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Two Basic Versions




Two Basic Versions

SYMMETRIC: distance from u to v equals distance from v to u

o,



Two Basic Versions

ASYMMETRIC: more general and no such assumption is made




Motivation of Asymmetric TSP




Approximation algorithms for ATSP 28

What is the best possible algorithm?



1980’s

Frieze, Galbiati & Maffiolo:

log, (n)-approximation for Asymmetric TSP






" Bliser’03:
0.991log, (n)-approximation for ATSP

Kaplan, Lewenstein, Shafrir & Sviridenko’05:

0.84log,(n)-approximation for ATSP

Feige & Singh’07:
0.67log,(n)-approximation for ATSP




Asadpour, Goemans, Madry, Oveis Gharan, and Saberi:

* New approach relating ATSP to the thin tree graph problem

. 0( log(n)

loglog(m)'aPP"Ox-mat-on for ATSP



Major open problem to understand
the approximability of ATSP

* NP-hard to approximate ATSP within 75/74
* Best algorithm has super constant approximation guarantee

* Held-Karp relaxation conjectured to give 2-approximation



Progress on ATSP vs mobiles

log(n) (= o)

loglog(n)




Asymmetric Traveling Salesman Problem

INPUT:a complete digraph G = (V, E') with pairwise (not necessarily symmetric)
distances that satisfy the triangle inequality

OUTPUT: a tour of minimum weight that visits each vertex once




Asymmetric Traveling Salesman Problem

INPUT:a complete digraph G = (V, E') with pairwise (not necessarily symmetric)
distances that satisfy the triangle inequality

OUTPUT: a tour of minimum weight that visits each vertex once




WHAT’STHE DEAL:

CAN’T WE JUST GENERALIZE
CHRISTOFIDES???



Spanning Tree Approach

Find (undirected) spanning tree

Obtain Eulerian graph via a circulation that sends one
unit through each tree edge

Blue edges have cost |, red edges have cost M > 1

So we wish to find tour with minimum number of red edges
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Spanning Tree Approach

Find (undirected) spanning tree

Obtain Eulerian graph via a circulation that sends one
unit through each tree edge

Blue edges have cost |, red edges have cost M > 1

So we wish to find tour with minimum number of red edges
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Spanning Tree Approach

Find (undirected) spanning tree

Obtain Eulerian graph via a circulation that sends one
unit through each tree edge

Blue edges have cost |, red edges have cost M > 1

So we wish to find tour with minimum number of red edges
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Spanning Tree Approach

Find (undirected) spanning tree

Obtain Eulerian graph via a circulation that sends one
unit through each tree edge

Blue edges have cost |, red edges have cost M > 1

So we wish to find tour with minimum number of red edges
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Spanning Tree Approach

Find (undirected) spanning tree

Obtain Eulerian graph via a circulation that sends one
unit through each tree edge

Blue edges have cost |, red edges have cost M > 1

So we wish to find tour with minimum number of red edges
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Spanning Tree Approach

Find (undirected) spanning tree

Obtain Eulerian graph via a circulation that sends one
unit through each tree edge

Blue edges have cost |, red edges have cost M > 1

So we wish to find tour with minimum number of red edges




Cycle Cover

FIRST APPROXIMATION
ALGORITHM FORATSP



What is a lower bound on OPT?




What is a lower bound on OPT?

The weight of a minimum weight cycle-cover is at most OPT

A cycle cover is a collection of cycles so that each vertex is in exactly one cycle



What is a lower bound on OPT?

The weight of a minimum weight cycle-cover is at most OPT

A cycle cover is a collection of cycles so that each vertex is in exactly one cycle

PROOF:



What is a lower bound on OPT?

The weight of a minimum weight cycle-cover is at most OPT

A cycle cover is a collection of cycles so that each vertex is in exactly one cycle

PROOF:
* Optimal tour is a cycle cover

* Hence, minimum cycle cover has

weight at most OPT

A minimum cycle cover can be computed in polynomial time



Find min-cost cycle cover

Cyc I e Cove r Algo rith m Select a representative in each component

Repeat on representatives until graph is connected




Find min-cost cycle cover

Select a representative in each component

Cycle Cover Algorithm

Repeat on representatives until graph is connected

Cost of cycle cover < OPT
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Find min-cost cycle cover

Select a representative in each component

Cycle Cover Algorithm

Repeat on representatives until graph is connected

Cost of cycle cover < OPT
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Find min-cost cycle cover

Select a representative in each component

Cycle Cover Algorithm

Repeat on representatives until graph is connected

/Q‘B /—% Cost of cycle cover < OPT
cover < OPT

Cost of cycle

Why?




