Lecture 2:Asymmetric TSP

Ola Svensson

ÉCOLE POLYTECHNIQUE
fédérale de lausanne

ADFOCS 2015

Two Basic Versions

Two Basic Versions

SYMMETRIC: distance from u to v equals distance from v to u

Two Basic Versions

SYMMETRIC: distance from u to v equals distance from v to u

ASYMMETRIC: more general and no such assumption is made

Approximation algorithms for ATSP

What is the best possible algorithm?

|980's

Frieze, Galbiati \& Maffiolo:

$\boldsymbol{\operatorname { l o g }}_{2}(\boldsymbol{n})$-approximation for Asymmetric TSP

1990's

2000's

Bläser'03:

$0.99 \log _{2}(\boldsymbol{n})$-approximation for ATSP
Kaplan, Lewenstein, Shafrir \& Sviridenko'05:
$0.84 \log _{2}(\boldsymbol{n})$-approximation for ATSP

Feige \& Singh'07:
$0.67 \log _{2}(\boldsymbol{n})$-approximation for ATSP

2010's

Asadpour, Goemans, Madry, Oveis Gharan, and Saberi:

- New approach relating ATSP to the thin tree graph problem
- $\boldsymbol{O}\left(\frac{\log (n)}{\log \log (n)}\right)$-approximation for ATSP

Today

Major open problem to understand the approximability of ATSP

- NP-hard to approximate ATSP within 75/74
- Best algorithm has super constant approximation guarantee
- Held-Karp relaxation conjectured to give 2-approximation

Progress on ATSP vs mobiles

Asymmetric Traveling Salesman Problem

INPUT: a complete digraph $G=(V, E)$ with pairwise (not necessarily symmetric) distances that satisfy the triangle inequality
OUTPUT: a tour of minimum weight that visits each vertex once

Asymmetric Traveling Salesman Problem

INPUT: a complete digraph $G=(V, E)$ with pairwise (not necessarily symmetric) distances that satisfy the triangle inequality

OUTPUT: a tour of minimum weight that visits each vertex once

WHAT'S THE DEAL:

CAN'TWE JUST GENERALIZE CHRISTOFIDES???

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

Find (undirected) spanning tree

Spanning Tree Approach

Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Blue edges have cost I, red edges have cost $M \gg 1$
So we wish to find tour with minimum number of red edges

In contrast to symmetric TSP:
It may be very expensive to make an arbitrary spanning tree Eulerian

FIRST APPROXIMATION ALGORITHM FOR ATSP

What is a lower bound on OPT?

What is a lower bound on OPT?

The weight of a minimum weight cycle-cover is at most OPT
A cycle cover is a collection of cycles so that each vertex is in exactly one cycle

What is a lower bound on OPT?

The weight of a minimum weight cycle-cover is at most OPT
A cycle cover is a collection of cycles so that each vertex is in exactly one cycle

PROOF:

What is a lower bound on OPT?

The weight of a minimum weight cycle-cover is at most OPT
A cycle cover is a collection of cycles so that each vertex is in exactly one cycle

PROOF:

- Optimal tour is a cycle cover
- Hence, minimum cycle cover has weight at most OPT

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Cost of cycle cover $\leq O P T$

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Cost of cycle cover $\leq O P T$

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover $\leq O P T$

Why?

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover $\leq O P T$

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover $\leq O P T$

Cycle Cover Algorithm

Find min-cost cycle cover
Select a representative in each component
Repeat on representatives until graph is connected

Worst case: all cycles have length 2 so we need to repeat $\log _{2} n$ times (each time cost $O P T_{L P}$)

Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover $\leq \boldsymbol{O P T}$
Cost of cycle cover $\leq \boldsymbol{O P T}$
Total cost $\leq 3 \cdot O P T$

Cycle Cover Technique

THEOREM:

