 

vertices of no larger cost



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

We have 𝒘 𝑴 ≤
𝑶𝑷𝑻

𝟐

PROOF:

• Take an optimal tour of cost OPT

• Consider vertices that are odd in T

• Shortcut to obtain tour on odd-degree 

vertices of no larger cost

• These edges partition into two 

matchings 𝑀1and 𝑀2 such that 

𝑤 𝑀1 + 𝑤 𝑀2 ≤ 𝑂𝑃𝑇



Christofides Algorithm
Find minimum spanning tree T

Find min matching M of odd degree vertices 

Return T + M     (with shortcutting)

We have 𝒘 𝑴 ≤
𝑶𝑷𝑻

𝟐

PROOF:

• Take an optimal tour of cost OPT

• Consider vertices that are odd in T

• Shortcut to obtain tour on odd-degree 

vertices of no larger cost

• These edges partition into two 

matchings 𝑀1and 𝑀2 such that 

𝑤 𝑀1 + 𝑤 𝑀2 ≤ 𝑂𝑃𝑇

• Hence the minimum has weight ≤
𝑂𝑃𝑇

2



Summary sofar

• Saw our first approximation algorithm

• We were a little bit more clever to obtain Christofides algorithm

• This is the best known in spite of a lot of research!



Today

Major open problem to understand 

the approximability of TSP

• NP-hard to approximate metric TSP within 220/219

• Christofides’ 1.5-approximation algorithm still best

• Held-Karp relaxation conjectured to give 4/3-approximation



4

Cost = #edges

Graph-TSP

Given an unweighted undirected graph G=(V,E)

Find shortest tour where

d(u,v) = shortest path between u and v 
Find spanning Eulerian multigraph with minimum #edges
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1.5

2000

Major open problem to understand 

the approximability of TSP

• NP-hard to approximate metric TSP within 
𝟐𝟐𝟎

𝟐𝟏𝟗
≈ 𝟏. 𝟎𝟎𝟓

• Christofides’ 1.5-approximation algorithm still best

• Held-Karp relaxation conjectured to give 4/3-

approximation

2005 2010

Gamarnik, Lewenstein & Sviridenko’05:

1.487-approximation for cubic 3-edge connected graphs

4/3 – approximation for cubic graphs

7/5 – approximation for subcubic graphs

Boyd, Sitters, van der Star & Stougie’10:

Oveis Gharan, Saberi & Singh:

𝟏. 𝟓 − 𝝐 -approximation algorithm for graph-TSP

1.5-ε

1,461

Progress on TSP vs mobiles
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1.5 1.5-ε

1,461

2000 2005 2010

Sebö & Vygen:

1.4-approximation algorithm for graph-TSP

1.444

1.4

?



Oveis Gharan, Saberi, Singh

Sampling spanning trees

Mömke & S.

Removable pairings

Sebö & Vygen

Ear decompositions

Further results and future directions

Christofides Algorithm’76
Frederickson & Ja’Ja’82

Monma, Munson & Pulleyblank’90



Approximating TSP by removable pairings

• Different more “graph theoretic approach”

• Promising applications (apart from 1.4 approximation for graph-TSP)

• Among other things settled a conjecture by Boyd et al.

Subcubic 2-edge connected graphs have a tour of length 4n/3-2/3

We will illustrate the techniques by proving above statement for cubic graphs



Relating 2-VC and Tours

A 2-VC (cubic) graph G=(V,E) has a tour of length at most 4/3|E| 

Frederickson & Ja’Ja’82 and Monma, Munson & Pulleyblank’90
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Relating 2-VC and Tours
Sample perfect matching M so that

each edge is take with prob. 1/3

Return E + M

Input

Berge-Fulkerson Conjecture: 

Any cubic 2-edge connected graph has 6 matchings so that each 

edge appears in exactly two of them?
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Relating 2-VC and Tours
Sample perfect matching M so that

each edge is take with prob. 1/3

Return E + M

Input

How to sample M in general? 

