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Asymmetric Traveling Salesman Problem

INPUT:a complete digraph G = (V, E') with pairwise (not necessarily symmetric)
distances that satisfy the triangle inequality

OUTPUT: a tour of minimum weight that visits each vertex once




Held-Karp Relaxation of ATSP

Variables: Xy = “indicate whether arc (u, v) is used in tour”

Held-Karp Relaxation

Minimize: Yuvee WU, V) Xy
Subject to: x(6+(v)) = x(6‘(v)) =1 forallveV
OO x(8%(8)) =1 forallScV
A

ety x=0



TOOLS FOR ROUNDING LP



Circulations

INPUT:a digraph G = (V,E) and for each arce € E
a lower bound [(e) = 0 and an upper bound u(e) = 0
OUTPUT:a circulation f: E — R, satisfying
flow conservation: f(5+(v)) = f(5‘(v)) foreachv eV
edge bounds: l(e) < f(e) <u(e) foreache € E

Blue edges have lower bound | and upper bound 2

Red edges have lower bound 0 and upper bound o




Circulations

INPUT:a digraph G = (V,E) and for each arce € E
a lower bound [(e) = 0 and an upper bound u(e) = 0
OUTPUT:a circulation f: E — R, satisfying
flow conservation: f(5+(v)) = f(5‘(v)) foreachv eV
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Blue edges have lower bound | and upper bound 2

Red edges have lower bound 0 and upper bound o

.

Can be calculated in polytime and also a min cost circulation can be found



When does a circulation exist?

NECESSARY CONDITIONS:

* For every arc e € E we must have [(e) < u(e)

* For every S c V we must have 1(6_(5)) < u(5+(5))

HOFFMAN'’s CIRCULATION THEOREM:
The above conditions are also sufficient.

Furthermore, if [ and u are integer valued, the circulation f can be
chosen to be integral.




Basic idea select a subset of edges and make it Eulerian by finding a
circulation

RANDOMIZED LP
ROUNDING



Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H
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Randomized Round
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Taken with probability x;
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Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H




What'’s the problem?

* With high probability the sampled graph H is not even connected

* So we will return an Eulerian graph but it is not connected ®



Find an optimal solution x* to LP relaxation

Randomized Round

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Well connected?

Eulerian?

=




Analyzing H: out-degree of a vertex

What is the expected out-degree of v?
Iltis K- x*(§*(v)) = 1000Inn =:p

The number of outgoing edges is the sum of random independent 0/
variables

Hence, by standard Chernoff bound

) p u 1 K =10001Inn
Pr [“511 (U)| - ,Ll| = g] Se 30 < 2n10x*(8* (V)

In words: the number of edges will deviate

from its expectation more than a fraction |/3 with

probability at most O(ﬁ
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Analyzing H: in-degree of a vertex

What is the expected in-degree of v?
ltis K- x*(§"(v)) = 1000Inn =:p

The number of outgoing edges is the sum of random independent 0/
variables

Hence, by standard Chernoff bound
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Analyzing H: in/out-degree of a set S

What is the expected in-degree of S?
ltis K- x*(8§7(S)) = 1000Inn x*(§(S)) =:u

The number of outgoing edges is the sum of random independent 0/
variables

Hence, by standard Chernoff bound

prllis=cs S U < _SM_O < 1 K =1000Inn x*(8~ (S5))
r[“ i =4 ‘§] =€ TS oG o)

In words: the number of edges will deviate

from its expectation more than a fraction |/3 with

o 1
probability at most O(—g=G=5))



Analyzing H: bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate
more than a fraction|/3

Sis badin H if
167 —u| 25 or |[55S)] —u| 25

where u = x*(67(S)) = x*(6*(S))

By previous calculations

Pr[S is bad] <Pr[|I5H(v)| u| 3]+Pr”|5§(v)| ,u‘ ]

1
< nle*(6+(S))




Analyzing H: bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate
more than a fraction|/3

Sis badin H if
167 —u| 25 or |[55S)] —u| 25

where u = x*(67(S)) = x*(6*(S))

By previous calculations

Pr[S is bad]

1
= n10x*(8+(8))




Probability that H is good!?

H is good if no cut is bad

: : 1 1
We know that a single cut S is bad w.p < —— = —
nle (6 (S)) n

But 2" many cuts so we can’t make union bound...



Remedy: beautiful result by Karger

BOUNDING NUMBER OF SMALL CUTS:

Consider an undirected graph G = (V, E) with edge-weights w. Let
¢ be the value of a min-cut.

Then the number of cuts of value ac is at most < n2¢

But our graph is directed, why can we still use the above theorem?

