Lecture 3:Asymmetric TSP (cont)

Ola Svensson

ADFOCS 2015

Asymmetric Traveling Salesman Problem

INPUT: a complete digraph G = (V, E) with pairwise (not necessarily symmetric) distances that satisfy the triangle inequality

OUTPUT: a tour of minimum weight that visits each vertex once

Held-Karp Relaxation of ATSP

TOOLS FOR ROUNDING LP

Circulations

INPUT: a digraph G = (V, E) and for each arc $e \in E$ a lower bound $l(e) \ge 0$ and an upper bound $u(e) \ge 0$ **OUTPUT:** a circulation $f: E \to R_+$ satisfying flow conservation: $f(\delta^+(v)) = f(\delta^-(v))$ for each $v \in V$ edge bounds: $l(e) \le f(e) \le u(e)$ for each $e \in E$

Circulations

INPUT: a digraph G = (V, E) and for each arc $e \in E$ a lower bound $l(e) \ge 0$ and an upper bound $u(e) \ge 0$ **OUTPUT:** a circulation $f: E \to R_+$ satisfying flow conservation: $f(\delta^+(v)) = f(\delta^-(v))$ for each $v \in V$ edge bounds: $l(e) \le f(e) \le u(e)$ for each $e \in E$

Can be calculated in polytime and also a min cost circulation can be found

When does a circulation exist?

NECESSARY CONDITIONS:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$
- For every $S \subset V$ we must have $l(\delta^{-}(S)) \leq u(\delta^{+}(S))$

HOFFMAN's CIRCULATION THEOREM:

Hoffman'60

The above conditions are also **sufficient.**

Furthermore, if l and u are integer valued, the circulation f can be chosen to be integral.

Basic idea select a subset of edges and make it Eulerian by finding a circulation

RANDOMIZED LP ROUNDING

Randomized Round

Form H by taking each edge with probability equal to its LP-value

Randomized Round

Form H by taking each edge with probability equal to its LP-value

Randomized Round

Form H by taking each edge with probability equal to its LP-value

Randomized Round

Form H by taking each edge with probability equal to its LP-value

Randomized Round

Form H by taking each edge with probability equal to its LP-value

What's the problem?

• With high probability the sampled graph H is not even connected

• So we will return an Eulerian graph but it is **not** connected 😕

Randomized Round

Form H by taking each edge with probability equal to its LP-value

Analyzing *H*: out-degree of a vertex

What is the expected out-degree of v?

It is
$$K \cdot x^* (\delta^+(v)) = 1000 \ln n =: \mu$$

 $K = 1000 \ln n$

The number of outgoing edges is the sum of random independent 0/1 variables

Hence, by standard Chernoff bound

$$\Pr\left[\left|\left|\delta_{H}^{+}(v)\right| - \mu\right| \ge \frac{\mu}{3}\right] \le e^{-\frac{\mu}{30}} \le \frac{1}{2n^{10x^{*}(\delta^{+}(v))}}$$

In words: the number of edges will deviate

from its expectation more than a fraction 1/3 with probability at most $O(\frac{1}{n^{10}})$

Analyzing *H*: in-degree of a vertex

Analyzing *H*: in-degree of a vertex

What is the expected in-degree of v?

It is
$$K \cdot x^* (\delta^-(v)) = 1000 \ln n =: \mu$$

 $K = 1000 \ln n$

The number of outgoing edges is the sum of random independent 0/1 variables

Hence, by standard Chernoff bound $\Pr\left[\left|\left|\delta_{H}^{-}(v)\right| - \mu\right| \ge \frac{\mu}{3}\right] \le e^{-\frac{\mu}{30}} \le \frac{1}{2n^{10x^{*}(\delta^{-}(v))}}$

In words: the number of edges will deviate

from its expectation more than a fraction 1/3 with probability at most $O(\frac{1}{n^{10}})$

Analyzing H: in/out-degree of a set S

What is the expected in-degree of S?