ATSP has a $\log _{2} n$-approximation algorithm

- $0.99 \log _{2} n$-approximation algorithm
- $0.84 \log _{2} n$-approximation algorithm
- $0.67 \log _{2} n$-approximation algorithm
[Bläser'03]
[Kaplan, Lewenstein, Shafrir, Sviridenko’05]
[Feige, Singh'07]

BETTER APPROXIMATION ALGORITHMS ARE BASED ON THE HELD-KARP RELAXATION

Held-Karp Relaxation of ATSP

Variables: $\quad x_{u v}=$ "indicate whether arc (u, v) is used in tour"

Minimize:

$$
\sum_{u v \in E} w(u, v) x_{u v}
$$

Subject to:

$$
\begin{array}{rlrl}
x\left(\delta^{+}(v)\right) & =x\left(\delta^{-}(v)\right)=1 & & \text { for all } v \in V \\
x\left(\delta^{+}(S)\right) \geq 1 & & \text { for all } S \subset V \\
x \geq 0 & &
\end{array}
$$

TOOLS FOR ROUNDING LP

Circulations

INPUT: a digraph $G=(V, E)$ and for each arc $e \in E$
a lower bound $l(e) \geq 0$ and an upper bound $u(e) \geq 0$
OUTPUT: a circulation $f: E \rightarrow R_{+}$satisfying
flow conservation: $f\left(\delta^{+}(v)\right)=f\left(\delta^{-}(v)\right)$ for each $v \in V$
edge bounds: $\quad l(e) \leq f(e) \leq u(e)$ for each $e \in E$

Blue edges have lower bound I and upper bound 2 Red edges have lower bound 0 and upper bound ∞

Circulations

INPUT: a digraph $G=(V, E)$ and for each arc $e \in E$
a lower bound $l(e) \geq 0$ and an upper bound $u(e) \geq 0$
OUTPUT: a circulation $f: E \rightarrow R_{+}$satisfying
flow conservation: $f\left(\delta^{+}(v)\right)=f\left(\delta^{-}(v)\right)$ for each $v \in V$
edge bounds: $\quad l(e) \leq f(e) \leq u(e)$ for each $e \in E$

Blue edges have lower bound I and upper bound 2 Red edges have lower bound 0 and upper bound ∞

Can be calculated in polytime and also a min cost circulation can be found

When does a circulation exist?

NECESSARY CONDITIONS:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l\left(\delta^{-}(S)\right) \leq u\left(\delta^{+}(S)\right)$

HOFFMAN's CIRCULATION THEOREM:

Hoffman'60

The above conditions are also sufficient.
Furthermore, if l and u are integer valued, the circulation f can be chosen to be integral.

Basic idea select a subset of edges and make it Eulerian by finding a circulation

RANDOMIZED LP ROUNDING

Randomized Round

Find an optimal solution x^{*} to LP relaxation

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

```
Find an optimal solution }\mp@subsup{x}{}{*}\mathrm{ to LP relaxation
```

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Randomized Round

Find an optimal solution x^{*} to LP relaxation

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Randomized Round

Find an optimal solution x^{*} to LP relaxation

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Randomized Round

Find an optimal solution x^{*} to LP relaxation

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

What's the problem?

- With high probability the sampled graph H is not even connected
- So we will return an Eulerian graph but it is not connected $:$

Randomized Round

Find an optimal solution x^{*} to LP relaxation

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Well connected?

Eulerian?

Analyzing H : out-degree of a vertex

What is the expected out-degree of v ?

$$
\text { It is } K \cdot x^{*}\left(\delta^{+}(v)\right)=1000 \ln n=: \mu
$$

The number of outgoing edges is the sum of random independent $0 / /$ variables

Hence, by standard Chernoff bound

$$
\operatorname{Pr}\left[\left|\left|\delta_{H}^{+}(v)\right|-\mu\right| \geq \frac{\mu}{3}\right] \leq e^{-\frac{\mu}{30}} \leq \frac{1}{2 n^{10 x^{*}\left(\delta^{+}(v)\right)}}
$$

