
Lecture 2: Computation of CE

Ruta Mehta

25𝑡𝑡𝑡 August 2020
ADFOCS 2020

(Recall) Fisher’s Model
 Set 𝐴𝐴 of 𝑛𝑛 agents. Set 𝐺𝐺 of 𝑚𝑚 divisible goods.

 Each agent 𝑖𝑖 has
 budget of 𝐵𝐵𝑖𝑖 euros
 valuation function 𝑣𝑣𝑖𝑖:𝑅𝑅+𝑚𝑚 → 𝑅𝑅+ over bundles of goods.

Linear: for bundle 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖, … , 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

 Supply of every good is one.

R. Mehta (ADFOCS’20)

(Recall) Competitive Equilibrium
Pirces 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥∈𝑅𝑅𝑚𝑚+ : 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖(𝑥𝑥)

 Market clears: For each good 𝑗𝑗,
demand = supply

Algorithm: Set up as a “flow problem”

Fairness and efficiency
guarantees:

Pareto optimal (PO)
Weighted Envy-free
Weighted Proportional
Maximizes W. NW.

R. Mehta (ADFOCS’20)

Max Flow (One slide overview)

Directed Graph
(𝑉𝑉,𝐸𝐸)

s
t

Given 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉. Capacity 𝑐𝑐𝑒𝑒 for each edge 𝑒𝑒 ∈ 𝐸𝐸.

𝑐𝑐𝑒𝑒
𝑒𝑒

Find maximum flow from 𝑠𝑠 to 𝑡𝑡, 𝒇𝒇𝒆𝒆 e∈𝐸𝐸 s.t.
• Capacity constraint

𝑓𝑓𝑒𝑒 ≤ 𝑐𝑐𝑒𝑒 , ∀𝑒𝑒 ∈ 𝐸𝐸
• Flow conservation: at every vertex 𝑢𝑢 ≠ 𝑠𝑠, 𝑡𝑡

total in-flow = total out-flow

Theorem: Max-flow = Min-cut
𝑠𝑠-𝑡𝑡 𝑠𝑠-𝑡𝑡

𝑢𝑢

𝑣𝑣 s-t cut: 𝑆𝑆 ⊂ 𝑉𝑉, s ∈ 𝑆𝑆, 𝑡𝑡 ∉ 𝑆𝑆

cut-value: 𝐶𝐶 𝑆𝑆 = �
𝑢𝑢,𝑣𝑣 ∈𝐸𝐸:
𝑢𝑢∈𝑆𝑆,𝑣𝑣∉𝑆𝑆

𝑐𝑐(𝑢𝑢,𝑣𝑣)

Min s-t cut: min
𝑆𝑆⊂𝑉𝑉:

𝑠𝑠∈𝑆𝑆,𝑡𝑡∉𝑆𝑆

𝐶𝐶(𝑆𝑆)

𝑆𝑆 𝑉𝑉\𝑆𝑆

Can be solved in
strongly polynomial-time

R. Mehta (ADFOCS’20)

CE Characterization
Pirces 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands 𝑥𝑥𝑖𝑖 ∈ argmax
𝑥𝑥: 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖

𝑣𝑣𝑖𝑖(𝑥𝑥)

 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 𝐵𝐵𝑖𝑖
 𝑥𝑥𝑖𝑖𝑖𝑖 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑗𝑗
= max

𝑘𝑘∈𝐺𝐺
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

, for all good 𝑗𝑗

 Market clears: For each good 𝑗𝑗, demand = supply

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖 = 1.

R. Mehta (ADFOCS’20)

Pirces 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands 𝑥𝑥𝑖𝑖 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥: 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖 𝑣𝑣𝑖𝑖 𝑥𝑥
 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 𝐵𝐵𝑖𝑖
 𝑥𝑥𝑖𝑖𝑖𝑖 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑗𝑗
= max

𝑘𝑘∈𝑀𝑀
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

, for all good 𝑗𝑗

 Market clears: For each good 𝑗𝑗, demand = supply

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖 = 1.

Competitive Equilibrium → Flow

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗 (money spent)

∑𝑗𝑗∈𝐺𝐺 𝑓𝑓𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖
𝑓𝑓𝑖𝑖𝑖𝑖 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑗𝑗
= max

𝑘𝑘∈𝐺𝐺
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑘𝑘

�
𝑖𝑖∈𝑁𝑁

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑗𝑗

Maximum bang-per-buck (𝑀𝑀𝑀𝑀𝑀𝑀)

𝐹𝐹 = (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛)

R. Mehta (ADFOCS’20)

𝑝𝑝𝑗𝑗

⋮

⋮

G

Competitive Equilibrium → Flow

s
t

𝑗𝑗
𝐵𝐵𝑖𝑖

∞

MBB edges

capacities

Max-flow

𝑓𝑓𝑖𝑖𝑖𝑖/

𝑝𝑝𝑗𝑗/ 𝐵𝐵𝑖𝑖/

�
𝑖𝑖∈𝑁𝑁

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑗𝑗

𝑓𝑓𝑖𝑖𝑖𝑖 > 0 on MBB edges

�
𝑗𝑗∈𝑀𝑀

𝑓𝑓𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖

CE: 𝑝𝑝,𝐹𝐹 s.t.

Issue: Eq. prices and hence
also MBB edges not known!

Fix [DPSV’08]: Start with low
prices, keep increasing. Max-flow = min-cut

= ∑𝑗𝑗∈𝐺𝐺 𝑝𝑝𝑗𝑗 = ∑𝑖𝑖∈𝐴𝐴 𝐵𝐵𝑖𝑖

⋮

⋮

A

𝑖𝑖

Maintain:
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are fully sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

MBB
edges
∞ cap.

Init: ∀𝑗𝑗 ∈ G, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑚𝑚

, and
at least one MBB edge to 𝑗𝑗

G A

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

MBB
edges
∞ cap.

Init: ∀𝑗𝑗 ∈ G, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑚𝑚

, and
at least one MBB edge to 𝑗𝑗

G A

Increase 𝒑𝒑:

↑
argmax

𝑗𝑗∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

𝛼𝛼 = 1
Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min

𝑖𝑖
𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G A

MBB
edges
∞ cap.

↑
= argmax

𝑗𝑗∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼𝑗𝑗

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

Event 𝟏𝟏: New cross-cutting min-cut

G A
MBB
edges
∞ cap.

𝐺𝐺𝐹𝐹

Agents in 𝐴𝐴𝐹𝐹 exhaust all their money.

Observation: If 𝛼𝛼 is increased further,
then 𝐺𝐺𝐹𝐹 can not be fully sold. And {𝑠𝑠}
will cease to be a min-cut.

𝐺𝐺𝐹𝐹: Goods that have MBB edges only
from 𝐴𝐴𝐹𝐹.

𝐴𝐴𝐹𝐹

A tight-set.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

Event 𝟏𝟏: A tight subset 𝐺𝐺𝐹𝐹

G A

(frozen)

MBB
edges
∞ cap.

𝐺𝐺𝐹𝐹

Call it frozen: (𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹).

𝐴𝐴𝐹𝐹

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G A(dynamic)

(frozen)

𝐺𝐺𝐷𝐷

𝐺𝐺𝐹𝐹

𝐴𝐴𝐷𝐷

Call it frozen: (𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹).
Freeze prices in 𝐺𝐺𝐹𝐹 .
Increase prices in 𝐺𝐺𝐷𝐷.

Event 𝟏𝟏: A tight subset 𝐺𝐺𝐹𝐹
𝐴𝐴𝐹𝐹

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G A(dynamic)

(frozen)

𝐺𝐺𝐷𝐷

𝐺𝐺𝐹𝐹

𝐴𝐴𝐷𝐷

Move (𝑆𝑆,𝑁𝑁 𝑆𝑆) from dynamic to
frozen.

𝑆𝑆 N(𝑆𝑆)

Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

Observation: If 𝛼𝛼 is increased further,
then 𝐒𝐒 can not be fully sold. And {𝑠𝑠}
will cease to be a min-cut.

𝐴𝐴𝐹𝐹

𝑁𝑁 𝑆𝑆 : Neighbors of S

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Move (𝑆𝑆, N 𝑆𝑆) to frozen part
Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

𝐴𝐴𝐹𝐹

(dynamic)

𝑆𝑆 N(𝑆𝑆)

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹 𝐴𝐴𝐹𝐹

OR

Event 𝟐𝟐: New MBB edge
Must be between 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 & 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹.
Recompute active and frozen.