It is
$$K \cdot x^* (\delta^-(S)) = 1000 \ln n \, x^* (\delta^-(S)) =: \mu$$

The number of outgoing edges is the sum of random independent 0/1 variables

Hence, by standard Chernoff bound

$$\Pr\left[\left|\left|\delta_{H}^{-}(S)\right| - \mu\right| \ge \frac{\mu}{3}\right] \le e^{-\frac{\mu}{30}} \le \frac{1}{2n^{10x^{*}(\delta^{-}(S))}}$$

In words: the number of edges will deviate

from its expectation more than a fraction 1/3 with probability at most $O(\frac{1}{n^{10x^*(\delta^-(S))}})$

$$K = 1000 \ln n \ x^*(\delta^-(S))$$

Analyzing *H*: bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate more than a fraction I/3

S is bad in H if

$$\left| |\delta_{H}^{-}(S)| - \mu \right| \ge \frac{\mu}{3} \quad \text{or} \quad \left| |\delta_{H}^{+}(S)| - \mu \right| \ge \frac{\mu}{3}$$
where $\mu = x^{*} (\delta^{-}(S)) = x^{*} (\delta^{+}(S))$

By previous calculations

$$\Pr[S \text{ is bad}] \le \Pr\left[\left|\left|\delta_{H}^{-}(v)\right| - \mu\right| \ge \frac{\mu}{3}\right] + \Pr\left[\left|\left|\delta_{H}^{+}(v)\right| - \mu\right| \ge \frac{\mu}{3}\right]$$
$$\le \frac{1}{n^{10x^{*}(\delta^{+}(S))}}$$

Analyzing *H*: bad cuts

We say that a cut S is bad in H if the incoming and outgoing edges deviate more than a fraction I/3

S is bad in H if

$$\begin{aligned} \left| |\delta_{H}^{-}(S)| - \mu \right| \geq \frac{\mu}{3} \quad \text{or} \quad \left| \left| \delta_{H}^{+}(S) \right| - \mu \right| \geq \frac{\mu}{3} \end{aligned}$$
where $\mu = x^{*} \left(\delta^{-}(S) \right) = x^{*} \left(\delta^{+}(S) \right)$

By previous calculations

$$\Pr[S \text{ is bad}] \le \frac{1}{n^{10x^*(\delta^+(S))}}$$

H is good if no cut is bad

We know that a single cut S is bad w.p $\leq \frac{1}{n^{10x^*(\delta^+(S))}} \leq \frac{1}{n^{10}}$

But 2^n many cuts so we can't make union bound...

BOUNDING NUMBER OF SMALL CUTS:

Karger

Consider an undirected graph G = (V, E) with edge-weights w. Let c be the value of a min-cut.

Then the number of cuts of value αc is at most $\leq n^{2\alpha}$

But our graph is directed, why can we still use the above theorem?

It is Eulerian (w.r.t. to weights x^*) so any cut of out-degree/in-degree c corresponds to a cut of value 2c in the undirected graph

- Cuts of value [1,2] at most $n^{2 \cdot 2}$ many
- Cuts of value [2,3] at most $n^{2\cdot 3}$ many
- Cuts of value [3,4] at most $n^{2\cdot 4}$ many
- Cuts of value [4,5] at most $n^{2\cdot 5}$ many

Prob. that such a cut is bad $n^{-10\cdot 1}$ Prob. that such a cut is bad $n^{-10\cdot 2}$

Prob. that such a cut is bad $n^{-10\cdot 3}$

Prob. that such a cut is bad $n^{-10\cdot 4}$

• Cuts of value [n-I, n] at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot (n-1)}$

- Cuts of value [1,2] at most $n^{2 \cdot 2}$ many
- Cuts of value [2,3] at most $n^{2\cdot 3}$ many
- Cuts of value [3,4] at most $n^{2\cdot 4}$ many
- Cuts of value [4,5] at most $n^{2\cdot 5}$ many

Prob. that such a cut is bad $n^{-10\cdot 1}$ Prob. that such a cut is bad $n^{-10\cdot 2}$

Prob. that such a cut is bad $n^{-10\cdot 3}$

Prob. that such a cut is bad $n^{-10\cdot 4}$

• Cuts of value [n-I, n] at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot (n-1)}$