Cycle Cover Algorithm

;" .

Find min-cost cycle cover

Select a representative in each component

Repeat on representatives until graph is connected

/—% Cost of cycle
Cost of cycle

cover < OPT

cover < OPT



Find min-cost cycle cover

Cyc I e Cove r Algo rith m Select a representative in each component

Repeat on representatives until graph is connected

/G‘B /—% Cost of cycle cover < OPT
cover < OPT

Cost of cycle

Cost of cycle cover < OPT




Cycle Cover Algorithm

Find min-cost cycle cover

Select a representative in each component

Repeat on representatives until graph is connected

Worst case: all cycles have length 2 so we need to repeat log, n times (each time cost OPT;p)

;" .

/—Q‘B Cost of cycle

Cost of cycle
Cost of cycle

Total cost

cover < OPT
cover < OPT

cover < OPT

<3-0PT



Cycle Cover Technique

THEOREM:

ATSP has a log, n -approximation algorithm

* 0.99log, n-approximation algorithm
* 0.84log, n-approximation algorithm

* 0.67log, n-approximation algorithm



BETTER APPROXIMATION
ALGORITHMS ARE BASED ON
THE HELD-KARP RELAXATION



Held-Karp Relaxation of ATSP

Variables: Xy = “indicate whether arc (u, v) is used in tour”

Held-Karp Relaxation

Minimize: Yuvee WU, V) Xy
Subject to: x(6+ (v)) = x(6‘ (v)) =1 forallveV
OO x(8%(8)) =1 forallScV
A
ety x=0

Easy to Find Eulerian graph Easy to Find Connected Graph




TOOLS FOR ROUNDING LP



Circulations

INPUT:a digraph G = (V,E) and for each arce € E
a lower bound [(e) = 0 and an upper bound u(e) = 0
OUTPUT:a circulation f: E — R, satisfying
flow conservation: f(5+(v)) = f(5‘(v)) foreachv eV
edge bounds: l(e) < f(e) <u(e) foreache € E

Blue edges have lower bound | and upper bound 2

Red edges have lower bound 0 and upper bound o




Circulations

INPUT:a digraph G = (V,E) and for each arce € E
a lower bound [(e) = 0 and an upper bound u(e) = 0
OUTPUT:a circulation f: E — R, satisfying
flow conservation: f(5+(v)) = f(5‘(v)) foreachv eV
edge bounds: l(e) < f(e) <u(e) foreache € E

’
~ -
~ -
\ \A"’

Blue edges have lower bound | and upper bound 2

Red edges have lower bound 0 and upper bound o

.

Can be calculated in polytime and also a min cost circulation can be found



When does a circulation exist?

NECESSARY CONDITIONS:

* For every arc e € E we must have [(e) < u(e)

* For every S c V we must have 1(6_(5)) < u(5+(5))

HOFFMAN'’s CIRCULATION THEOREM:
The above conditions are also sufficient.

Furthermore, if [ and u are integer valued, the circulation f can be
chosen to be integral.




Basic idea select a subset of edges and make it Eulerian by finding a
circulation

RANDOMIZED LP
ROUNDING



Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H
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Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Taken with probability x;



Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H




Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H




What'’s the problem?

* With high probability the sampled graph H is not even connected

* So we will return an Eulerian graph but it is not connected ®



Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Well connected?

Eulerian?

=




Analyzing H: out-degree of a vertex

What is the expected out-degree of v?
Iltis K- x*(§*(v)) = 1000Inn =:p

The number of outgoing edges is the sum of random independent 0/
variables

Hence, by standard Chernoff bound

) p u 1 K =10001Inn
Pr [“511 (U)| - ,Ll| = g] Se 30 < 2n10x*(8* (V)

In words: the number of edges will deviate

from its expectation more than a fraction |/3 with

probability at most O(ﬁ



Analyzing H: in-degree of a vertex




Analyzing H: in-degree of a vertex

What is the expected in-degree of v?
ltis K- x*(§"(v)) = 1000Inn =:p

The number of outgoing edges is the sum of random independent 0/
variables

Hence, by standard Chernoff bound

) U m 1 K =1000Inn
Pr [“51-1 (V)l - ,Ll| = §] se 30= 2n10x*(6~(v))

In words: the number of edges will deviate

from its expectation more than a fraction |/3 with

probability at most O(ﬁ



Analyzing H: bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate
more than a fraction|/3

Sis badin H if
167 —u| 25 or |[55S)] —u| 25

where u = x*(67(S)) = x*(6*(S))

By previous calculations

Pr[S is bad] <Pr[|I5H(v)| u| 3]+Pr”|5§(v)| ,u‘ ]

1
< nle*(6+(S))




Analyzing H: bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate
more than a fraction|/3

Sis badin H if
167 —u| 25 or |[55S)] —u| 25

where u = x*(67(S)) = x*(6*(S))

By previous calculations

Pr[S is bad]

1
= n10x*(8+(8))




Probability that H is good!?

