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Asymmetric Traveling Salesman Problem

INPUT: a complete digraph 𝐺 = 𝑉, 𝐸 with pairwise (not necessarily symmetric) 

distances that satisfy the triangle inequality

OUTPUT: a tour of minimum weight that visits each vertex once



Held-Karp Relaxation of ATSP

Variables: 𝑥𝑢𝑣 = “indicate whether arc 𝑢, 𝑣 is used in tour”

Minimize:  𝑢𝑣∈𝐸𝑤(𝑢, 𝑣) 𝑥𝑢𝑣

Subject to: 𝒙 𝜹+ 𝒗 = 𝒙 𝜹− 𝒗 = 𝟏 for all 𝑣 ∈ 𝑉

𝒙 𝜹+ 𝑺 ≥ 𝟏 for all S ⊂ 𝑉

𝑥 ≥ 0

Held-Karp Relaxation



TOOLS FOR ROUNDING LP



Circulations

INPUT: a digraph 𝐺 = 𝑉, 𝐸 and for each arc 𝑒 ∈ 𝐸

a lower bound 𝑙 𝑒 ≥ 0 and an upper bound 𝑢 𝑒 ≥ 0

OUTPUT: a circulation 𝑓: 𝐸 → 𝑅+ satisfying

flow conservation:  𝑓 𝛿+ 𝑣 = 𝑓 𝛿− 𝑣 for each 𝑣 ∈ 𝑉

edge bounds: 𝑙 𝑒 ≤ 𝑓 𝑒 ≤ 𝑢 𝑒 for each 𝑒 ∈ 𝐸

Blue edges have lower bound 1 and upper bound 2

Red edges have lower bound 0 and upper bound ∞



Circulations

INPUT: a digraph 𝐺 = 𝑉, 𝐸 and for each arc 𝑒 ∈ 𝐸

a lower bound 𝑙 𝑒 ≥ 0 and an upper bound 𝑢 𝑒 ≥ 0

OUTPUT: a circulation 𝑓: 𝐸 → 𝑅+ satisfying

flow conservation:  𝑓 𝛿+ 𝑣 = 𝑓 𝛿− 𝑣 for each 𝑣 ∈ 𝑉

edge bounds: 𝑙 𝑒 ≤ 𝑓 𝑒 ≤ 𝑢 𝑒 for each 𝑒 ∈ 𝐸

Blue edges have lower bound 1 and upper bound 2

Red edges have lower bound 0 and upper bound ∞

Can be calculated in polytime and also a min cost circulation can be found



When does a circulation exist?

NECESSARY CONDITIONS:

• For every arc 𝑒 ∈ 𝐸 we must have 𝑙 𝑒 ≤ 𝑢(𝑒)

• For every 𝑆 ⊂ 𝑉 we must have 𝑙 𝛿− 𝑆 ≤ 𝑢 𝛿+ 𝑆

HOFFMAN’s CIRCULATION THEOREM: 

The above conditions are also sufficient. 

Furthermore, if 𝑙 and 𝑢 are integer valued, the circulation 𝑓 can be 

chosen to be integral.

Hoffman’60



RANDOMIZED LP 

ROUNDING

Basic idea select a subset of edges and make it Eulerian by finding a 

circulation



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 100ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 100ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 100ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻

Taken with probability 𝑥𝑒
∗



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 100ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 100ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻



What’s the problem?

• With high probability the sampled graph 𝐻 is not even connected 

• So we will return an Eulerian graph but it is not connected 



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 1000ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻

Well connected?

Eulerian?