By union bound, $\Pr[H \text{ is good}] \ge 1 - \sum_{i=1}^{n-1} n^{2 \cdot (i+1) - 10i}$

- Cuts of value [1,2] at most $n^{2 \cdot 2}$ many
- Cuts of value [2,3] at most $n^{2\cdot 3}$ many
- Cuts of value [3,4] at most $n^{2\cdot 4}$ many
- Cuts of value [4,5] at most $n^{2\cdot 5}$ many

Prob. that such a cut is bad $n^{-10\cdot 1}$ Prob. that such a cut is bad $n^{-10\cdot 2}$

Prob. that such a cut is bad $n^{-10\cdot 3}$

Prob. that such a cut is bad $n^{-10\cdot 4}$

• Cuts of value [n-I, n] at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot (n-1)}$

By union bound,

$$\Pr[H \text{ is good}] \ge 1 - \sum_{i=1}^{n-1} n^{2 \cdot (i+1) - 10i} = 1 - \sum_{i=1}^{n-1} \frac{n^2}{n^{8i}}$$

- Cuts of value [1,2] at most $n^{2 \cdot 2}$ many
- Cuts of value [2,3] at most $n^{2\cdot 3}$ many
- Cuts of value [3,4] at most $n^{2\cdot 4}$ many
- Cuts of value [4,5] at most $n^{2\cdot 5}$ many

Prob. that such a cut is bad $n^{-10\cdot 1}$ Prob. that such a cut is bad $n^{-10\cdot 2}$

Prob. that such a cut is bad $n^{-10\cdot 3}$

Prob. that such a cut is bad $n^{-10\cdot 4}$

• Cuts of value [n-I, n] at most $n^{2 \cdot n}$ many Prob. that such a cut is bad $n^{-10 \cdot (n-1)}$

By union bound,

$$\Pr[H \text{ is good}] \ge 1 - \sum_{i=1}^{n-1} n^{2 \cdot (i+1) - 10i} = 1 - \sum_{i=1}^{n-1} \frac{n^2}{n^{8i}} \ge 1 - \frac{1}{n}$$

Randomized Round

Scale up x^* by taking $K \coloneqq 1000 \ln(n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-value

Assuming H is good, then there exists a circulation on H where each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATION THM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$ \bigcirc
- For every $S \subset V$ we must have $l(\delta^{-}(S)) \leq u(\delta^{+}(S))$

Assuming H is good, then there exists a circulation on H where each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATION THM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$ \bigcirc
- For every $S \subset V$ we must have $l(\delta^{-}(S)) \leq u(\delta^{+}(S))$

For second condition,

$$l(\delta_H^-(S)) \le \frac{4}{3} K x^* (\delta^-(S))$$

Assuming H is good, then there exists a circulation on H where each arc has lower bound 1 and upper bound 2

Note that this implies that the cost of a min-cost circulation with lower bound 1 on each edge in H is at most two times the cost of H

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATION THM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$ \mathfrak{S}
- For every $S \subset V$ we must have $l(\delta^{-}(S)) \leq u(\delta^{+}(S))$

For second condition,

$$l\left(\delta_{H}^{-}(S)\right) \leq \frac{4}{3}K x^{*}\left(\delta^{-}(S)\right) = 2\left(1 - \frac{1}{3}\right)K x^{*}\left(\delta^{+}(S)\right)$$

Find an optimal solution x^* to LP relaxation

Scale up x^* by taking $K \coloneqq 1000 \ln(n)$ parallel copies of each edge, each of same LP-value as the original edge

Form H by taking each edge with probability equal to its LP-value

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

• What is the expected cost of *H*?

Find an optimal solution x^* to LP relaxation

Scale up x^* by taking $K \coloneqq 1000 \ln(n)$ parallel copies of each edge, each of same LP-value as the original edge

Form ${\cal H}$ by taking each edge with probability equal to its LP-value

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

• What is the expected cost of H? K times the LP cost

Find an optimal solution x^* to LP relaxation

Scale up x^* by taking $K \coloneqq 1000 \ln(n)$ parallel copies of each edge, each of same LP-value as the original edge

Form ${\cal H}$ by taking each edge with probability equal to its LP-value

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in H

Expected cost of Tour is at most twice the cost of H.