It is Eulerian (w.r.t. to weights x™) so any cut of out-degree/in-degree c

corresponds to a cut of value 2c in the undirected graph




Probability that H is good!?

e Cuts of value
e Cuts of value
e Cuts of value

e Cuts of value

e Cuts of value [n-1, n] at most n?™ many Prob. that such a cut is bad n

1,2
2,3
3,4

(4,3,

at most 4’2 many
23

at most 123 many

at most n'* many

at most 12> many

Prob. that such a cut is bad n~10'1

Prob. that such a cut is bad n~19-2

Prob. that such a cut is bad n~19-3

Prob. that such a cut is bad n~104

~10-(n—1)
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By union bound,

Pr[H is good] = 1 — z n2(i+1)-10i

n-—1

=1




Probability that H is good!?

« Cuts of value [1,2] at most n?? many  Prob. that such a cut is bad n= %!

 Cuts of value [2,3] at most n?3> many  Prob. that such a cut is bad n= 1%

 Cuts of value [3,4] at most n®* many  Prob. that such a cut is bad n= 193

25 10-4

* Cuts of value [4,5] at most n“> many  Prob. that such a cut is bad n~

 Cuts of value [n-1, n] at most n™ many Prob. that such a cut is bad n= 10 (=1

By union bound,

n-—1 n-—1 2

Pr[H is good] = 1 — E n2 (+D-100 — 1 _ —
n




Probability that H is good!?

e Cuts of value
e Cuts of value
e Cuts of value

e Cuts of value

e Cuts of value [n-1, n] at most n?™ many Prob. that such a cut is bad n

1,2
2,3
3,4

(4,3,

at most 4’2 many
23

at most 123 many

at most n'* many

at most 12> many

Prob. that such a cut is bad n™
Prob. that such a cut is bad n™
Prob. that such a cut is bad n™

Prob. that such a cut is bad n™

10-1
10-2
10-3

10-4

~10-(n—1)

By union bound,

n-—1

n-—1

Pr[H is good] = 1 — z n2 (+1)-100 — 1 _

=1

2




Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each

Ran d O m ized RO u n d edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Well connected?

Eulerian?

=

So w.h.p. H is well connected and almost Eulerian

We will use these facts to bound the cost of the last step




Assuming H is good, then there exists a circulation on H where
each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower
bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATIONTHM:

*  For every arc e € E we must have [(e) < u(e)

* For every S c V we must have l(5_(5)) < u(5+(5))
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Assuming H is good, then there exists a circulation on H where
each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower
bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

*  For every arc e € E we must have [(e) < u(e)

« For every S ¢ V we must have [(67(S)) < u(6%(S)) ™

For second condition,

1(657(5)) < gK x*(67(5)) =2 (1 — %) K x*(5%(S))




Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each

Ran d O m iZEd RO u n d edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* Whatis the expected cost of H?



Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each
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* What is the expected cost of H? K times the LP cost



Randomized Round

Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each
edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* What is the expected cost of H? K times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.

. K : : :
But this is < ——— which between friends is K Inn

1-1/n




Randomized Round

Find an optimal solution x* to LP relaxation

Scale up x* by taking K := 1000In(n) parallel copies of each
edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-
value

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arcin H

Expected cost of Tour is at most twice the cost of H.

* What is the expected cost of H? K times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.

. K : : :
But this is < ——— which between friends is K

1-1/n

THEOREM:

Randomized round returns an O(logn)-approximate tour w.h.p.




Main ingredients

O(log n) guarantee from ensuring
connectivity

Chernoff bounds ensured
concentration which was useful for
bounding the parity correction cost

Karger’s result allowed us to apply
the union bound in a smart way



Main ingredients

O(log n) guarantee from ensuring
connectivity

Chernoff bounds ensured
concentration which was useful for
bounding the parity correction cost

Karger’s result allowed us to apply
the union bound in a smart way

SPANNING TREES:

Always connected

Negative correlation still allows for
the application of Chernoff’bounds



THIN SPANNING TREES



Thin Trees

Thin Trees:
Let T be a spanning tree of G = (V,E,w) and x™ an optimal LP solution.

T is a-thin (w.r.t) x* if for every S C V

1867(S)| < ax*(67(S))

Thin Trees to Tours:
Let T be an a-thin spanning tree of ¢ = (V,E,w) and x* an optimal LP
solution.

Then there is a tour of value at most w(T) + O(a)OPT;p




Outline of proof

*| The circulation network G that for each edge e € E has

l(e) = {(1)’ 2 ; ; and u(e) = l(e) + ax;

has a feasible circulation. Remains to prove this!