Analyzing 𝐻: out-degree of a vertex

What is the expected out-degree of v?

v

𝐾 = 1000 ln 𝑛

It is 𝐾 ⋅ 𝑥∗ 𝛿+ 𝑣 = 1000 ln 𝑛 =: 𝜇

The number of outgoing edges is the sum of random independent 0/1 

variables

Hence, by standard Chernoff bound

Pr 𝛿𝐻
+ 𝑣 − 𝜇 ≥

𝜇

3
≤ 𝑒−

𝜇
30 ≤

1

2𝑛10𝑥
∗(𝛿+ 𝑣 )

In words: the number of edges will deviate

from its expectation more than a fraction 1/3 with 

probability at most O(
1

n10
)



Analyzing 𝐻: in-degree of a vertex



Analyzing 𝐻: in-degree of a vertex

What is the expected in-degree of v?

v

𝐾 = 1000 ln 𝑛

It is 𝐾 ⋅ 𝑥∗ 𝛿− 𝑣 = 1000 ln 𝑛 =: 𝜇

The number of outgoing edges is the sum of random independent 0/1 

variables

Hence, by standard Chernoff bound

Pr 𝛿𝐻
− 𝑣 − 𝜇 ≥

𝜇

3
≤ 𝑒−

𝜇
30 ≤

1

2𝑛10𝑥
∗(𝛿− 𝑣 )

In words: the number of edges will deviate

from its expectation more than a fraction 1/3 with 

probability at most O(
1

n10
)



Analyzing 𝐻: in/out-degree of a set 𝑆

What is the expected in-degree of 𝑆?

𝐾 = 1000 ln 𝑛 𝑥∗(𝛿− 𝑆 )

It is 𝐾 ⋅ 𝑥∗ 𝛿− 𝑆 = 1000 ln 𝑛 𝑥∗(𝛿−(𝑆)) =: 𝜇

The number of outgoing edges is the sum of random independent 0/1 

variables

Hence, by standard Chernoff bound

Pr 𝛿𝐻
− 𝑆 − 𝜇 ≥

𝜇

3
≤ 𝑒−

𝜇
30 ≤

1

2𝑛10𝑥
∗(𝛿− 𝑆 )

In words: the number of edges will deviate

from its expectation more than a fraction 1/3 with 

probability at most O(
1

n10x
∗(𝛿− 𝑆 ))

S



Analyzing 𝐻: bad cuts

We say that a cut 𝑆 is bad in 𝐻 if the incoming and outgoing edges deviate 

more than a fraction1/3

𝑆 is bad in 𝐻 if 

𝛿𝐻
− 𝑆 − 𝜇 ≥

𝜇

3
or    𝛿𝐻

+ 𝑆 − 𝜇 ≥
𝜇

3

where 𝜇 = 𝑥∗ 𝛿− 𝑆 = 𝑥∗(𝛿+ 𝑆 )

By previous calculations 

Pr 𝑆 𝑖𝑠 𝑏𝑎𝑑 ≤Pr 𝛿𝐻
− 𝑣 − 𝜇 ≥

𝜇

3
+ Pr 𝛿𝐻

+ 𝑣 − 𝜇 ≥
𝜇

3

≤
1

𝑛10𝑥
∗(𝛿+ 𝑆 )



Analyzing 𝐻: bad cuts

We say that a cut 𝑆 is bad in 𝐻 if the incoming and outgoing edges deviate 

more than a fraction1/3

𝑆 is bad in 𝐻 if 

𝛿𝐻
− 𝑆 − 𝜇 ≥

𝜇

3
or    𝛿𝐻

+ 𝑆 − 𝜇 ≥
𝜇

3

where 𝜇 = 𝑥∗ 𝛿− 𝑆 = 𝑥∗(𝛿+ 𝑆 )

By previous calculations 

𝐏𝐫 𝑺 𝒊𝒔 𝒃𝒂𝒅 ≤Pr 𝛿𝐻
− 𝑣 − 𝜇 ≥

𝜇

3
+ Pr 𝛿𝐻

+ 𝑣 − 𝜇 ≥
𝜇

3

≤
𝟏

𝒏𝟏𝟎𝒙∗(𝜹+ 𝑺 )



Probability that 𝐻 is good?

