
Lecture 2: Computation of CE

Ruta Mehta

25𝑡𝑡𝑡 August 2020
ADFOCS 2020

(Recall) Fisher’s Model
 Set 𝐴𝐴 of 𝑛𝑛 agents. Set 𝐺𝐺 of 𝑚𝑚 divisible goods.

 Each agent 𝑖𝑖 has
 budget of 𝐵𝐵𝑖𝑖 euros
 valuation function 𝑣𝑣𝑖𝑖:𝑅𝑅+𝑚𝑚 → 𝑅𝑅+ over bundles of goods.

Linear: for bundle 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖, … , 𝑥𝑥𝑖𝑖𝑚𝑚 , 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

 Supply of every good is one.

R. Mehta (ADFOCS’20)

(Recall) Competitive Equilibrium
Pirces 𝑝𝑝 = 𝑝𝑝𝑖, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥𝑖, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥∈𝑅𝑅𝑚𝑚+ : 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖(𝑥𝑥)

 Market clears: For each good 𝑗𝑗,
demand = supply

Algorithm: Set up as a “flow problem”

Fairness and efficiency
guarantees:

Pareto optimal (PO)
Weighted Envy-free
Weighted Proportional
Maximizes W. NW.

R. Mehta (ADFOCS’20)

Max Flow (One slide overview)

Directed Graph
(𝑉𝑉,𝐸𝐸)

s
t

Given 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉. Capacity 𝑐𝑐𝑒𝑒 for each edge 𝑒𝑒 ∈ 𝐸𝐸.

𝑐𝑐𝑒𝑒
𝑒𝑒

Find maximum flow from 𝑠𝑠 to 𝑡𝑡, 𝒇𝒇𝒆𝒆 e∈𝐸𝐸 s.t.
• Capacity constraint

𝑓𝑓𝑒𝑒 ≤ 𝑐𝑐𝑒𝑒 , ∀𝑒𝑒 ∈ 𝐸𝐸
• Flow conservation: at every vertex 𝑢𝑢 ≠ 𝑠𝑠, 𝑡𝑡

total in-flow = total out-flow

Theorem: Max-flow = Min-cut
𝑠𝑠-𝑡𝑡 𝑠𝑠-𝑡𝑡

𝑢𝑢

𝑣𝑣 s-t cut: 𝑆𝑆 ⊂ 𝑉𝑉, s ∈ 𝑆𝑆, 𝑡𝑡 ∉ 𝑆𝑆

cut-value: 𝐶𝐶 𝑆𝑆 = �
𝑢𝑢,𝑣𝑣 ∈𝐸𝐸:
𝑢𝑢∈𝑆𝑆,𝑣𝑣∉𝑆𝑆

𝑐𝑐(𝑢𝑢,𝑣𝑣)

Min s-t cut: min
𝑆𝑆⊂𝑉𝑉:

𝑠𝑠∈𝑆𝑆,𝑡𝑡∉𝑆𝑆

𝐶𝐶(𝑆𝑆)

𝑆𝑆 𝑉𝑉\𝑆𝑆

Can be solved in
strongly polynomial-time

R. Mehta (ADFOCS’20)

CE Characterization
Pirces 𝑝𝑝 = 𝑝𝑝𝑖, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥𝑖, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands 𝑥𝑥𝑖𝑖 ∈ argmax
𝑥𝑥: 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖

𝑣𝑣𝑖𝑖(𝑥𝑥)

 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 𝐵𝐵𝑖𝑖
 𝑥𝑥𝑖𝑖𝑗𝑗 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
= max

𝑘𝑘∈𝐺𝐺
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖

, for all good 𝑗𝑗

 Market clears: For each good 𝑗𝑗, demand = supply

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑗𝑗 = 1.

R. Mehta (ADFOCS’20)

Pirces 𝑝𝑝 = 𝑝𝑝𝑖, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥𝑖, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands 𝑥𝑥𝑖𝑖 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑥𝑥: 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖 𝑣𝑣𝑖𝑖 𝑥𝑥
 𝑝𝑝 ⋅ 𝑥𝑥𝑖𝑖 = 𝐵𝐵𝑖𝑖
 𝑥𝑥𝑖𝑖𝑗𝑗 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
= max

𝑘𝑘∈𝑀𝑀
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖

, for all good 𝑗𝑗

 Market clears: For each good 𝑗𝑗, demand = supply

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑗𝑗 = 1.