Move (𝑆𝑆, N 𝑆𝑆) from active to frozen
Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

(dynamic)

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

𝑖𝑖

𝑗𝑗

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹

Recompute active and frozen:
Move the component containing
good 𝑗𝑗 from frozen to active.

OR

Event 𝟐𝟐: New MBB edge
Has to be from 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 to 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹.

Move (𝑆𝑆, N 𝑆𝑆) from active to frozen
Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

𝐴𝐴𝐹𝐹

(dynamic)

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

𝑖𝑖
𝑗𝑗

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹

Recompute active and frozen.

OR

Event 𝟐𝟐: New MBB edge
Must be from 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 to 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹.

Move (𝑆𝑆, N 𝑆𝑆) from active to frozen.

Observations: Prices only increase.
Each increase can be lower bounded.
Both the events can be computed
efficiently.

Converges to CE in finite time. Stop: all goods are frozen.

Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐴𝐴𝐹𝐹

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Example

$5

$1

2

3

1

2

Init.Input

s
t

Event 2

s
t

Event 1

s
t

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

5

1

5

1

5

1

R. Mehta (ADFOCS’20)

Formal Description

 Init: 𝑝𝑝 ← “low-values” s.t. 𝑠𝑠 is a min-cut.
𝐺𝐺𝐷𝐷,𝐴𝐴𝐷𝐷 ← 𝐺𝐺,𝐴𝐴 , 𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹 ← ∅,∅

 While(𝐺𝐺𝐷𝐷 ≠ ∅)
 𝛼𝛼 ← 1, 𝑝𝑝𝑗𝑗 ← 𝛼𝛼𝑝𝑝𝑗𝑗 ∀𝑗𝑗 ∈ 𝐺𝐺𝐷𝐷 . Increase 𝛼𝛼 until

Event 1: Set 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷 becomes tight.
N 𝑆𝑆 ← agents w/ MBB edges to 𝑆𝑆 (neighbors).
Move (S, N(S)) from 𝐺𝐺𝐷𝐷,𝐴𝐴𝐷𝐷 to 𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹 .

Event 2: New MBB edge appears between 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 and 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹
Add (𝑗𝑗 → 𝑖𝑖) edge to graph.
Move component of 𝑗𝑗 from 𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹 to 𝐺𝐺𝐷𝐷,𝐴𝐴𝐷𝐷 .

 Output (𝑝𝑝,𝐹𝐹)

R. Mehta (ADFOCS’20)

Efficiently Computing Event 2
Event 2: New MBB edge appears between 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 and 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹

Exercise 

R. Mehta (ADFOCS’20)

Efficiently Computing Event 1
Event 1: Set 𝑆𝑆∗ ⊆ 𝐺𝐺𝐷𝐷 becomes tight.

 𝛼𝛼∗ =
∑𝑖𝑖∈𝑁𝑁(𝑆𝑆∗) 𝐵𝐵𝑖𝑖
∑𝑗𝑗∈S∗ 𝑝𝑝𝑗𝑗

 Find 𝑆𝑆∗ = argmin
𝑆𝑆⊆𝐺𝐺𝐷𝐷

𝛼𝛼(𝑆𝑆)

s
t⋮ ⋮

G A

MBB
edges
∞ cap.

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

Increase 𝛼𝛼

𝛼𝛼 = 1

s
t⋮ ⋮

G B
MBB
edges
∞ cap.

𝑆𝑆∗

= min
𝑆𝑆⊆𝐺𝐺𝐷𝐷

∑𝑖𝑖∈𝑁𝑁(𝑆𝑆) 𝐵𝐵𝑖𝑖
∑𝑗𝑗∈S 𝑝𝑝𝑗𝑗 𝛼𝛼(𝑆𝑆)

R. Mehta (ADFOCS’20)

Efficiently Computing Event 1
Event 1: Set 𝑆𝑆∗ ⊆ 𝐺𝐺𝐷𝐷 becomes tight.