𝑯 is good if no cut is bad

We know that  a single cut S is bad w.p ≤
1

𝑛
10𝑥∗ 𝛿+ 𝑆

≤
1

𝑛10

But 𝟐𝒏 many cuts so we can’t make union bound…



Remedy: beautiful result by Karger

BOUNDING NUMBER OF SMALL CUTS: 

Consider an undirected graph 𝐺 = (𝑉, 𝐸) with edge-weights 𝑤. Let 

𝑐 be the value of a min-cut.

Then the number of cuts of value 𝛼𝑐 is at most ≤ 𝑛2𝛼

Karger

But our graph is directed, why can we still use the above theorem?

It is Eulerian (w.r.t. to weights 𝑥∗) so any cut of out-degree/in-degree c 

corresponds to a cut of value 2c in the undirected graph



Probability that 𝐻 is good?

• Cuts of value [1,2] at most 𝑛2⋅2 many

• Cuts of value [2,3] at most 𝑛2⋅3 many

• Cuts of value [3,4] at most 𝑛2⋅4 many 

• Cuts of value [4,5] at most 𝑛2⋅5 many

• Cuts of value [n-1, n] at most 𝑛2⋅𝑛 many 

Prob. that such a cut is bad 𝑛−10⋅1

Prob. that such a cut is bad 𝑛−10⋅2

Prob. that such a cut is bad 𝑛−10⋅3

Prob. that such a cut is bad 𝑛−10⋅4

Prob. that such a cut is bad 𝑛−10⋅(𝑛−1)



Probability that 𝐻 is good?

• Cuts of value [1,2] at most 𝑛2⋅2 many

• Cuts of value [2,3] at most 𝑛2⋅3 many
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By union bound,

Pr 𝐻 𝑖𝑠 𝑔𝑜𝑜𝑑 ≥ 1 −  

𝑖=1

𝑛−1

𝑛2⋅ 𝑖+1 −10𝑖 = 1 −  

𝑖=1

𝑛−1
𝑛2

𝑛8𝑖
≥ 1 −

1

𝑛
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Probability that 𝐻 is good?
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Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 1000ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻

Well connected?

Eulerian?

So w.h.p. 𝑯 is well connected and almost Eulerian

We will use these facts to bound the cost of the last step



Assuming  𝑯 is good, then there exists a circulation on 𝑯 where 

each arc has lower bound 𝟏 and upper bound 𝟐

Note that this implies that the cost of a min-cost circulation with lower 

bound 1 on each edge in 𝐻 is at most two times the cost of 𝐻

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATION THM:

• For every arc 𝑒 ∈ 𝐸 we must have 𝑙 𝑒 ≤ 𝑢(𝑒)

• For every 𝑆 ⊂ 𝑉 we must have 𝑙 𝛿− 𝑆 ≤ 𝑢 𝛿+ 𝑆



Assuming  𝑯 is good, then there exists a circulation on 𝑯 where 

each arc has lower bound 𝟏 and upper bound 𝟐

Note that this implies that the cost of a min-cost circulation with lower 

bound 1 on each edge in 𝐻 is at most two times the cost of 𝐻

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATION THM:

• For every arc 𝑒 ∈ 𝐸 we must have 𝑙 𝑒 ≤ 𝑢(𝑒)

• For every 𝑆 ⊂ 𝑉 we must have 𝑙 𝛿− 𝑆 ≤ 𝑢 𝛿+ 𝑆

For second condition,

𝑙 𝛿𝐻
− 𝑆 ≤

4

3
𝐾 𝑥∗ 𝛿− 𝑆 = 2 1 −

1

3
𝐾 𝑥∗ 𝛿+ 𝑆 ≤ 𝑢(𝛿𝐻

+ 𝑆 )



Assuming  𝑯 is good, then there exists a circulation on 𝑯 where 

each arc has lower bound 𝟏 and upper bound 𝟐

Note that this implies that the cost of a min-cost circulation with lower 

bound 1 on each edge in 𝐻 is at most two times the cost of 𝐻

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATION THM:

• For every arc 𝑒 ∈ 𝐸 we must have 𝑙 𝑒 ≤ 𝑢(𝑒)
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Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 1000ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻

Expected cost of Tour is at most twice the cost of 𝐻.