Competitive Equilibrium → Flow

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑥𝑥𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗 (money spent)

∑𝑗𝑗∈𝐺𝐺 𝑓𝑓𝑖𝑖𝑗𝑗 = 𝐵𝐵𝑖𝑖
𝑓𝑓𝑖𝑖𝑗𝑗 > 0 ⇒ 𝑣𝑣𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
= max

𝑘𝑘∈𝐺𝐺
𝑣𝑣𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖

�
𝑖𝑖∈𝑁𝑁

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑗𝑗

Maximum bang-per-buck (𝑀𝑀𝐵𝐵𝐵𝐵)

𝐹𝐹 = (𝑓𝑓𝑖, … , 𝑓𝑓𝑛𝑛)

R. Mehta (ADFOCS’20)

𝑝𝑝𝑗𝑗

⋮

⋮

G

Competitive Equilibrium → Flow

s
t

𝑗𝑗
𝐵𝐵𝑖𝑖

∞

MBB edges

capacities

Max-flow

𝑓𝑓𝑖𝑖𝑗𝑗/

𝑝𝑝𝑗𝑗/ 𝐵𝐵𝑖𝑖/

�
𝑖𝑖∈𝑁𝑁

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑗𝑗

𝑓𝑓𝑖𝑖𝑗𝑗 > 0 on MBB edges

�
𝑗𝑗∈𝑀𝑀

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝐵𝐵𝑖𝑖

CE: 𝑝𝑝,𝐹𝐹 s.t.

Issue: Eq. prices and hence
also MBB edges not known!

Fix [DPSV’08]: Start with low
prices, keep increasing. Max-flow = min-cut

= ∑𝑗𝑗∈𝐺𝐺 𝑝𝑝𝑗𝑗 = ∑𝑖𝑖∈𝐴𝐴 𝐵𝐵𝑖𝑖

⋮

⋮

A

𝑖𝑖

Maintain:
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are fully sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

MBB
edges
∞ cap.

Init: ∀𝑗𝑗 ∈ G, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑚𝑚

, and
at least one MBB edge to 𝑗𝑗

G A

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

MBB
edges
∞ cap.

Init: ∀𝑗𝑗 ∈ G, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑚𝑚

, and
at least one MBB edge to 𝑗𝑗

G A

Increase 𝒑𝒑:

↑
argmax

𝑗𝑗∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑗𝑗
𝑝𝑝𝑗𝑗

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

𝛼𝛼 = 1
Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min

𝑖𝑖
𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G A

MBB
edges
∞ cap.

↑
= argmax

𝑗𝑗∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑗𝑗
𝛼𝛼𝑝𝑝𝑗𝑗

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

Event 𝟏𝟏: New cross-cutting min-cut

G A
MBB
edges
∞ cap.

𝐺𝐺𝐹𝐹

Agents in 𝐴𝐴𝐹𝐹 exhaust all their money.

Observation: If 𝛼𝛼 is increased further,
then 𝐺𝐺𝐹𝐹 can not be fully sold. And {𝑠𝑠}
will cease to be a min-cut.

𝐺𝐺𝐹𝐹: Goods that have MBB edges only
from 𝐴𝐴𝐹𝐹.

𝐴𝐴𝐹𝐹

A tight-set.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

Event 𝟏𝟏: A tight subset 𝐺𝐺𝐹𝐹

G A

(frozen)

MBB
edges
∞ cap.

𝐺𝐺𝐹𝐹

Call it frozen: (𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹).

𝐴𝐴𝐹𝐹

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G A(dynamic)

(frozen)

𝐺𝐺𝐷𝐷

𝐺𝐺𝐹𝐹

𝐴𝐴𝐷𝐷

Call it frozen: (𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹).
Freeze prices in 𝐺𝐺𝐹𝐹 .
Increase prices in 𝐺𝐺𝐷𝐷.

