ADFOCS'20: Fair-division Exercise 1: Competitive Equilibrium (CE)

Ruta Mehta

All the questions pertain to a Fisher instance given by:

- Set A of n agents.
- Set G of m goods, each with unit supply.
- Each agent $i \in A$ has B_{i} budget, and linear valuation function $v_{i}\left(x_{i}\right)=\sum_{j \in G} v_{i j} x_{i j}$.

In today's lecture we saw that prices $p=\left(p_{1}, \ldots, p_{n}\right)$ and allocation $X=\left(x_{1}, \ldots, x_{n}\right)$ constitute a competitive equilibrium iff

- Optimal bundle: $\forall i \in A,\left(p \cdot x_{i}\right)=B_{i}$, and,

$$
\forall j \in G, \quad x_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\max _{k \in G} \frac{v_{i k}}{p_{k}}
$$

- Demand $=$ Supply: $\forall j \in G, \quad \sum_{i \in A} x_{i j}=1$

1. (fairness properties)

Given a Fisher instance where budget of agent i is B_{i} (budget can also be thought of as weight/clout/importance for a fair-division task), show that a CE allocation is
(a) weighted envy-free
(b) weighted proportional
(c) maximizes weighted Nash welfare

Remark. For the last part it suffices to show that CE allocation gives a feasible point in the EG convex program (with weighted objective) and together with CE prices they satisfy the complementary slackness and dual-feasibility conditions.
2. (Finite-time algorithm)

With respect to prices $p=\left(p_{1}, \ldots, p_{n}\right)$, let the MBB set be defined as $M B B(p)=\{(i, j) \in$ $\left.A \times G \left\lvert\, \frac{v_{i} j}{p_{j}}=\max _{k \in G} \frac{v_{i k}}{p_{k}}\right.\right\}$.
(a) Given $\operatorname{MBB}\left(p^{*}\right)$ for a competitive equilibrium price p^{*}, design an efficient algorithm to find p^{*} and corresponding equilibrium allocation X^{*}.
(Hint: Linear feasibility program $\mathrm{w} /$ dollar-spent variables $\left(f_{i j}\right)$)
(b) Using solution to part (a) as a subroutine, design a finite time (exponential-time) algorithm to find a CE.
3. (Proportional response ($P R$) dynamics)

Consider a proportional response function $f: D \rightarrow D$, where $D=\left\{b \in \mathbb{R}_{+}^{m n} \mid \sum_{j \in G} b_{i j}=B_{i}\right\}$: for a $b \in D$, if $b^{\prime}=f(b)$ then construct b^{\prime} from b as follows:
Think of $b_{i j}$ as the bid of agent i on good j. Price of good j is the total bids collected on it, i.e., $p_{j}=\sum_{i \in A} b_{i j}$. And the allocation is proportional to the bid, i.e., $x_{i j}=\frac{b_{i j}}{p_{j}}$. (In economics such a market implementation is known as Trading-post, introduced by Shapley and Shubik in 1977.)
Based on the utilities obtained, agents update their bids (proportional to the utility received from the previous bid):

$$
b_{i j}^{\prime}=B_{i} \frac{v_{i j} x_{i j}}{\sum_{k \in G} v_{i k} x_{i k}}
$$

Show that, given a $\operatorname{CE}\left(p^{*}, X^{*}\right)$ the corresponding bids $b_{i j}^{*}=p_{j}^{*} x_{i j}^{*}$ for all (i, j) forms a fixed-point of f, i.e., $f\left(b^{*}\right)=b^{*}$.

Remark. In the proportional response dynamics agents update their bids as per the f function every day. That is, starting with arbitrary bid profile $b(0) \in D$, bids on day $t \geq 1$ is $b(t)=f(b(t-1))$. This is a well-studied dynamics that is known to converge to the fixedpoint a.k.a. CE. The dynamics can be extended to more general utility functions like CES, gross-substitutes, and is known to converge for these too. See slides for the references.
4. (Linear complementarity problem (LCP) formulation)

An LCP (extension of linear program) is defined as follows: Given an $n \times n$ matrix M and n-dimensional vector q, find $y \in \mathbb{R}^{n}$ such that

$$
(M y)_{i} \leq q_{i}, \quad y_{i} \geq 0, \quad y_{i}(M y-q)_{i}=0, \quad \forall i \in\{1, \ldots, n\}
$$

For short, we will write the above as

$$
\forall i \in\{1, \ldots, n\}, \quad(M y)_{i} \leq q_{i} \quad \perp \quad y_{i} \geq 0
$$

Now consider the following LCP for the Fisher model, with variables corresponding to money spent $\left(f_{i j} \mathrm{~s}\right)$, prices $\left(p_{j} \mathrm{~s}\right)$, and inverse $\mathrm{MBB}\left(\lambda_{i} \mathrm{~s}\right)$

$$
\begin{array}{llll}
\forall i \in A, & \sum_{j \in G} f_{i j} \geq B_{i} & \perp & \lambda_{i} \geq 0 \\
\forall j \in G, & \sum_{i \in A} f_{i j} \leq p_{j} & \perp & p_{j} \geq 0 \\
\forall(i, j) \in A \times G, & v_{i j} \lambda_{i}-p_{j} \leq 0 & \perp & f_{i j} \geq 0
\end{array}
$$

Show that,
(a) If $\left(p^{*}, X^{*}\right)$ is a CE then setting $p_{j}=p_{j}^{*}, \forall j, f_{i j}=x_{i j}^{*} p_{j}^{*}, \forall(i, j)$, and $\lambda_{i}=\min _{k} \frac{p_{k}^{*}}{v_{i k}}, \forall i$ gives a solution of the LCP
(b) A solution of the LCP gives a CE.

5. (Another convex program)

Consider the following convex program in (\$ spent) $f_{i j}$ variables and (price) p_{j} variables.

$$
\begin{array}{ll}
\max : & \sum_{i \in A, j \in G} f_{i j} \log \left(v_{i j}\right)-\sum_{j \in G} p_{j} \log p_{j} \\
\text { s.t. } & \sum_{i \in A} f_{i j}=p_{j}, \forall j \in G \\
& \sum_{j \in G} f_{i j}=B_{i}, \quad \forall i \in A \\
& f_{i j} \geq 0, \quad \forall(i, j) \in A \times G
\end{array}
$$

Show that the solutions of the above formulation gives prices and (\$ spent) allocation at a CE.
(Hint: Again use KKT)