• What is the expected cost of 𝑯? 
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Expected cost of Tour is at most twice the cost of 𝐻.

• What is the expected cost of 𝑯? 𝐾 times the LP cost



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 1000ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻

Expected cost of Tour is at most twice the cost of 𝐻.

• What is the expected cost of 𝑯? 𝐾 times the LP cost

Okay we are interested in expected cost of 𝐻 conditioned on it being good.

But this is  ≤
𝐾

1−1/𝑛
which between friends is 𝐾 𝑙𝑛 𝑛



Randomized Round

Find an optimal solution 𝑥∗ to LP relaxation

Scale up 𝑥∗ by taking 𝐾 ≔ 1000ln 𝑛 parallel copies of each 

edge, each of same LP-value as the original edge

Form 𝐻 by taking each edge with probability equal to its LP-

value

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in 𝐻

Expected cost of Tour is at most twice the cost of 𝐻.

• What is the expected cost of 𝑯? 𝐾 times the LP cost

Okay we are interested in expected cost of 𝐻 conditioned on it being good.

But this is  ≤
𝐾

1−1/𝑛
which between friends is 𝐾

THEOREM: 

Randomized round returns an 𝑂(log 𝑛)-approximate tour w.h.p.

Goemans, Harvey, Jain, Singh’10



Main ingredients

• O(log n) guarantee from ensuring 

connectivity

• Chernoff bounds ensured 

concentration which was useful for 

bounding the parity correction cost

• Karger’s result allowed us to apply 

the union bound in a smart way



Main ingredients

• O(log n) guarantee from ensuring 

connectivity

• Chernoff bounds ensured 

concentration which was useful for 

bounding the parity correction cost

• Karger’s result allowed us to apply 

the union bound in a smart way

SPANNING TREES:

• Always connected

• Negative correlation still allows for 

the application of Chernoff’bounds



THIN SPANNING TREES



Thin Trees

Thin Trees: 

Let 𝑇 be a spanning tree of  𝐺 = (𝑉, 𝐸, 𝑤) and 𝑥∗ an optimal LP solution.

𝑻 is 𝜶-thin (w.r.t) 𝒙∗ if for every 𝑺 ⊂ 𝑽

𝜹𝑻 𝑺 ≤ 𝜶𝒙∗(𝜹+ 𝑺 )

Thin Trees to Tours: 

Let 𝑇 be an 𝛼-thin spanning tree of  𝐺 = (𝑉, 𝐸, 𝑤) and 𝑥∗ an optimal LP 

solution.

Then there is a tour of value at most 𝒘 𝑻 + 𝑶 𝜶 𝑶𝑷𝑻𝑳𝑷



Outline of proof

• The circulation network 𝐺 that for each edge 𝑒 ∈ 𝐸 has

𝑙 𝑒 =  
1, 𝑒 ∈ 𝑇
0, 𝑒 ∉ 𝑇

and 𝑢 𝑒 = 𝑙 𝑒 + 𝛼𝑥𝑒
∗

has a feasible circulation.

• This circulation has cost at most  𝑒∈𝐸 𝑢 𝑒 𝑤(𝑒) ≤ 𝑤 𝑇 + 𝛼𝑂𝑃𝑇𝐿𝑃

• Hence, there is an integral min-cost circulation satisfying the lower bounds 

of cost at most 𝑤 𝑇 + 𝛼𝑂𝑃𝑇𝐿𝑃

Remains to prove this!