In words: the number of edges will deviate
from its expectation more than a fraction I/3 with probability at most $O\left(\frac{1}{n^{10}}\right)$

Analyzing H : in-degree of a vertex

Analyzing H : in-degree of a vertex

What is the expected in-degree of v ?

$$
\text { It is } K \cdot x^{*}\left(\delta^{-}(v)\right)=1000 \ln n=: \mu
$$

The number of outgoing edges is the sum of random independent $0 / /$ variables

Hence, by standard Chernoff bound

$$
\operatorname{Pr}\left[\left|\left|\delta_{H}^{-}(v)\right|-\mu\right| \geq \frac{\mu}{3}\right] \leq e^{-\frac{\mu}{30}} \leq \frac{1}{2 n^{10 x^{*}\left(\delta^{-}(v)\right)}}
$$

In words: the number of edges will deviate
from its expectation more than a fraction $1 / 3$ with probability at most $O\left(\frac{1}{n^{10}}\right)$

Analyzing H : bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate more than a fraction $1 / 3$
S is bad in H if

$$
\left|\left|\delta_{H}^{-}(S)\right|-\mu\right| \geq \frac{\mu}{3} \quad \text { or } \quad\left|\left|\delta_{H}^{+}(S)\right|-\mu\right| \geq \frac{\mu}{3}
$$

where $\mu=x^{*}\left(\delta^{-}(S)\right)=x^{*}\left(\delta^{+}(S)\right)$

By previous calculations

$$
\begin{aligned}
\operatorname{Pr}[\text { S is bad }] & \leq \operatorname{Pr}\left[| | \delta_{H}^{-}(v)|-\mu| \geq \frac{\mu}{3}\right]+\operatorname{Pr}\left[| | \delta_{H}^{+}(v)|-\mu| \geq \frac{\mu}{3}\right] \\
& \leq \frac{1}{n^{10 x^{*}\left(\delta^{+}(S)\right)}}
\end{aligned}
$$

Analyzing H : bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate more than a fraction $1 / 3$
S is bad in H if

$$
\left|\left|\delta_{H}^{-}(S)\right|-\mu\right| \geq \frac{\mu}{3} \quad \text { or } \quad\left|\left|\delta_{H}^{+}(S)\right|-\mu\right| \geq \frac{\mu}{3}
$$

where $\mu=x^{*}\left(\delta^{-}(S)\right)=x^{*}\left(\delta^{+}(S)\right)$

By previous calculations
$\operatorname{Pr}[$ S is bad $]$

$$
\leq \frac{1}{n^{10 x^{*}\left(\delta^{+}(S)\right)}}
$$

Probability that H is good?

H is good if no cut is bad

We know that a single cut S is bad w.P $\leq \frac{1}{n^{10 x^{*}\left(\delta^{+}(S)\right)}} \leq \frac{1}{n^{10}}$

But $2^{\boldsymbol{n}}$ many cuts so we can't make union bound...

Remedy: beautiful result by Karger

BOUNDING NUMBER OF SMALL CUTS:

Karger

Consider an undirected graph $G=(V, E)$ with edge-weights w. Let c be the value of a min-cut.

Then the number of cuts of value αc is at most $\leq n^{2 \alpha}$

But our graph is directed, why can we still use the above theorem?

It is Eulerian (w.r.t. to weights x^{*}) so any cut of out-degree/in-degree c corresponds to a cut of value 2 c in the undirected graph

Probability that H is good?

- Cuts of value $[1,2]$ at most $n^{2 \cdot 2}$ many Prob. that such a cut is bad $n^{-10 \cdot 1}$
- Cuts of value [2,3] at most $n^{2 \cdot 3}$ many Prob. that such a cut is bad $n^{-10.2}$
- Cuts of value $[3,4]$ at most $n^{2 \cdot 4}$ many Prob. that such a cut is bad $n^{-10 \cdot 3}$
- Cuts of value [4,5] at most $n^{2 \cdot 5}$ many Prob. that such a cut is bad $n^{-10 \cdot 4}$
- Cuts of value $[\mathrm{n}-\mathrm{I}, \mathrm{n}]$ at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot(n-1)}$

Probability that H is good?