Event 𝟏𝟏: A tight subset 𝐺𝐺𝐹𝐹
𝐴𝐴𝐹𝐹

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G A(dynamic)

(frozen)

𝐺𝐺𝐷𝐷

𝐺𝐺𝐹𝐹

𝐴𝐴𝐷𝐷

Move (𝑆𝑆,𝑁𝑁 𝑆𝑆) from dynamic to
frozen.

𝑆𝑆 N(𝑆𝑆)

Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

Observation: If 𝛼𝛼 is increased further,
then 𝐒𝐒 can not be fully sold. And {𝑠𝑠}
will cease to be a min-cut.

𝐴𝐴𝐹𝐹

𝑁𝑁 𝑆𝑆 : Neighbors of S

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Move (𝑆𝑆, N 𝑆𝑆) to frozen part
Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

𝐴𝐴𝐹𝐹

(dynamic)

𝑆𝑆 N(𝑆𝑆)

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹 𝐴𝐴𝐹𝐹

OR

Event 𝟐𝟐: New MBB edge
Must be between 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 & 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹.
Recompute active and frozen.

Move (𝑆𝑆, N 𝑆𝑆) from active to frozen
Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

(dynamic)

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

𝑖𝑖

𝑗𝑗

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹

Recompute active and frozen:
Move the component containing
good 𝑗𝑗 from frozen to active.

OR

Event 𝟐𝟐: New MBB edge
Has to be from 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 to 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹.

Move (𝑆𝑆, N 𝑆𝑆) from active to frozen
Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

𝐴𝐴𝐹𝐹

(dynamic)

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

𝑖𝑖
𝑗𝑗

R. Mehta (ADFOCS’20)

Algorithm (Pictorial)

s
t⋮ ⋮

Init: ∀𝑗𝑗 ∈ 𝑀𝑀, 𝑝𝑝𝑗𝑗 < min
𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛

And at least one MBB edge to 𝑗𝑗

Increase 𝒑𝒑: ↑ 𝛼𝛼

G

(frozen)

𝐺𝐺𝐹𝐹

Recompute active and frozen.

OR

Event 𝟐𝟐: New MBB edge
Must be from 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 to 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹.

Move (𝑆𝑆, N 𝑆𝑆) from active to frozen.

Observations: Prices only increase.
Each increase can be lower bounded.
Both the events can be computed
efficiently.

Converges to CE in finite time. Stop: all goods are frozen.

Event 𝟏𝟏: A tight subset 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷

A

𝐴𝐴𝐹𝐹

Freeze prices in 𝐺𝐺𝐹𝐹 , and
increase in 𝐺𝐺𝐷𝐷.

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

R. Mehta (ADFOCS’20)

Example

$5

$1

2

3

1

2

Init.Input

s
t

Event 2

s
t

Event 1

s
t

Invariants
1. Flow only on MBB edges
2. Min-cut = {𝑠𝑠} (goods are sold)

5

1

5

1

5

1

R. Mehta (ADFOCS’20)

Formal Description

 Init: 𝑝𝑝 ← “low-values” s.t. 𝑠𝑠 is a min-cut.
𝐺𝐺𝐷𝐷,𝐴𝐴𝐷𝐷 ← 𝐺𝐺,𝐴𝐴 , 𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹 ← ∅,∅

 While(𝐺𝐺𝐷𝐷 ≠ ∅)
 𝛼𝛼 ← 1, 𝑝𝑝𝑗𝑗 ← 𝛼𝛼𝑝𝑝𝑗𝑗 ∀𝑗𝑗 ∈ 𝐺𝐺𝐷𝐷 . Increase 𝛼𝛼 until

Event 1: Set 𝑆𝑆 ⊆ 𝐺𝐺𝐷𝐷 becomes tight.
N 𝑆𝑆 ← agents w/ MBB edges to 𝑆𝑆 (neighbors).
Move (S, N(S)) from 𝐺𝐺𝐷𝐷,𝐴𝐴𝐷𝐷 to 𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹 .

Event 2: New MBB edge appears between 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 and 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹
Add (𝑗𝑗 → 𝑖𝑖) edge to graph.
Move component of 𝑗𝑗 from 𝐺𝐺𝐹𝐹 ,𝐴𝐴𝐹𝐹 to 𝐺𝐺𝐷𝐷,𝐴𝐴𝐷𝐷 .