The circulation network 𝐺 that for each edge 𝑒 ∈ 𝐸 has

𝑙 𝑒 =  
1, 𝑒 ∈ 𝑇
0, 𝑒 ∉ 𝑇

and 𝑢 𝑒 = 𝑙 𝑒 + 𝛼𝑥𝑒
∗

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATION THM:

• For every arc 𝑒 ∈ 𝐸 we must have 𝑙 𝑒 ≤ 𝑢(𝑒)

• For every 𝑆 ⊂ 𝑉 we must have 𝑙 𝛿− 𝑆 ≤ 𝑢 𝛿+ 𝑆

For second condition,

𝑙 𝛿− 𝑆 ≤ 𝛼𝑥∗ 𝛿− 𝑆 = 𝛼𝑥∗ 𝛿+ 𝑆 ≤ 𝑢(𝛿+ 𝑆 )

because tree is 𝛼-thin



The circulation network 𝐺 that for each edge 𝑒 ∈ 𝐸 has

𝑙 𝑒 =  
1, 𝑒 ∈ 𝑇
0, 𝑒 ∉ 𝑇

and 𝑢 𝑒 = 𝑙 𝑒 + 𝛼𝑥𝑒
∗

has a feasible circulation.

VERIFY CONDITIONS FROM HOFFMAN’s CIRCULATION THM:

• For every arc 𝑒 ∈ 𝐸 we must have 𝑙 𝑒 ≤ 𝑢(𝑒)

• For every 𝑆 ⊂ 𝑉 we must have 𝑙 𝛿− 𝑆 ≤ 𝑢 𝛿+ 𝑆

For second condition,

𝑙 𝛿− 𝑆 ≤ 𝛼𝑥∗ 𝛿− 𝑆 = 𝛼𝑥∗ 𝛿+ 𝑆 ≤ 𝑢(𝛿+ 𝑆 )

because tree is 𝛼-thin by  def. of u



Thin Trees to Tours: 

Let 𝑇 be an 𝛼-thin spanning tree of  𝐺 = (𝑉, 𝐸, 𝑤) and 𝑥∗ an optimal LP 

solution.

Then there is a tour of value at most 𝒘 𝑻 + 𝑶 𝜶 𝑶𝑷𝑻𝑳𝑷

METHODS FOR FINDING 

THIN TREES



Spanning Tree Round

• What is the expected cost of the spanning tree? 1 −
1

𝑛
𝑂𝑃𝑇𝐿𝑃

• How thin is the tree? We can apply upper Chernoff bound: 

Find an optimal solution 𝑥∗ to LP relaxation

Let 𝑧 𝑢𝑣 = (𝑥𝑢𝑣
∗ +𝑥𝑣𝑢

∗ ) ⋅ 1 −
1

𝑛
be a feasible point to the 

spanning tree polytope and sample a spanning tree T with 

negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in spanning tree

Pr |𝛿𝑇 𝑆 > 1000
log 𝑛

log log 𝑛
𝑥∗(𝛿+ 𝑆 )] <

1

𝑛10𝑥
∗(𝛿+ 𝑆 )

For any 𝑆 ⊂ 𝑉,

This together with Karger implies that the tree is w.h.p 𝑶
𝐥𝐨𝐠 𝒏

𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏
-thin



Spanning Tree Round

• What is the expected cost of the spanning tree? 1 −
1

𝑛
𝑂𝑃𝑇𝐿𝑃

• How thin is the tree? We can apply upper Chernoff bound: 

Find an optimal solution 𝑥∗ to LP relaxation

Let 𝑧 𝑢𝑣 = (𝑥𝑢𝑣
∗ +𝑥𝑣𝑢

∗ ) ⋅ 1 −
1

𝑛
be a feasible point to the 

spanning tree polytope and sample a spanning tree T with 

negative correlation satisfying these marginals

Compute Eulerian graph by finding an (integral) min cost 

circulation with lower bound 1 for each arc in spanning tree

Pr |𝛿𝑇 𝑆 > 1000
log 𝑛

log log 𝑛
𝑥∗(𝛿+ 𝑆 )] <

1

𝑛10𝑥
∗(𝛿+ 𝑆 )