- Cuts of value $[1,2]$ at most $n^{2 \cdot 2}$ many Prob. that such a cut is bad $n^{-10 \cdot 1}$
- Cuts of value $[2,3]$ at most $n^{2 \cdot 3}$ many Prob. that such a cut is bad $n^{-10 \cdot 2}$
- Cuts of value [3,4] at most $n^{2 \cdot 4}$ many Prob. that such a cut is bad $n^{-10 \cdot 3}$
- Cuts of value [4,5] at most $n^{2 \cdot 5}$ many Prob. that such a cut is bad $n^{-10 \cdot 4}$
- Cuts of value $[\mathrm{n}-\mathrm{I}, \mathrm{n}]$ at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot(n-1)}$

By union bound,

$$
\operatorname{Pr}[H \text { is } \text { good }] \geq 1-\sum_{i=1}^{n-1} n^{2 \cdot(i+1)-10 i}
$$

Probability that H is good?

- Cuts of value $[1,2]$ at most $n^{2 \cdot 2}$ many Prob. that such a cut is bad $n^{-10 \cdot 1}$
- Cuts of value $[2,3]$ at most $n^{2 \cdot 3}$ many Prob. that such a cut is bad $n^{-10 \cdot 2}$
- Cuts of value [3,4] at most $n^{2 \cdot 4}$ many Prob. that such a cut is bad $n^{-10 \cdot 3}$
- Cuts of value [4,5] at most $n^{2 \cdot 5}$ many Prob. that such a cut is bad $n^{-10 \cdot 4}$
- Cuts of value $[\mathrm{n}-\mathrm{I}, \mathrm{n}]$ at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot(n-1)}$

By union bound,

$$
\operatorname{Pr}[H \text { is } \text { good }] \geq 1-\sum_{i=1}^{n-1} n^{2 \cdot(i+1)-10 i}=1-\sum_{i=1}^{n-1} \frac{n^{2}}{n^{8 i}}
$$

Probability that H is good?

- Cuts of value $[1,2]$ at most $n^{2 \cdot 2}$ many Prob. that such a cut is bad $n^{-10 \cdot 1}$
- Cuts of value $[2,3]$ at most $n^{2 \cdot 3}$ many Prob. that such a cut is bad $n^{-10 \cdot 2}$
- Cuts of value [3,4] at most $n^{2 \cdot 4}$ many Prob. that such a cut is bad $n^{-10 \cdot 3}$
- Cuts of value [4,5] at most $n^{2 \cdot 5}$ many Prob. that such a cut is bad $n^{-10 \cdot 4}$
- Cuts of value $[\mathrm{n}-\mathrm{I}, \mathrm{n}]$ at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot(n-1)}$

By union bound,

$$
\operatorname{Pr}[H \text { is good }] \geq 1-\sum_{i=1}^{n-1} n^{2 \cdot(i+1)-10 i}=1-\sum_{i=1}^{n-1} \frac{n^{2}}{n^{8 i}} \geq 1-\frac{1}{n}
$$

Randomized Round

Find an optimal solution x^{*} to LP relaxation
Scale up x^{*} by taking $K:=1000 \ln (n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Well connected?

Eulerian?