 This circulation has cost at most ),z u(e)w(e) < w(T) + aOPT;p

* Hence, there is an integral min-cost circulation satisfying the lower bounds
of cost at most w(T) + aOPT;p



The circulation network G that for each edge e € E has

l(e) = {(1)' 2 2 ; and u(e) = l(e) + ax;

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

*  For every arc e € E we must have [(e) < u(e)

* For every S c IV we must have 1(5_(5)) < u(6+(5))

For second condition,
1(87(S)) < ax*(67(S))
]

because tree is a-thin




The circulation network G that for each edge e € E has

l(e) = {(1)' 2 2 ; and u(e) = l(e) + ax;

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN'’s CIRCULATIONTHM:

*  For every arc e € E we must have [(e) < u(e)

* For every S c V we must have 1(5_(5)) < u(5+(5)) ®

For second condition,

1(67(S)) < ax*(67(S)) = ax*(67(S)) < u(d*(S))

because tree is a-thin by def.of u




Thin Trees to Tours:
Let T be an a-thin spanning tree of ¢ = (V,E,w) and x* an optimal LP
solution.

Then there is a tour of value at most w(T) + O(a)OPT p

METHODS FOR FINDING
THIN TREES




Find an optimal solution x* to LP relaxation

Span n i ng Tree RO un d Let zyupy = (Xup+xpu) - (1 — %) be a feasible point to the

spanning tree polytope and sample a spanning tree T with
negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arc in spanning tree

*  What is the expected cost of the spanning tree! (1 — %) OPT,p

* How thin is the tree? We can apply upper Chernoff bound:

Forany S c I/,

logn
loglogn

Pr[|67(S)| > 1000 x*(5%(8))] <

n10x*(6*(S))

This together with Karger implies that the tree is w.h.p O (mlgol%)-thin



Find an optimal solution x* to LP relaxation

Span n i ng Tree RO un d Let zyupy = (Xup+xpu) - (1 — %) be a feasible point to the

spanning tree polytope and sample a spanning tree T with

negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost
circulation with lower bound 1 for each arc in spanning tree

*  What is the expected cost of the spanning tree! (1 — %) OPT,p

Theorem:

Spanning tree algorithm is a O (

_logn o .
log log n)'aPP"OX'matlon algorithm for ATSP

Pr[|67(S)| > 1000

logn

x o+
loglogn CHCHI n10x*(8%(S))

This together with Karger implies that the tree is w.h.p 0 (

logn .
5L _)_thin
loglogn




State of the Art of Thin Tree Approach

Theorem:

logn

A randomized polytime algorithm gives a O ( )-thin tree

loglogn

Theorem:

There exists a O(polyloglog n)-thin tree

logn

These results implya O ( )-approximation algorithm and a

loglogn

O(polyloglogn) bound on the integrality gap




Two Approaches

Easy to Find Eulerian graph

Repeatedly find cycle-covers to get
log, n-approximation
[Frieze, Galbiati, Maffiolo’82]

0.99 log, n-approximation
[Blaser’03]

0.84 log, n-approximation
[Kaplan, Lewenstein, Shafrir, Sviridenko’05]

0.67 log, n-approximation

[Feige, Singh'07]

Easy to Find Connected Graph

O(logn /loglog n)-approximation
[Asadpour, Goemans, Madry, Oveis Gharan, Saberi’ 1 0]

O (1)-approximation for planar and
bounded genus graphs
[Oveis Gharan, Saberi’| |]

O(poly log logn) bound on integrality gap
(generalization of Kadison-Singer)
[Anari, Oveis Gharan’|4]

W,




To summarize the two approaches

logn )
loglogn

Best approximation algorithm: O(

Best upper bound on integrality gap: O(polyloglogn)

Best lower bound on integrality gap:@)\—

This is believed to be
close to the truth

No better guarantees for shortest path metrics on unweighted
graphs for which there was recent improvements for the symmetric TSP

1,48 Momke & S

1,43

1,38

1,33
Dec'l|0 April'l | Sep'l |

Oveis Gharan, Saberi & Singh

Sebo & Vygen

lan'l2




To summarize the two approaches

logn
)

Best approximation algorithm: 0(log log 7

Best upper bound on integrality gap: O(polyloglogn)

Best lower bound on integrality gap:@)\—
This is believed to be

close to the truth

No better guarantees for shortest path metrics on unweighted
graphs for which there was recent improvements for the symmetric TSP

* Main difficulty in cycle cover approach is to bound #iterations

* In thin-tree approach we reduce ATSP to an unweighted problem



Find Eulerian graph with some connectivity requirements

A NEW APPROACH



Relaxing Connectivity

Instead of

Do for smart C

x(6*(v)) = x(6~(v))

x(67(8)) =1

x>0

forallv eV

forallScV

x(6+ () = x(6~ (v))

x(67(8)) =1

x>0

forallv eV

for those S € C




Application of approach

THEOREM:
For ATSP on node-weighted graphs, the integrality gap is at most |5.