For any 𝑆 ⊂ 𝑉,

This together with Karger implies that the tree is w.h.p 𝑶
𝐥𝐨𝐠 𝒏

𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏
-thin

Theorem: 

Spanning tree algorithm is a 𝑶
𝒍𝒐𝒈 𝒏

𝒍𝒐𝒈 𝒍𝒐𝒈 𝒏
-approximation algorithm for ATSP

Asadpour, Goemans, Madry, Oveis Gharan, Saberi’10



State of the Art of Thin Tree Approach

Theorem: 

A randomized polytime algorithm gives a 𝑶
𝒍𝒐𝒈 𝒏

𝒍𝒐𝒈 𝒍𝒐𝒈 𝒏
-thin tree

Asadpour, Goemans, Madry, Oveis Gharan, Saberi’10

Theorem: 

There exists a 𝑶 𝒑𝒐𝒍𝒚𝒍𝒐𝒈𝒍𝒐𝒈 𝒏 -thin tree

Anari, Oveis Gharan’14

These results imply a  𝑂
log 𝑛

log log 𝑛
-approximation algorithm and a 

𝑂(𝑝𝑜𝑙𝑦 log log 𝑛) bound on the integrality gap



Two Approaches

Easy to Find Eulerian graph

Repeatedly find cycle-covers to get 

log2 𝑛-approximation                  

[Frieze, Galbiati, Maffiolo’82]

0.99 log2 𝑛-approximation
[Bläser’03]

0.84 log2 𝑛-approximation                  
[Kaplan, Lewenstein, Shafrir, Sviridenko’05]

0.67 log2 𝑛-approximation                  

[Feige, Singh’07]

Easy to Find Connected Graph

𝑂(log 𝑛 / log log 𝑛)-approximation
[Asadpour, Goemans, Madry, Oveis Gharan, Saberi’10]

𝑂(1)-approximation for planar and 

bounded genus graphs 

[Oveis Gharan, Saberi’11]

O(𝑝𝑜𝑙𝑦 𝑙𝑜𝑔 log 𝑛) bound on integrality gap 
(generalization of Kadison-Singer) 

[Anari, Oveis Gharan’14]



To summarize the two approaches

Best approximation algorithm:  𝑂(
log 𝑛

log log 𝑛
)

Best upper bound on integrality gap: 𝑂(𝑝𝑜𝑙𝑦 log log 𝑛)

Best lower bound on integrality gap:  2
This is believed to be 

close to the truth

No better guarantees for shortest path metrics on unweighted

graphs for which there was recent improvements for the symmetric TSP 

Oveis Gharan, Saberi & Singh

Mömke & S

Mucha
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1,48
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To summarize the two approaches

Best approximation algorithm:  𝑂(
log 𝑛

log log 𝑛
)

Best upper bound on integrality gap: 𝑂(𝑝𝑜𝑙𝑦 log log 𝑛)

Best lower bound on integrality gap:  2
This is believed to be 

close to the truth

No better guarantees for shortest path metrics on unweighted

graphs for which there was recent improvements for the symmetric TSP 

• Main difficulty in cycle cover approach is to bound #iterations

• In thin-tree approach we reduce ATSP to an unweighted problem



A NEW APPROACH

Find Eulerian graph with some connectivity requirements



Relaxing Connectivity

𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹+ 𝑺 ≥ 𝟏 for all 𝐒 ⊂ 𝑽

𝑥 ≥ 0

Instead of

𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹+ 𝑺 ≥ 𝟏 for those 𝐒 ∈ 𝑪

𝑥 ≥ 0

Do for smart C



Application of approach

THEOREM: 

For ATSP on node-weighted graphs, the integrality gap is at most 15.