So w.h.p. H is well connected and almost Eulerian
We will use these facts to bound the cost of the last step

Assuming H is good, then there exists a circulation on H where each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATIONTHM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l\left(\delta^{-}(S)\right) \leq u\left(\delta^{+}(S)\right)$

Assuming H is good, then there exists a circulation on H where each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATIONTHM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l\left(\delta^{-}(S)\right) \leq u\left(\delta^{+}(S)\right)$

For second condition,

$$
l\left(\delta_{H}^{-}(S)\right) \leq \frac{4}{3} K x^{*}\left(\delta^{-}(S)\right)
$$

Assuming H is good, then there exists a circulation on H where each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATIONTHM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l\left(\delta^{-}(S)\right) \leq u\left(\delta^{+}(S)\right) \odot$

For second condition,

$$
l\left(\delta_{H}^{-}(S)\right) \leq \frac{4}{3} K x^{*}\left(\delta^{-}(S)\right)=2\left(1-\frac{1}{3}\right) K x^{*}\left(\delta^{+}(S)\right)
$$

Randomized Round

Find an optimal solution x^{*} to LP relaxation
Scale up x^{*} by taking $K:=1000 \ln (n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

- What is the expected cost of H ?

Randomized Round

Find an optimal solution x^{*} to LP relaxation
Scale up x^{*} by taking $K:=1000 \ln (n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

- What is the expected cost of H ? $K \ln n$ times the LP cost

Randomized Round

Find an optimal solution x^{*} to LP relaxation
Scale up x^{*} by taking $K:=1000 \ln (n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

- What is the expected cost of H ? $K \ln n$ times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.
But this is $\leq \frac{K \ln n}{1-1 / n}$ which between friends is $K \ln n$

Randomized Round

Find an optimal solution x^{*} to LP relaxation
Scale up x^{*} by taking $K:=1000 \ln (n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LPvalue

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

- What is the expected cost of H ? $K \ln n$ times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.
But this is $\leq \frac{K \ln n}{1-1 / n}$ which between friends is $K \ln n$

THEOREM:
Randomized round returns an $O(\log n)$-approximate tour w.h.p.

Main ingredients

- $O(\log n)$ guarantee from ensuring connectivity
- Chernoff bounds ensured concentration which was useful for bounding the parity correction cost
- Karger's result allowed us to apply the union bound in a smart way

Main ingredients

- $O(\log n)$ guarantee from ensuring connectivity
- Chernoff bounds ensured concentration which was useful for bounding the parity correction cost
- Always connected

SPANNING TREES:

- Negative correlation still allows for the application of Chernoff'bounds
- Karger's result allowed us to apply the union bound in a smart way

THIN SPANNING TREES

Thin Trees

Thin Trees:

Let T be a spanning tree of $G=(V, E, w)$ and x^{*} an optimal LP solution. T is α-thin (w.r.t) x^{*} if for every $S \subset V$

$$
\left|\delta_{T}(S)\right| \leq \alpha x^{*}\left(\delta^{+}(S)\right)
$$

Thin Trees to Tours:

Let T be an α-thin spanning tree of $G=(V, E, w)$ and x^{*} an optimal LP solution.

Then there is a tour of value at most $w(T)+O(\alpha) O P T_{L P}$

Outline of proof

- The circulation network G that for each edge $e \in E$ has

$$
l(e)=\left\{\begin{array}{l}
1, e \in T \\
0, e \notin T
\end{array} \quad \text { and } u(e)=l(e)+\alpha x_{e}^{*}\right.
$$

has a feasible circulation. Remains to prove this!

- This circulation has cost at most $\sum_{e \in E} u(e) w(e) \leq w(T)+\alpha O P T_{L P}$
- Hence, there is an integral min-cost circulation satisfying the lower bounds of cost at most $w(T)+\alpha O P T_{L P}$

The circulation network G that for each edge $e \in E$ has

$$
l(e)=\left\{\begin{array}{l}
1, e \in T \\
0, e \notin T
\end{array} \quad \text { and } u(e)=l(e)+\alpha x_{e}^{*}\right.
$$

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATIONTHM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l\left(\delta^{-}(S)\right) \leq u\left(\delta^{+}(S)\right)$

For second condition,

$$
\begin{aligned}
& l\left(\delta^{-}(S)\right) \underset{\uparrow}{\leq} \alpha x^{*}\left(\delta^{-}(S)\right) \\
& \text { because tree is } \alpha \text {-thin }
\end{aligned}
$$