 Output (𝑝𝑝,𝐹𝐹)

R. Mehta (ADFOCS’20)

Efficiently Computing Event 2
Event 2: New MBB edge appears between 𝑖𝑖 ∈ 𝐴𝐴𝐷𝐷 and 𝑗𝑗 ∈ 𝐺𝐺𝐹𝐹

Exercise

R. Mehta (ADFOCS’20)

Efficiently Computing Event 1
Event 1: Set 𝑆𝑆∗ ⊆ 𝐺𝐺𝐷𝐷 becomes tight.

 𝛼𝛼∗ =
∑𝑖𝑖∈𝑁𝑁(𝑆𝑆∗) 𝐵𝐵𝑖𝑖
∑𝑖𝑖∈S∗ 𝑝𝑝𝑖𝑖

 Find 𝑆𝑆∗ = argmin
𝑆𝑆⊆𝐺𝐺𝐷𝐷

𝛼𝛼(𝑆𝑆)

s
t⋮ ⋮

G A

MBB
edges
∞ cap.

𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

Increase 𝛼𝛼

𝛼𝛼 = 1

s
t⋮ ⋮

G B
MBB
edges
∞ cap.

𝑆𝑆∗

= min
𝑆𝑆⊆𝐺𝐺𝐷𝐷

∑𝑖𝑖∈𝑁𝑁(𝑆𝑆) 𝐵𝐵𝑖𝑖
∑𝑖𝑖∈S 𝑝𝑝𝑖𝑖 𝛼𝛼(𝑆𝑆)

R. Mehta (ADFOCS’20)

Efficiently Computing Event 1
Event 1: Set 𝑆𝑆∗ ⊆ 𝐺𝐺𝐷𝐷 becomes tight.

 𝛼𝛼∗ =
∑𝑖𝑖∈𝑁𝑁(𝑆𝑆∗) 𝐵𝐵𝑖𝑖
∑𝑖𝑖∈S∗ 𝑝𝑝𝑖𝑖

 Find 𝑆𝑆∗ = argmin
𝑆𝑆⊆𝐺𝐺𝐷𝐷

𝛼𝛼(𝑆𝑆)

s
t⋮ ⋮

G A
MBB
edges𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

= min
𝑆𝑆⊆𝐺𝐺𝐷𝐷

∑𝑖𝑖∈𝑁𝑁(𝑆𝑆) 𝐵𝐵𝑖𝑖
∑𝑖𝑖∈S 𝑝𝑝𝑖𝑖 𝛼𝛼(𝑆𝑆)

R. Mehta (ADFOCS’20)

Efficiently Computing Event 1
Event 1: Set 𝑆𝑆∗ ⊆ 𝐺𝐺𝐷𝐷 becomes tight.

 𝛼𝛼(𝑆𝑆) =
∑𝑖𝑖∈𝑁𝑁(𝑆𝑆) 𝐵𝐵𝑖𝑖
∑𝑖𝑖∈𝑆𝑆 𝑝𝑝𝑖𝑖

Find 𝑆𝑆∗ = argmin
𝑆𝑆⊆𝐺𝐺𝐷𝐷

𝛼𝛼(𝑆𝑆)

Claim. Can be done in O(n) min-cut
computations

s
t⋮ ⋮

G A
MBB
edges𝐺𝐺𝐷𝐷 𝐴𝐴𝐷𝐷

R. Mehta (ADFOCS’20)

Efficient Flow-based Algorithms

 Polynomial running-time
 Compute balanced-flow: minimizing 𝑙𝑙2 norm of agents’

surplus [DPSV’08]

 Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter):
 Polynomial time [DM’16, DGM’17, CM’18]

 Strongly polynomial for exchange
 Flow + scaling + approximate LP [GV’19]

R. Mehta (ADFOCS’20)

Hylland-Zeckhauser
(an extension)

R. Mehta (ADFOCS’20)

Motivation: Matching

Hylland-Zeckhauzer’79: Compute CEEI where every agent wants
total amount of at most one unit.