Moreover, there is a 27-approximation algorithm.
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Application of approach

THEOREM: 

For ATSP on node-weighted graphs, the integrality gap is at most 15.

Moreover, there is a 27-approximation algorithm.

Exist 𝑓: 𝑉 → 𝑅+ s.t 

𝑤(𝑢, 𝑣) = 𝑓(𝑢) for all 𝑢, 𝑣 ∈ 𝐸

2

5

1

5

5 11

2

5

1Value = 2+5+1+5+1=14

Generalizes shortest path metrics considered for symmetric TSP



OUR APPROACH

Cousin to repeated cycle cover approach

Distant relative to thin tree approach



Relaxing Connectivity

𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹+ 𝑺 ≥ 𝟏 for all 𝐒 ⊂ 𝑽

𝑥 ≥ 0

Instead of

𝒙 𝜹+ 𝒗 = 𝒙(𝜹− 𝒗 ) for all 𝑣 ∈ 𝑉

𝒙 𝜹+ 𝑺 ≥ 𝟏 for those 𝐒 ∈ 𝑪

𝑥 ≥ 0

Do for smart C



Local Connectivity ATSP

INPUT: an edge-weighted digraph 𝐺 = 𝑉, 𝐸,𝑤 , a partition 𝑉1 ∪⋯∪ 𝑉𝑘 of 𝑉
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OUTPUT: an Eulerian multisubset of edges 𝐹 such that 

each cut (𝑉𝑖 ,  𝑉𝑖) is “covered” by 𝐹



Local Connectivity ATSP

INPUT: an edge-weighted digraph 𝐺 = 𝑉, 𝐸,𝑤 , a partition 𝑉1 ∪⋯∪ 𝑉𝑘 of 𝑉

OUTPUT: an Eulerian multisubset of edges 𝐹 such that 

each cut (𝑉𝑖 ,  𝑉𝑖) is “covered” by 𝐹



Local Connectivity ATSP

An algorithm is 𝜶-light if it always outputs a solution 𝐹 s.t.

for each component in (𝑽, 𝑭),   
#𝒆𝒅𝒈𝒆𝒔

#𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔
≤ 𝜶,

6

5

1

Note: designing an 𝜶-light algorithm is “easier” than an 𝜶-approximation for ATSP



Our main technical result

THEOREM: 

If there is an 𝛼-light algorithm A for Local-Connectivity ATSP then the  

integrality gap for ATSP is at most 5𝛼.



Our main technical result

THEOREM: 

If there is an 𝛼-light algorithm A for Local-Connectivity ATSP then the  

integrality gap for ATSP is at most 5𝛼.

Moreover, a 9𝛼-approximate tour can be found in polynomial time if A runs 

in polynomial time.

The problems are equivalent up to a small constant factor 

There is an easy 3-light algorithm for node-weighted metric 

(only part where special metric is used)



PROOF IDEA OF MAIN THM



Repeatedly solve Local-Connectivity ATSP 

with the current connected subgraphs as partitions
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Repeatedly solve Local-Connectivity ATSP 

with the current connected subgraphs as partitions

Cost of red edges ≤ 𝜶𝑶𝑷𝑻

Cost of blue edges≤ 𝜶𝑶𝑷𝑻

Total cost ≤ #𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 ⋅ 𝜶𝑶𝑷𝑻 ≤ 𝒍𝒐𝒈 𝒏 ⋅ 𝜶𝑶𝑷𝑻



Lexicographic Initialization



𝑯𝟏
∗ = largest connected component  that has 𝟐𝜶-light tour

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Lexicographic Initialization



𝑯𝟏
∗ = largest connected component  that has 𝟐𝜶-light tour

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Lexicographic Initialization

If red tour is 𝛼-light then |F| ≤ 𝛼|𝑉1
∗|

Why? 
F



𝑯𝟏
∗ = largest connected component  that has 2𝜶-light tour

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Lexicographic Initialization

If red tour is 𝛼-light then |F| ≤ 𝛼|𝑉1
∗|

Why? Otherwise 𝐹 spans more than 

𝑉1
∗ vertices and this should be 

our largest component!