The circulation network G that for each edge $e \in E$ has

$$
l(e)=\left\{\begin{array}{ll}
1, & e \in T \\
0, & e \notin T
\end{array} \quad \text { and } u(e)=l(e)+\alpha x_{e}^{*}\right.
$$

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATIONTHM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l\left(\delta^{-}(S)\right) \leq u\left(\delta^{+}(S)\right)$

For second condition,

$$
\begin{aligned}
& l\left(\delta^{-}(S)\right) \underset{\uparrow}{\leq} \alpha x^{*}\left(\delta^{-}(S)\right)=\alpha x^{*}\left(\delta^{+}(S)\right) \underset{\uparrow}{\leq} u\left(\delta^{+}(S)\right) \\
& \text { because tree is } \alpha \text {-thin } \quad \text { by def. of } u
\end{aligned}
$$

Thin Trees to Tours:

Let T be an α-thin spanning tree of $G=(V, E, w)$ and x^{*} an optimal LP solution.

Then there is a tour of value at most $w(T)+O(\alpha) O P T_{L P}$

METHODS FOR FINDING THIN TREES

Spanning Tree Round

Find an optimal solution x^{*} to LP relaxation
Let $Z_{\{u v\}}=\left(x_{u v}^{*}+x_{v u}^{*}\right) \cdot\left(1-\frac{1}{n}\right)$ be a feasible point to the spanning tree polytope and sample a spanning tree T with negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in spanning tree

- What is the expected cost of the spanning tree? $\left(1-\frac{1}{n}\right) O P T_{L P}$
- How thin is the tree? We can apply upper Chernoff bound:

For any $S \subset V$,

$$
\operatorname{Pr}\left[\left|\delta_{T}(S)\right|>1000 \frac{\log n}{\log \log n} x^{*}\left(\delta^{+}(S)\right)\right]<\frac{1}{n^{10 x^{*}\left(\delta^{+}(S)\right)}}
$$

This together with Karger implies that the tree is w.h.p $O\left(\frac{\log n}{\log \log n}\right)$-thin

Spanning Tree Round

Find an optimal solution x^{*} to LP relaxation
Let $Z_{\{u v\}}=\left(x_{u v}^{*}+x_{v u}^{*}\right) \cdot\left(1-\frac{1}{n}\right)$ be a feasible point to the spanning tree polytope and sample a spanning tree T with negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in spanning tree

- What is the expected cost of the spanning tree? $\left(1-\frac{1}{n}\right) O P T_{L P}$

Theorem:

Asadpour, Goemans, Madry, Oveis Gharan, Saberi' IO

Spanning tree algorithm is a $\boldsymbol{O}\left(\frac{\log n}{\log \log n}\right)$-approximation algorithm for ATSP

$$
\operatorname{Pr}\left[\left|\delta_{T}(S)\right|>1000 \frac{\log n}{\log \log n} x^{*}\left(\delta^{+}(S)\right)\right]<\frac{1}{n^{10 x^{*}\left(\delta^{+}(S)\right)}}
$$

This together with Karger implies that the tree is w.h.p $O\left(\frac{\log n}{\log \log n}\right)$-thin

State of the Art of Thin Tree Approach

Theorem:

Asadpour, Goemans, Madry, Oveis Gharan, Saberi' I 0

A randomized polytime algorithm gives a $\boldsymbol{O}\left(\frac{\log n}{\log \log n}\right)$-thin tree

Theorem:
Anari, Oveis Gharan'l4

There exists a $\boldsymbol{O}(\boldsymbol{p o l y l o g} \log \boldsymbol{n})$-thin tree

These results imply a $O\left(\frac{\log n}{\log \log n}\right)$-approximation algorithm and a $O($ poly $\log \log n)$ bound on the integrality gap

Open Problem: Is there always a $O(1)$-thin tree?

Yes for graphs of bounded genus [Oveis Gharan and Saberi'l I]

电