But the outcome is a fractional allocation!
Think of it as probabilities/time-shares/… []

Goal: Design a method to match
goods to agents so that
• The outcome is Pareto-optimal and

envy-free
• Strategy-proof: Agents have no

incentive to lie about their 𝑣𝑣𝑖𝑖𝑗𝑗𝑠𝑠.

Indivisible
goods

Agents

1

n

1

n

i j
𝑣𝑣𝑖𝑖𝑗𝑗

⋮

⋮ ⋮

⋮

R. Mehta (ADFOCS’20)

HZ Equilibrium
Given:
 Agents 𝐴𝐴 = 1, … ,𝑛𝑛 , indivisible goods 𝐺𝐺 = {1, … ,𝑛𝑛}
 𝑣𝑣𝑖𝑖𝑗𝑗: value of agent 𝑖𝑖 for good 𝑗𝑗.

 If 𝑖𝑖 gets 𝑗𝑗 w/ prob. 𝑥𝑥𝑖𝑖𝑗𝑗, then the expected value is: ∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

Want: prices 𝑝𝑝 = (𝑝𝑝𝑖, … ,𝑝𝑝𝑛𝑛), allocation 𝑋𝑋 = (𝑥𝑥𝑖, … , 𝑥𝑥𝑛𝑛)
 Each good 𝑗𝑗 is allocated: ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑗𝑗 = 1
 Each agent 𝑖𝑖 gets an optimal bundle subject to

 $1 budget, and unit allocation.

𝑥𝑥𝑖𝑖 ∈ argmax
𝑥𝑥∈𝑅𝑅+𝑚𝑚

�
𝑗𝑗

𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 �
𝒋𝒋

𝒙𝒙𝒋𝒋 = 𝟏𝟏,�
𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗 ≤ 1

R. Mehta (ADFOCS’20)

HZ Equilibrium

Hyllander-Zeckhauzer’79
 Exists. Pareto optimal, Strategy proof in large markets.

Vazirani-Yannakakis’20
 Irrational equilibrium prices ⇒ not in PPAD
 In FIXP
 Algorithm for bi-valued preferences:

𝑣𝑣𝑖𝑖𝑗𝑗 ∈ {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖} where 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ≥ 0

R. Mehta (ADFOCS’20)

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑗𝑗 ∈ 0,1)

Perfect matching ⇒ An equilibrium is,
 Allocation on the matching edges
 Zero prices

𝑣𝑣𝑖𝑖𝑗𝑗 = 1

G A

𝑗𝑗 𝑖𝑖

1

n

1

n

⋮

⋮

⋮

⋮
At equilibrium, an agent’s
utility is at most 1.

Want: 𝑝𝑝,𝑋𝑋
All goods are sold.
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑖𝑖 𝑥𝑥𝑖𝑖=𝑖,∑𝑖𝑖 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≤𝑖
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

R. Mehta (ADFOCS’20)

No perfect matching
 Min vertex cover: (𝐺𝐺𝑖 ∪ 𝐴𝐴2)

 No 𝐴𝐴𝑖 − 𝐺𝐺2 edge

𝑣𝑣𝑖𝑖𝑗𝑗 = 1
edges

G A

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑗𝑗 ∈ 0,1)

𝐺𝐺𝑖 𝐴𝐴𝑖

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑖𝑖 𝑥𝑥𝑖𝑖=𝑖,∑𝑖𝑖 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≤𝑖
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

R. Mehta (ADFOCS’20)

No perfect matching
 Min vertex cover:(𝐺𝐺𝑖 ∪ 𝐴𝐴2)

 No 𝐴𝐴𝑖 − 𝐺𝐺2 edge
 For each 𝑆𝑆 ⊆ 𝐴𝐴2, 𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2 ≥ |𝑆𝑆|

 Else get smaller VC by replacing 𝑆𝑆 with
𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2

𝑣𝑣𝑖𝑖𝑗𝑗 = 1
edges

G A

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑗𝑗 ∈ 0,1)

𝐺𝐺𝑖 𝐴𝐴𝑖

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑖𝑖 𝑥𝑥𝑖𝑖=𝑖,∑𝑖𝑖 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≤𝑖
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

𝑆𝑆

𝑁𝑁(𝑆𝑆)

Subgraph (𝐺𝐺2,𝐴𝐴2) satisfies
hall’s condition for 𝐴𝐴2.