Edmond’s perfect matching polytope

 𝑒∈𝛿(𝑣) 𝑥𝑒 = 1 ∀𝑣 ∈ 𝑉

 𝑒∈𝛿(𝑆) 𝑥𝑒 ≥ 1 ∀𝑆 ⊆ 𝑉, 𝑆 odd 

𝑥 ≥ 0
Every extreme point  perfect matching

• For 2-connected cubic graphs 𝑥𝑒
∗ = 1/3 for is a feasible solution (exercise)

• By Edmond, 𝑥∗ =  𝜆𝑖𝑀
(𝑖) can be written as a convex combination of perfect matchings

• Sampling 𝑀(𝑖) with probability 𝜆𝑖 gives a distribution of perfect matchings where each 

edge is taken with probability 1/3

𝑥∗



Relating 2-VC and Tours
Sample perfect matching M so that

each edge is take with prob. 1/3

Return E + M

Input

2n = 4/3|E| edges

Output: E+M

2n = 4/3|E| edges

Output: E+M

2n = 4/3|E| edges

Output: E+M

=> A 2-VC (cubic) graph G=(V,E) has a tour of length at most 4/3|E| 



Instead of just adding edges from matching 

remove some of them

Output: E+M



Instead of just adding edges from matching 

remove some of them

Output: E+M

Need to keep connectivity!



Removing Edges
Take a DFS spanning tree T

Same algorithm as before but 

return

Input



Removing Edges
Take a DFS spanning tree T

Same algorithm as before but 

return

Input

5/3n = 10/9|E| edges

Output

5/3n = 10/9|E| edges

Output

4/3n = 8/10|E| edges

Output

=> A 2-VC (cubic) graph G=(V,E) has a tour of length at most 2/3(n-1) + 2/3|E| 



Increasing number of removable edges

• Use structure of perfect matching to increase the set of removable edges

• Define a “removable pairing”

• Pair of edges: only one edge in each pair can occur in a matching

• Graph obtained by removing at most one edge in each pair is connected

𝑅 contains all back edges 

and paired tree edges

2𝑏 − 1 removable edges 

where 𝑏 is number of 

back edges



Removable Pairings
Take a DFS spanning tree T

Same algorithm as before but 

return

Input

4/3n = 8/10|E| edges

Output

4/3n = 8/10|E| edges

Output

n = 2/3|E| edges

Output

=> A 2-VC subcubic graph G=(V,E) has a tour of length at most 4/3n-2/3



Oveis Gharan, Saberi, Singh

Sampling spanning trees

Mömke & S.

Removable pairings

Sebö & Vygen

Ear decompositions

Further results and future directions

Christofides Algorithm’76
Frederickson & Ja’Ja’82

Monma, Munson & Pulleyblank’90



Instead of minimum spanning tree

sample one from the Held-Karp relaxation
Inspired by work on asymmetric traveling salesman problem (Asadpour et al’10)



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Held-Karp Relaxation

A tour (after shortcutting) has |V| edges

No subtours



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Held-Karp Relaxation Spanning-Tree Polytope

=> Sample spanning tree whose expected cost equals value of Held-Karp 



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 



Sample Spanning Tree
Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 

Cost of matching is at most  



Sample Spanning Tree

• Involved proof by Oveis Gharan et al

• maximum entropy distribution of spanning trees

• Structure of near-min cuts etc.

Solve Held-Karp relaxation

Sample spanning tree T from solution

Run Christofides starting from T

Cost of spanning tree 

Cost of matching is at most  



Summary sofar

• Two very different approaches for improved algorithms for graph-TSP

• Many different concepts from graph theory

• Structure of perfect matchings, Ear decompositions … hopefully more

1,33
1,35
1,37
1,39
1,41
1,43
1,45
1,47
1,49



Future results and future directions



GENERAL METRICS



No progress on TSP yet but …

A proof of the Boyd-Carr conjecture (Schalekamp, Williamson, van Zuylen’12)

• Tight analysis of cost of 2-matching vs Held-Karp relaxation

Improved algorithms for st-path TSP (An, Kleinberg, Shmoys’12, Sebö’13)

• Tight analysis of cost of 2-matching vs Held-Karp relaxation



2-Matching Extreme Points

• A graph consisting of disjoint odd cycles connected a matching of paths

• Arbitrary distances on edges

• Held-Karp value = half the weight of cycles + total weight of paths

Can you always find a tour of cost at most 4/3 of Held-Karp?

2 2

3

2 3

1

1

1

2

2

2



2-Matching Extreme Points

• A graph consisting of disjoint odd cycles connected a matching of paths

• Arbitrary distances on edges

• Held-Karp value = half the weight of cycles + total weight of paths

Can you always find a tour of cost at most 4/3 of Held-Karp?



Node-Weighted Symmetric TSP

• distance of 𝑢, 𝑣 ∈ 𝐸 is w 𝑢 + 𝑤 𝑣

1

3

13

23

5

5

4

4

4

Can you do better than Christofides (1.5)?



Summary

• Classic algorithms for TSP

• Our first approximation algorithm + Christofides

• Two new approaches

• Nice technique: Interpreting a fractional solution in an integral polytope as 

a distribution

• Great open questions!