• What is the expected cost of *H*? *K* times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.

But this is $\leq \frac{K}{1-1/n}$ which between friends is $K \ln n$

Find an optimal solution x^* to LP relaxation

Scale up x^* by taking $K \coloneqq 1000 \ln(n)$ parallel copies of each edge, each of same LP-value as the original edge

Form ${\cal H}$ by taking each edge with probability equal to its LP-value

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound 1 for each arc in ${\cal H}$

Expected cost of Tour is at most twice the cost of H.

• What is the expected cost of *H*? *K* times the LP cost

Okay we are interested in expected cost of H conditioned on it being good.

But this is $\leq \frac{K}{1-1/n}$ which between friends is K

THEOREM:

Goemans, Harvey, Jain, Singh'10

Randomized round returns an $O(\log n)$ -approximate tour w.h.p.

Main ingredients

- O(log n) guarantee from ensuring connectivity
- Chernoff bounds ensured concentration which was useful for bounding the parity correction cost
- Karger's result allowed us to apply the union bound in a smart way
Main ingredients

- O(log n) guarantee from ensuring connectivity
- Chernoff bounds ensured concentration which was useful for bounding the parity correction cost
- Karger's result allowed us to apply the union bound in a smart way

SPANNING TREES:

- Always connected
- Negative correlation still allows for the application of Chernoff'bounds

THIN SPANNING TREES

Thin Trees

Thin Trees:

Let T be a spanning tree of G = (V, E, w) and x^* an optimal LP solution. T is α -thin (w.r.t) x^* if for every $S \subset V$

 $|\delta_T(S)| \leq \alpha x^*(\delta^+(S))$

Thin Trees to Tours:

Let T be an α -thin spanning tree of G = (V, E, w) and x^* an optimal LP solution.

Then there is a tour of value at most $w(T) + O(\alpha)OPT_{LP}$

Outline of proof

• The circulation network G that for each edge $e \in E$ has

$$l(e) = \begin{cases} 1, \ e \in T \\ 0, \ e \notin T \end{cases} \quad \text{and} \ u(e) = l(e) + \alpha x_e^* \end{cases}$$

has a feasible circulation.

Remains to prove this!

- This circulation has cost at most $\sum_{e \in E} u(e)w(e) \le w(T) + \alpha OPT_{LP}$
- Hence, there is an integral min-cost circulation satisfying the lower bounds of cost at most $w(T) + \alpha OPT_{LP}$

The circulation network G that for each edge $e \in E$ has $l(e) = \begin{cases} 1, \ e \in T \\ 0, \ e \notin T \end{cases}$ and $u(e) = l(e) + \alpha x_e^*$ has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATION THM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$ \mathfrak{S}
- For every $S \subset V$ we must have $l(\delta^{-}(S)) \leq u(\delta^{+}(S))$

For second condition,

$$l(\delta^{-}(S)) \leq \alpha x^{*}(\delta^{-}(S))$$

because tree is α -thin

The circulation network G that for each edge $e \in E$ has $l(e) = \begin{cases} 1, \ e \in T \\ 0, \ e \notin T \end{cases}$ and $u(e) = l(e) + \alpha x_e^*$ has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN's CIRCULATION THM:

- For every arc $e \in E$ we must have $l(e) \leq u(e)$ \mathfrak{S}
- For every $S \subset V$ we must have $l(\delta^{-}(S)) \leq u(\delta^{+}(S))$

For second condition,

$$l(\delta^{-}(S)) \leq \alpha x^{*}(\delta^{-}(S)) = \alpha x^{*}(\delta^{+}(S)) \leq u(\delta^{+}(S))$$

$$\uparrow$$
because tree is α -thin by def of u

Thin Trees to Tours:

Let T be an α -thin spanning tree of G = (V, E, w) and x^* an optimal LP solution.