H is good if no cut is bad

: : 1 1
We know that a single cut S is bad w.p < —— = —
nle (6 (S)) n

But 2" many cuts so we can’t make union bound...



Remedy: beautiful result by Karger

BOUNDING NUMBER OF SMALL CUTS:

Consider an undirected graph G = (V, E) with edge-weights w. Let
¢ be the value of a min-cut.

Then the number of cuts of value ac is at most < n2¢

But our graph is directed, why can we still use the above theorem?

It is Eulerian (w.r.t. to weights x™) so any cut of out-degree/in-degree c

corresponds to a cut of value 2c in the undirected graph




Probability that H is good!?

e Cuts of value
e Cuts of value
e Cuts of value

e Cuts of value

e Cuts of value [n-1, n] at most n?™ many Prob. that such a cut is bad n

1,2
2,3
3,4

(4,3,

at most 4’2 many
23

at most 123 many

at most n'* many

at most 12> many

Prob. that such a cut is bad n~10'1

Prob. that such a cut is bad n~19-2

Prob. that such a cut is bad n~19-3

Prob. that such a cut is bad n~104

~10-(n—1)



Probability that H is good!?

e Cuts of value
e Cuts of value
e Cuts of value

e Cuts of value

e Cuts of value [n-1, n] at most n?™ many Prob. that such a cut is bad n

1,2
2,3
3,4

(4,3,

at most 4’2 many
23

at most 123 many

at most n'* many

at most 12> many

Prob. that such a cut is bad n~10'1

Prob. that such a cut is bad n~19-2

Prob. that such a cut is bad n~19-3

Prob. that such a cut is bad n~104

~10-(n—1)

By union bound,

Pr[H is good] = 1 — z n2(i+1)-10i

n-—1

=1




Probability that H is good!?

« Cuts of value [1,2] at most n?? many  Prob. that such a cut is bad n= %!

 Cuts of value [2,3] at most n?3> many  Prob. that such a cut is bad n= 1%

 Cuts of value [3,4] at most n®* many  Prob. that such a cut is bad n= 193

25 10-4

* Cuts of value [4,5] at most n“> many  Prob. that such a cut is bad n~

 Cuts of value [n-1, n] at most n™ many Prob. that such a cut is bad n= 10 (=1

By union bound,

n-—1 n-—1 2

Pr[H is good] = 1 — E n2 (+D-100 — 1 _ —
n




Probability that H is good!?

e Cuts of value
e Cuts of value
e Cuts of value

e Cuts of value

e Cuts of value [n-1, n] at most n?™ many Prob. that such a cut is bad n

1,2
2,3
3,4

(4,3,

at most 4’2 many
23

at most 123 many

at most n'* many

at most 12> many

Prob. that such a cut is bad n™
Prob. that such a cut is bad n™
Prob. that such a cut is bad n™

Prob. that such a cut is bad n™

10-1
10-2
10-3

10-4

~10-(n—1)

By union bound,

n-—1

n-—1

Pr[H is good] = 1 — z n2 (+1)-100 — 1 _

=1

2




Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each

Ran d O m ized RO u n d edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Well connected?

Eulerian?

=

So w.h.p. H is well connected and almost Eulerian

We will use these facts to bound the cost of the last step




Assuming H is good, then there exists a circulation on H where
each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower
bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATIONTHM:

* For every arc e € E we must have [(e) < u(e)

* For every S c V we must have l(5_(5)) < u(5+(5))



Assuming H is good, then there exists a circulation on H where
each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower
bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

« For every arc e € E we must have [(e) < u(e)

* For every S c IV we must have 1(5_(5)) < u(6+(5))

For second condition,

1(657(5) <5 K x'(57())




Assuming H is good, then there exists a circulation on H where
each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower
bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

« For every arc e € E we must have [(e) < u(e)

« For every S c V we must have [(67(S)) < u(6*(5)) &

For second condition,

1(657(5)) < gK x*(67(5)) =2 (1 — %) K x*(5%(S))




Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each

Ran d O m iZEd RO u n d edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* Whatis the expected cost of H?



Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each

Ran d O m iZEd RO u n d edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* What s the expected cost of H? K Inn times the LP cost



Randomized Round

Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each
edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* What s the expected cost of H? K Inn times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.

. Kl : : :
But this is < 1& which between friends is K Inn

—-1/n




Randomized Round

Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each
edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* What s the expected cost of H? K Inn times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.

. Kl : : :
But this is < 1ﬂ which between friends is K Inn

-1/n

THEOREM:

Randomized round returns an O(logn)-approximate tour w.h.p.




Main ingredients

O(log n) guarantee from ensuring
connectivity

Chernoff bounds ensured
concentration which was useful for
bounding the parity correction cost

Karger’s result allowed us to apply
the union bound in a smart way



Main ingredients

O(log n) guarantee from ensuring
connectivity

Chernoff bounds ensured
concentration which was useful for
bounding the parity correction cost

Karger’s result allowed us to apply
the union bound in a smart way

SPANNING TREES:

Always connected

Negative correlation still allows for
the application of Chernoff’bounds



THIN SPANNING TREES



Thin Trees

Thin Trees:
Let T be a spanning tree of G = (V,E,w) and x™ an optimal LP solution.

T is a-thin (w.r.t) x* if for every S C V

1867(S)| < ax*(67(S))

Thin Trees to Tours:
Let T be an a-thin spanning tree of ¢ = (V,E,w) and x* an optimal LP
solution.

Then there is a tour of value at most w(T) + O(a)OPT;p




Outline of proof

*| The circulation network G that for each edge e € E has

l(e) = {(1)’ 2 ; ; and u(e) = l(e) + ax;

has a feasible circulation. Remains to prove this!

 This circulation has cost at most ),z u(e)w(e) < w(T) + aOPT;p

* Hence, there is an integral min-cost circulation satisfying the lower bounds
of cost at most w(T) + aOPT;p



The circulation network G that for each edge e € E has

l(e) = {(1)' 2 2 ; and u(e) = l(e) + ax;

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

« For every arc e € E we must have [(e) < u(e)

* For every S c IV we must have 1(5_(5)) < u(6+(5))

For second condition,
1(87(S)) < ax*(67(S))
]

because tree is a-thin




The circulation network G that for each edge e € E has

l(e) = {(1)' 2 2 ; and u(e) = l(e) + ax;

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

« For every arc e € E we must have [(e) < u(e)

* For every S c V we must have 1(5_(5)) < u(5+(5)) ®

For second condition,

1(67(S)) < ax*(67(S)) = ax*(67(S)) < u(d*(S))

because tree is a-thin by def.of u




Thin Trees to Tours:
Let T be an a-thin spanning tree of ¢ = (V,E,w) and x* an optimal LP
solution.

Then there is a tour of value at most w(T) + O(a)OPT p

METHODS FOR FINDING
THIN TREES




Find an optimal solution x* to LP relaxation

Span n i ng Tree RO un d Let zyupy = (Xup+xpu) - (1 — %) be a feasible point to the

spanning tree polytope and sample a spanning tree T with
negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arc in spanning tree

*  What is the expected cost of the spanning tree! (1 — %) OPT,p

* How thin is the tree? We can apply upper Chernoff bound:

Forany S c I/,

logn
loglogn

Pr[|67(S)| > 1000 x*(5%(8))] <

n10x*(6*(S))

This together with Karger implies that the tree is w.h.p O (mlgol%)-thin



Find an optimal solution x* to LP relaxation

Span n i ng Tree RO un d Let zyupy = (Xup+xpu) - (1 — %) be a feasible point to the

spanning tree polytope and sample a spanning tree T with

negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arc in spanning tree

*  What is the expected cost of the spanning tree! (1 — %) OPT,p

Theorem:

Spanning tree algorithm is a O (

_logn o .
log log n)'aPP"OX'matlon algorithm for ATSP

Pr[|67(S)| > 1000

logn

x o+
loglogn CHCHI n10x*(8%(S))

This together with Karger implies that the tree is w.h.p 0 (

logn .
5L _)_thin
loglogn




State of the Art of Thin Tree Approach

Theorem:

logn

A randomized polytime algorithm gives a O ( )-thin tree

loglogn

Theorem:

There exists a O(polyloglog n)-thin tree

logn

These results implya O ( )-approximation algorithm and a

loglogn

O(polyloglogn) bound on the integrality gap




Open Problem: Is there always a O(1)-thin tree!?

Yes for graphs of bounded genus