Max matching in (𝐺𝐺2,𝐴𝐴2)
matches all of 𝐴𝐴2.

R. Mehta (ADFOCS’20)

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑗𝑗 ∈ 0,1)

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑖𝑖 𝑥𝑥𝑖𝑖=𝑖,∑𝑖𝑖 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≤𝑖
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

𝐺𝐺𝑖 𝐴𝐴𝑖

𝐺𝐺2 𝐴𝐴2

Max matching

CEEI

No perfect matching
 Min vertex cover:(𝐺𝐺𝑖 ∪ 𝐴𝐴2)

 No 𝐴𝐴𝑖 − 𝐺𝐺2 edge
 For each 𝑆𝑆 ⊆ 𝐴𝐴2, 𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2 ≥ |𝑆𝑆|

 Max matching in 𝐺𝐺2,𝐴𝐴2 matches all of 𝐴𝐴2.

R. Mehta (ADFOCS’20)

No perfect matching
 Min vertex cover:(𝐺𝐺𝑖 ∪ 𝐴𝐴2)
 Eq. Prices: CEEI prices for 𝐺𝐺𝑖, and

0 prices for 𝐺𝐺2
 Eq. Allocation

 𝑖𝑖 ∈ 𝐴𝐴2 gets her matched good
 𝑖𝑖 ∈ A𝑖 gets CEEI allocation +

unmatched goods from 𝐺𝐺2

VY’20 Algorithm
(𝑣𝑣𝑖𝑖𝑗𝑗 ∈ 0,1)

𝐺𝐺𝑖 𝐴𝐴𝑖

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑖𝑖 𝑥𝑥𝑖𝑖=𝑖,∑𝑖𝑖 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≤𝑖
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

Max matching

CEEI
Prices
𝑝𝑝 at

CEEI

0
⋮
0

Running-time:
Strongly polynomial

R. Mehta (ADFOCS’20)

Reduces to 𝑣𝑣𝑖𝑖𝑗𝑗 ∈ {0,1}

Exercise.

VY’20 Algorithm
bi-values: 𝑣𝑣𝑖𝑖𝑗𝑗 ∈ 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 0 ≤ 𝑎𝑎𝑖𝑖 < 𝑏𝑏𝑖𝑖

R. Mehta (ADFOCS’20)

Open Questions

R. Mehta (ADFOCS’20)

HZ Equilibrium

Computation for the general case.
Is it hard? OR is it (approximation) polynomial-time?

 Efficient algorithm when #goods or #agents is a
constant [DK’08, AKT’17]

 Cell-decomposition and enumeration

R. Mehta (ADFOCS’20)

What about chores?

 CEEI exists but may form a non-convex set [BMSY’17]

 Efficient Computation?
Open: Fisher as well as for CEEI
 For constantly many agents (or chores) [BS’19, GM’20]

 Fast path-following algorithm [CGMM.’20]

 Hardness result for an exchange model [CGMM.’20]

R. Mehta (ADFOCS’20)

References.
[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.
[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847–1871, 2017.
[BMSY19] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395–417, 2019.
[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).
[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.
[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.
[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.
[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–
314, 1979.
[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

R. Mehta (ADFOCS’20)

R. Mehta (ADFOCS’20)

Thank You

	Slide Number 1
	(Recall) Fisher’s Model
	(Recall) Competitive Equilibrium
	Max Flow (One slide overview)
	CE Characterization
	Competitive Equilibrium → Flow
	Competitive Equilibrium → Flow
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Example
	Formal Description
	Efficiently Computing Event 2
	Efficiently Computing Event 1
	Efficiently Computing Event 1
	Efficiently Computing Event 1
	Efficient Flow-based Algorithms
	Hylland-Zeckhauser�(an extension)
	Motivation: Matching
	HZ Equilibrium
	HZ Equilibrium
	VY’20 Algorithm �(𝑣 𝑖𝑗 ∈ 0,1)
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Open Questions
	HZ Equilibrium
	What about chores?
	References.
	Slide Number 40