Moreover, there is a 27-approximation algorithm.
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For ATSP on node-weighted graphs, the integrality gap is at most |5.

Moreover, there is a 27-approximation algorithm.

Exist f:V - R% st

w(u,v) = f(u)forall (u,v) €E




Application of approach

THEOREM:
For ATSP on node-weighted graphs, the integrality gap is at most |5.

Moreover, there is a 27-approximation algorithm.

Generalizes shortest path metrics considered for symmmetric TSP
Exist f:V - R% st

w(u,v) = f(u)forall (u,v) €E

Value = 2+5+[+5+1=14




Cousin to repeated cycle cover approach

Distant relative to thin tree approach

OURAPPROACH



Relaxing Connectivity

x(6*(v)) = x(6~(v)) forallveV
Instead of
neteac o x(86+(5)) > 1 forall S C V
x=0
x(6+(v)) = x(6" (v)) forallveV
Do for smart C
x(86%(8)) =1 for those S € C

x>0



Local Connectivity ATSP

INPUT: an edge-weighted digraph G = (V,E,w), a partition I/; U --- UV, of VV

- —-—

- -
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OUTPUT: an Eulerian multisubset of edges F such that

each cut (V;,V;) is“covered” by F



Local Connectivity ATSP

INPUT: an edge-weighted digraph G = (V,E,w), a partition I/; U --- UV, of VV

OUTPUT: an Eulerian multisubset of edges F such that

each cut (V;,V;) is“covered” by F

- —-—

- -




Local Connectivity ATSP

An algorithm is a-light if it always outputs a solution F s.t.

#
edges < a

for each componentin (V, F), PR

Note: designing an a-light algorithm is ‘““‘easier” than an a-approximation for ATSP

- -




Our main technical result

THEOREM:

If there is an a-light algorithm A for Local-Connectivity ATSP then the
integrality gap for ATSP is at most 5a.




Our main technical result

THEOREM:

If there is an a-light algorithm A for Local-Connectivity ATSP then the
integrality gap for ATSP is at most 5a.

Moreover, a 9a-approximate tour can be found in polynomial time if A runs
in polynomial time.

The problems are equivalent up to a small constant factor

There is an easy 3-light algorithm for node-weighted metric
(only part where special metric is used)




PROOF IDEA OF MAINTHM



Repeatedly solve Local-Connectivity ATSP
with the current connected subgraphs as partitions
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Repeatedly solve Local-Connectivity ATSP
with the current connected subgraphs as partitions

Cost of red edges < aOPT
Cost of blue edges< aOPT




Repeatedly solve Local-Connectivity ATSP
with the current connected subgraphs as partitions

Cost of red edges < aOPT
Cost of blue edges< a«OPT

Total cost < #iterations - aOPT < log(n) - aOPT







Lexicographic Initialization

H7 = largest connected component that has 2a-light tour
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Lexicographic Initialization

Hj = largest connected component that has 2a-light tour

If red tour is a-light then |F| < a|V/'|

Why!? Otherwise F spans more than
|V"| vertices and this should be
our largest component!




Lexicographic Initialization

H7 = largest connected component that has 2a-light tour

H> = largest disjoint connected component that has 2a-light tour

Intersects H; but not H;:

|IF| < a|V5|




Lexicographic Initialization

H7 = largest connected component that has 2a-light tour

H>5 = largest disjoint connected component that has 2a-light tour




Lexicographic Initialization

H7 = largest connected component that has 2a-light tour

H> = largest disjoint connected component that has 2a-light tour

H;, = largest disjoint connected component that has 2a-light tour




Wish List for Merging Step

Cost of initialization at most 2aOPT since each component is 2a-light
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Wish List for Merging Step

Cost of initialization at most 2aOPT since each component is 2a-light

Suppose we can connect graph by adding a-light components so that
we charge at most one to each component of initialization

Then total cost < 3 aOPT




Some open problems...




Node-Weighted Symmetric TSP

 distance of {u, v} € E is w(u) + w(v)

Can you do better than Christofides (1.5)?



Constant for ATSP on General Metrics!?

THIN TREE:

Does any k-edge connected graph have a O(1)-thin tree,i.e.,a tree T
such that for each S C V/,

167 ()| < +186(5)] 2

LOCAL-CONNECTIVITY ATSP:

Can you design a 0(1)-light algorithm for general metrics!?




Summary

* Opverview of Existing Approaches

* New approach that relaxes connectivity

* Integrality gap for node-weighted metrics is < 13

* Nice Open Questions both for Symmetric and Asymmetric TSP