 𝛼𝛼∗ =
∑𝑖𝑖∈𝑁𝑁(𝑆𝑆∗) 𝐵𝐵𝑖𝑖
∑𝑗𝑗∈S∗ 𝑝𝑝𝑗𝑗

 Find 𝑆𝑆∗ = argmin
𝑆𝑆⊆𝐺𝐺𝐷𝐷

𝛼𝛼(𝑆𝑆)

s
t⋮ ⋮

G A
MBB
edges𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

= min
𝑆𝑆⊆𝐺𝐺𝐷𝐷

∑𝑖𝑖∈𝑁𝑁(𝑆𝑆) 𝐵𝐵𝑖𝑖
∑𝑗𝑗∈S 𝑝𝑝𝑗𝑗 𝛼𝛼(𝑆𝑆)

R. Mehta (ADFOCS’20)

Efficiently Computing Event 1
Event 1: Set 𝑆𝑆∗ ⊆ 𝐺𝐺𝐷𝐷 becomes tight.

 𝛼𝛼(𝑆𝑆) =
∑𝑖𝑖∈𝑁𝑁(𝑆𝑆) 𝐵𝐵𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑝𝑝𝑗𝑗

Find 𝑆𝑆∗ = argmin
𝑆𝑆⊆𝐺𝐺𝐷𝐷

𝛼𝛼(𝑆𝑆)

Claim. Can be done in O(n) min-cut
computations

s
t⋮ ⋮

G A
MBB
edges𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

R. Mehta (ADFOCS’20)

Efficient Flow-based Algorithms

 Polynomial running-time
 Compute balanced-flow: minimizing 𝑙𝑙2 norm of agents’

surplus [DPSV’08]

 Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter):
 Polynomial time [DM’16, DGM’17, CM’18]

 Strongly polynomial for exchange
 Flow + scaling + approximate LP [GV’19]

R. Mehta (ADFOCS’20)

Hylland-Zeckhauser
(an extension)

R. Mehta (ADFOCS’20)

Motivation: Matching

Hylland-Zeckhauzer’79: Compute CEEI where every agent wants
total amount of at most one unit.

But the outcome is a fractional allocation!
Think of it as probabilities/time-shares/… []

Goal: Design a method to match
goods to agents so that
• The outcome is Pareto-optimal and

envy-free
• Strategy-proof: Agents have no

incentive to lie about their 𝑣𝑣𝑖𝑖𝑖𝑖𝑠𝑠.

Indivisible
goods

Agents

1

n

1

n

i j
𝑣𝑣𝑖𝑖𝑖𝑖

⋮

⋮ ⋮

⋮

R. Mehta (ADFOCS’20)

HZ Equilibrium
Given:
 Agents 𝐴𝐴 = 1, … ,𝑛𝑛 , indivisible goods 𝐺𝐺 = {1, … ,𝑛𝑛}
 𝑣𝑣𝑖𝑖𝑖𝑖: value of agent 𝑖𝑖 for good 𝑗𝑗.

 If 𝑖𝑖 gets 𝑗𝑗 w/ prob. 𝑥𝑥𝑖𝑖𝑖𝑖, then the expected value is: ∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

Want: prices 𝑝𝑝 = (𝑝𝑝1, … ,𝑝𝑝𝑛𝑛), allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
 Each good 𝑗𝑗 is allocated: ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 = 1
 Each agent 𝑖𝑖 gets an optimal bundle subject to

 $1 budget, and unit allocation.

𝑥𝑥𝑖𝑖 ∈ argmax
𝑥𝑥∈𝑅𝑅+𝑚𝑚

�
𝑗𝑗

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 �
𝒋𝒋

𝒙𝒙𝒋𝒋 = 𝟏𝟏,�
𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗 ≤ 1

R. Mehta (ADFOCS’20)

HZ Equilibrium

Hyllander-Zeckhauzer’79
 Exists. Pareto optimal, Strategy proof in large markets.

Vazirani-Yannakakis’20
 Irrational equilibrium prices ⇒ not in PPAD
 In FIXP
 Algorithm for bi-valued preferences:

𝑣𝑣𝑖𝑖𝑖𝑖 ∈ {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖} where 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ≥ 0

R. Mehta (ADFOCS’20)

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1)

Perfect matching ⇒ An equilibrium is,
 Allocation on the matching edges
 Zero prices

𝑣𝑣𝑖𝑖𝑖𝑖 = 1

G A

𝑗𝑗 𝑖𝑖

1

n

1

n

⋮

⋮

⋮

⋮
At equilibrium, an agent’s
utility is at most 1.