Then there is a tour of value at most $w(T) + O(\alpha)OPT_{LP}$

METHODS FOR FINDING THIN TREES

Spanning Tree Round

Find an optimal solution x^* to LP relaxation

Let $z_{\{uv\}} = (x_{uv}^* + x_{vu}^*) \cdot (1 - \frac{1}{n})$ be a feasible point to the spanning tree polytope and sample a spanning tree T with negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound $1 \ {\rm for \ each \ arc \ in \ spanning \ tree}$

- What is the expected cost of the spanning tree? $\left(1 \frac{1}{n}\right) OPT_{LP}$
- How thin is the tree? We can apply upper Chernoff bound:

For any $S \subset V$, $\Pr[|\delta_T(S)| > 1000 \frac{\log n}{\log \log n} x^*(\delta^+(S))] < \frac{1}{n^{10x^*(\delta^+(S))}}$

This together with Karger implies that the tree is w.h.p $O\left(\frac{\log n}{\log \log n}\right)$ -thin

Spanning Tree Round

Theorem:

Find an optimal solution x^* to LP relaxation

Let $z_{\{uv\}} = (x_{uv}^* + x_{vu}^*) \cdot (1 - \frac{1}{n})$ be a feasible point to the spanning tree polytope and sample a spanning tree T with negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost circulation with lower bound $1 \ {\rm for} \ {\rm each} \ {\rm arc}$ in spanning tree

• What is the expected cost of the spanning tree? $\left(1 - \frac{1}{n}\right) OPT_{LP}$

Asadpour, Goemans, Madry, Oveis Gharan, Saberi'10

Spanning tree algorithm is a $O\left(\frac{\log n}{\log \log n}\right)$ -approximation algorithm for ATSP

$$\Pr[|\delta_T(S)| > 1000 \ \frac{\log n}{\log \log n} x^*(\delta^+(S))] < \frac{1}{n^{10x^*(\delta^+(S))}}$$

This together with Karger implies that the tree is w.h.p $O\left(\frac{\log n}{\log \log n}\right)$ -thin

State of the Art of Thin Tree Approach

 $O(poly \log \log n)$ bound on the integrality gap

Two Approaches

Easy to Find Eulerian graph

Repeatedly find cycle-covers to get $\log_2 n$ -approximation

[Frieze, Galbiati, Maffiolo'82]

0.99 log₂ *n*-approximation [Bläser'03]

0.84 log₂ *n*-approximation [Kaplan, Lewenstein, Shafrir, Sviridenko'05]

 $0.67 \log_2 n$ -approximation

[Feige, Singh'07]

Easy to Find Connected Graph

O(log n / log log n)-approximation [Asadpour, Goemans, Madry, Oveis Gharan, Saberi'10]

O(1)-approximation for planar and bounded genus graphs

[Oveis Gharan, Saberi'l I]

 $O(poly \log \log n)$ bound on integrality gap (generalization of Kadison-Singer) [Anari, Oveis Gharan'14]

To summarize the two approaches

Best approximation algorithm: $O(\frac{\log n}{\log \log n})$

Best upper bound on integrality gap: $O(poly \log \log n)$

Best lower bound on integrality gap: 2

This is believed to be close to the truth

No better guarantees for shortest path metrics on unweighted graphs for which there was recent improvements for the symmetric TSP

To summarize the two approaches

Best approximation algorithm: $O(\frac{\log n}{\log \log n})$

Best upper bound on integrality gap: $O(poly \log \log n)$

Best lower bound on integrality gap: 2

This is believed to be close to the truth

No better guarantees for shortest path metrics on unweighted graphs for which there was recent improvements for the symmetric TSP

- Main difficulty in cycle cover approach is to bound #iterations
- In thin-tree approach we reduce ATSP to an unweighted problem

Find Eulerian graph with some connectivity requirements

A NEW APPROACH

Relaxing Connectivity

THEOREM:

For ATSP on node-weighted graphs, the integrality gap is at most 15.

Moreover, there is a 27-approximation algorithm.

THEOREM:

For ATSP on node-weighted graphs, the integrality gap is at most 15.

Moreover, there is a 27-approximation algorithm.

Exist $f: V \to R^+$ s.t

w(u, v) = f(u) for all $(u, v) \in E$

THEOREM:

For ATSP on node-weighted graphs, the integrality gap is at most 15.