F



𝑯𝟏
∗ = largest connected component  that has 𝟐𝜶-light tour

𝑯𝟐
∗ = largest disjoint connected component  that has 2𝜶-light tour

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Lexicographic Initialization

F

Intersects 𝐻2
∗ but not 𝐻1

∗:

𝐹 ≤ 𝛼|𝑉2
∗|

𝐻2
∗



𝑯𝟏
∗ = largest connected component  that has 𝟐𝜶-light tour

𝑯𝟐
∗ = largest disjoint connected component  that has 𝟐𝜶-light tour

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Lexicographic Initialization

𝐻2
∗



𝑯𝟏
∗ = largest connected component  that has 𝟐𝜶-light tour

𝑯𝟐
∗ = largest disjoint connected component  that has 𝟐𝜶-light tour

𝑯𝒌
∗ = largest disjoint connected component  that has 𝟐𝜶-light tour

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Lexicographic Initialization

𝐻2
∗

…

𝐻3
∗

𝐻4
∗

𝐻5
∗ 𝐻6

∗ 𝐻7
∗



Cost of initialization at most 𝟐𝜶𝑶𝑷𝑻 since each component is 𝟐𝜶-light

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Wish List for Merging Step

𝐻2
∗ 𝐻3

∗

𝐻4
∗

𝐻5
∗ 𝐻6

∗ 𝐻7
∗



Cost of initialization at most 𝟐𝜶𝑶𝑷𝑻 since each component is 𝟐𝜶-light

Suppose we can connect graph by adding 𝜶-light components so that

we charge at most one to each component of initialization
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Cost of initialization at most 𝟐𝜶𝑶𝑷𝑻 since each component is 𝟐𝜶-light

Suppose we can connect graph by adding 𝜶-light components so that

we charge at most one to each component of initialization

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Wish List for Merging Step

𝐻2
∗ 𝐻3

∗

𝐻4
∗
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∗
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Cost of initialization at most 𝟐𝜶𝑶𝑷𝑻 since each component is 𝟐𝜶-light

Suppose we can connect graph by adding 𝜶-light components so that

we charge at most one to each component of initialization

Then total cost ≤ 𝟑 𝜶𝑶𝑷𝑻

𝐻1
∗ = (𝑉1

∗, 𝐸1
∗)

Wish List for Merging Step

𝐻2
∗ 𝐻3

∗

𝐻4
∗

𝐻5
∗ 𝐻6

∗ 𝐻7
∗

𝑐𝑜𝑠𝑡 ≤ 𝛼|𝑉1
∗|

≤ 𝛼|𝑉2
∗|

≤ 𝛼|𝑉3
∗|≤ 𝛼|𝑉4

∗|



Some open problems…



Node-Weighted Symmetric TSP

• distance of 𝑢, 𝑣 ∈ 𝐸 is w 𝑢 + 𝑤 𝑣

1

3

13

23

5

5

4

4

4

Can you do better than Christofides (1.5)?



Constant for ATSP on General Metrics?

THIN TREE:

Does any k-edge connected graph have a 𝑂(1)-thin tree, i.e., a tree T

such that for each 𝑆 ⊂ 𝑉, 

𝛿𝑇 𝑆 ≤
𝛼

𝑘
|𝛿𝐺 𝑆 | ?

LOCAL-CONNECTIVITY ATSP:

Can you design a 𝑂 1 -light algorithm for general metrics?



Summary

• Overview of Existing Approaches

• New approach that relaxes connectivity

• Integrality gap for node-weighted metrics is ≤ 13

• Nice Open Questions both for Symmetric and Asymmetric TSP