Want: 𝑝𝑝,𝑋𝑋
All goods are sold.
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

R. Mehta (ADFOCS’20)

No perfect matching
 Min vertex cover: (𝐺𝐺1 ∪ 𝐴𝐴2)

 No 𝐴𝐴1 − 𝐺𝐺2 edge

𝑣𝑣𝑖𝑖𝑖𝑖 = 1
edges

G A

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1)

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

R. Mehta (ADFOCS’20)

No perfect matching
 Min vertex cover:(𝐺𝐺1 ∪ 𝐴𝐴2)

 No 𝐴𝐴1 − 𝐺𝐺2 edge
 For each 𝑆𝑆 ⊆ 𝐴𝐴2, 𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2 ≥ |𝑆𝑆|

 Else get smaller VC by replacing 𝑆𝑆 with
𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2

𝑣𝑣𝑖𝑖𝑖𝑖 = 1
edges

G A

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1)

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝑆𝑆

𝑁𝑁(𝑆𝑆)

Subgraph (𝐺𝐺2,𝐴𝐴2) satisfies
hall’s condition for 𝐴𝐴2.

Max matching in (𝐺𝐺2,𝐴𝐴2)
matches all of 𝐴𝐴2.

R. Mehta (ADFOCS’20)

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1)

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Max matching

CEEI

No perfect matching
 Min vertex cover:(𝐺𝐺1 ∪ 𝐴𝐴2)

 No 𝐴𝐴1 − 𝐺𝐺2 edge
 For each 𝑆𝑆 ⊆ 𝐴𝐴2, 𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2 ≥ |𝑆𝑆|

 Max matching in 𝐺𝐺2,𝐴𝐴2 matches all of 𝐴𝐴2.

R. Mehta (ADFOCS’20)

No perfect matching
 Min vertex cover:(𝐺𝐺1 ∪ 𝐴𝐴2)
 Eq. Prices: CEEI prices for 𝐺𝐺1, and

0 prices for 𝐺𝐺2
 Eq. Allocation

 𝑖𝑖 ∈ 𝐴𝐴2 gets her matched good
 𝑖𝑖 ∈ A1 gets CEEI allocation +

unmatched goods from 𝐺𝐺2

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1)

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

Max matching

CEEI
Prices
𝑝𝑝 at

CEEI

0
⋮
0

Running-time:
Strongly polynomial

R. Mehta (ADFOCS’20)

Reduces to 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ {0,1}

Exercise.

VY’20 Algorithm
bi-values: 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 0 ≤ 𝑎𝑎𝑖𝑖 < 𝑏𝑏𝑖𝑖

R. Mehta (ADFOCS’20)

Open Questions

R. Mehta (ADFOCS’20)

HZ Equilibrium

Computation for the general case.
Is it hard? OR is it (approximation) polynomial-time?

 Efficient algorithm when #goods or #agents is a
constant [DK’08, AKT’17]

 Cell-decomposition and enumeration

R. Mehta (ADFOCS’20)

What about chores?

 CEEI exists but may form a non-convex set [BMSY’17]

 Efficient Computation?
Open: Fisher as well as for CEEI
 For constantly many agents (or chores) [BS’19, GM’20]

 Fast path-following algorithm [CGMM.’20]

 Hardness result for an exchange model [CGMM.’20]

R. Mehta (ADFOCS’20)

References.
[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.
[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847–1871, 2017.
[BMSY19] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395–417, 2019.
[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).
[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.
[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.
[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.
[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–
314, 1979.
[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

R. Mehta (ADFOCS’20)

R. Mehta (ADFOCS’20)

Thank You

	Slide Number 1
	(Recall) Fisher’s Model
	(Recall) Competitive Equilibrium
	Max Flow (One slide overview)
	CE Characterization
	Competitive Equilibrium → Flow
	Competitive Equilibrium → Flow
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Example
	Formal Description
	Efficiently Computing Event 2
	Efficiently Computing Event 1
	Efficiently Computing Event 1
	Efficiently Computing Event 1
	Efficient Flow-based Algorithms
	Hylland-Zeckhauser�(an extension)
	Motivation: Matching
	HZ Equilibrium
	HZ Equilibrium
	VY’20 Algorithm �(𝑣 𝑖𝑗 ∈ 0,1)
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Open Questions
	HZ Equilibrium
	What about chores?
	References.
	Slide Number 40