Moreover, there is a 27-approximation algorithm.

THEOREM:

For ATSP on node-weighted graphs, the integrality gap is at most 15.

Moreover, there is a 27-approximation algorithm.

Generalizes shortest path metrics considered for symmetric TSP

Cousin to repeated cycle cover approach

Distant relative to thin tree approach

OUR APPROACH

Relaxing Connectivity

INPUT: an edge-weighted digraph G = (V, E, w), a partition $V_1 \cup \cdots \cup V_k$ of V

INPUT: an edge-weighted digraph G = (V, E, w), a partition $V_1 \cup \cdots \cup V_k$ of V

OUTPUT: an Eulerian multisubset of edges F such that

each cut $(V_i, \overline{V_i})$ is "covered" by F

INPUT: an edge-weighted digraph G = (V, E, w), a partition $V_1 \cup \cdots \cup V_k$ of V

OUTPUT: an Eulerian multisubset of edges F such that

each cut $(V_i, \overline{V_i})$ is "covered" by F

An algorithm is α -light if it always outputs a solution F s.t.

for each component in
$$(V, F)$$
, $\frac{\#edges}{\#vertices} \leq \alpha$,

Note: designing an α -light algorithm is "easier" than an α -approximation for ATSP

Our main technical result

THEOREM:

If there is an α -light algorithm **A** for Local-Connectivity ATSP then the integrality gap for ATSP is at most 5α .

Our main technical result

THEOREM:

If there is an α -light algorithm **A** for Local-Connectivity ATSP then the integrality gap for ATSP is at most 5α .

Moreover, a 9α -approximate tour can be found in polynomial time if **A** runs in polynomial time.

The problems are equivalent up to a small constant factor

There is an easy 3-light algorithm for node-weighted metric (only part where special metric is used)

PROOF IDEA OF MAIN THM

Cost of red edges $\leq \alpha OPT$

Cost of red edges $\leq \alpha OPT$

Cost of red edges $\leq \alpha OPT$

Cost of red edges $\leq \alpha OPT$ **Cost of blue edges** $\leq \alpha OPT$

Cost of red edges $\leq \alpha OPT$

Cost of blue edges $\leq \alpha OPT$

Total cost \leq #*iterations* $\cdot \alpha OPT \leq log(n) \cdot \alpha OPT$

Lexicographic Initialization
$H_1^* =$ largest connected component that has 2α -light tour

 $H_1^* =$ largest connected component that has 2α -light tour

 $H_1^* =$ largest connected component that has 2α -light tour

If red tour is α -light then $|F| \leq \alpha |V_1^*|$

Why? Otherwise F spans more than $|V_1^*|$ vertices and this should be our largest component!

- $H_1^* =$ largest connected component that has 2α -light tour
- $H_2^* =$ largest disjoint connected component that has 2α -light tour

- $H_1^* =$ largest connected component that has 2α -light tour
- $H_2^* =$ largest disjoint connected component that has 2α -light tour

 $H_1^* =$ largest connected component that has 2α -light tour

 $H_2^* =$ largest disjoint connected component that has 2α -light tour

 $H_k^* =$ largest disjoint connected component that has 2α -light tour

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Cost of initialization at most $2\alpha OPT$ since each component is 2α -light

Suppose we can connect graph by adding α -light components so that we charge at most one to each component of initialization

Then total cost $\leq 3 \alpha OPT$

Some open problems...

Node-Weighted Symmetric TSP

• distance of $\{u, v\} \in E$ is w(u) + w(v)

Can you do better than Christofides (1.5)?

Constant for ATSP on General Metrics?

THIN TREE:

Does any k-edge connected graph have a O(1)-thin tree, i.e., a tree T such that for each $S \subset V$,

 $|\delta_T(S)| \le \frac{\alpha}{k} |\delta_G(S)| ?$

LOCAL-CONNECTIVITY ATSP:

Can you design a O(1)-light algorithm for general metrics?

- Overview of Existing Approaches
- New approach that relaxes connectivity
- Integrality gap for node-weighted metrics is ≤ 13
- Nice Open Questions both for Symmetric and Asymmetric TSP

#