Lecture 2: Computation of CE

ADFOCS 2020 25th August 2020

(Recall) Fisher's Model

- Set *A* of *n* agents. Set *G* of *m* divisible goods.
- Each agent *i* has
 - \Box budget of B_i euros
 - \square valuation function $v_i \colon \mathbb{R}^m_+ \to \mathbb{R}_+$ over bundles of goods.

Linear: for bundle $x_i = (x_{i1}, \dots, x_{im}), v_i(x_i) = \sum_{j \in G} v_{ij} x_{ij}$

Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

- Optimal bundle: Agent *i* demands $x_i \in \underset{x \in R_m^+: p \cdot x \leq B_i}{\operatorname{argmax}} v_i(x)$
- Market clears: For each good *j*,
 demand = supply

Fairness and efficiency guarantees: Pareto optimal (PO) Weighted Envy-free Weighted Proportional Maximizes W. NW.

Algorithm: Set up as a "flow problem"

Max Flow (One slide overview)

Given $s, t \in V$. Capacity c_e for each edge $e \in E$. **Find maximum flow** from s to t, $(f_e)_{e \in E}$ s.t.

• Capacity constraint

 $f_e \leq c_e, \forall e \in E$

• Flow conservation: at every vertex $u \neq s, t$ total in-flow = total out-flow

Theorem: Max-flow = Min-cut s-t s-t

s-t cut: $S \subset V$, $s \in S$, $t \notin S$ cut-value: $C(S) = \sum_{\substack{(u,v) \in E:\\ u \in S, v \notin S}} c_{(u,v)}$

Min s-t cut: $\min_{\substack{S \subset V:\\s \in S, t \notin S}} C(S)$

Can be solved in *strongly* polynomial-time

CE Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

Optimal bundle: Agent *i* demands $x_i \in \underset{x: p \cdot x \leq B_i}{\operatorname{argmax}} v_i(x)$ $\square p \cdot x_i = B_i$ $\square x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_i} = \underset{k \in G}{\max} \frac{v_{ik}}{p_k}, \text{ for all good } j$

Market clears: For each good *j*, demand = supply

$$\sum_{i} x_{ij} = 1.$$

Competitive Equilibrium → Flow

Pirces $p = (p_1, ..., p_m)$ and allocation $F = (f_1, ..., f_n)$

$f_{ij} = x_{ij}p_j$ (money spent)

• Optimal bundle: Agent *i* demands $x_i \in argmax_{x:p \cdot x \le B_i} v_i(x)$

$$\Box \ \sum_{j \in G} J_{ij} - D_i$$

$$\Box \ f_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \underbrace{\max_{k \in G} \frac{v_{ik}}{p_k}}_{Maximum bang-per-buck (MBB)}$$

■ Market clears: For each good *j*, demand = supply

$$\sum_{i\in N} f_{ij} = p_j +$$

Competitive Equilibrium → Flow

CE:
$$(p, F)$$
 s.t.

$$\sum_{i \in N} f_{ij} = p_j \sum_{j \in M} f_{ij} = B_i$$

$$f_{ij} > 0 \text{ on MBB edges}$$

Max-flow = min-cut = $\sum_{j \in G} p_j = \sum_{i \in A} B_i$

Issue: Eq. prices and hence also MBB edges not known!

Fix [DPSV'08]: Start with low prices, keep increasing. Maintain: 1. Flow only on MBB edges

2. Min-cut =
$$\{s\}$$
 (goods are fully sold)

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init:
$$\forall j \in G$$
, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Increase p:

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Observation: If α is increased further, then G_F can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: New cross-cutting min-cut

Agents in A_F exhaust all their money. G_F : Goods that have MBB edges only from A_F .

A tight-set.

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F Call it *frozen:* (G_F, A_F) .

Invariants

1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F Call it *frozen:* (G_F, A_F) . Freeze prices in G_F . Increase prices in G_D .

Observation: If α is increased further, then **S** can not be fully sold. And $\{s\}$ will cease to be a min-cut. Invariants

1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase *p*:↑ *α*

Event 1: A tight subset $S \subseteq G_D$

N(S): Neighbors of S Move (S, N(S)) from dynamic to frozen.

Invariants

1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) to frozen part *Freeze prices in* G_F , and *increase in* G_D .

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from active to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Must be between $i \in A_D \& j \in G_F$. *Recompute active and frozen*.

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from active to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Has to be from $i \in A_D$ to $j \in G_F$. Recompute active and frozen: *Move the component containing good j from frozen to active.*

Observations: Prices only increase. Each increase can be lower bounded. Both the events can be computed efficiently.

Converges to CE in finite time.

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to *j*

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from active to frozen. Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge Must be from $i \in A_D$ to $j \in G_F$. Recompute active and frozen.

Stop: all goods are frozen.

Input

Event 1

S

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = {s} (goods are sold)

Init.

Event 2

Formal Description

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$

Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}$$
$$= \min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} > \alpha(S)$$

• Find
$$S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$$

Event 1: Set $S^* \subseteq G_D$ becomes tight. $\sum_{i \in N(S)} B_i$

$$\alpha(S) = \frac{\Delta t \in N(S) - t}{\sum_{j \in S} p_j}$$

Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$

Claim. Can be done in O(n) min-cut computations

Efficient Flow-based Algorithms

- Polynomial running-time
 - □ Compute *balanced-flow:* minimizing *l*₂ norm of agents' surplus [DPSV'08]
 - Strongly polynomial: Flow + scaling [Orlin'10]

Exchange model (barter):

- Polynomial time [DM'16, DGM'17, CM'18]
- Strongly polynomial for exchange

□ Flow + scaling + approximate LP [GV'19]

Hylland-Zeckhauser (an extension)

Motivation: Matching

Goal: Design a method to match goods to agents so that

- The outcome is **Pareto-optimal** and **envy-free**
- **Strategy-proof**: Agents have no incentive to lie about their $v_{ij}s$.

Hylland-Zeckhauzer'79: Compute CEEI where every agent wants total amount of at most one unit.

But the outcome is a fractional allocation! Think of it as probabilities/time-shares/... []

HZ Equilibrium

Given:

- Agents $A = \{1, ..., n\}$, indivisible goods $G = \{1, ..., n\}$
- v_{ij} : value of agent *i* for good *j*.
 - □ If *i* gets *j* w/ prob. x_{ij} , then the expected value is: $\sum_{j \in G} v_{ij} x_{ij}$

Want: prices
$$p = (p_1, ..., p_n)$$
, allocation $X = (x_1, ..., x_n)$

• Each good *j* is allocated: $\sum_{i \in A} x_{ij} = 1$

• Each agent *i* gets an optimal bundle subject to

□ \$1 budget, and **unit allocation**.

$$x_i \in \underset{x \in R^m_+}{\operatorname{argmax}} \left\{ \sum_j v_{ij} x_j \left| \sum_j x_j = 1, \sum_j p_j x_j \le 1 \right\} \right\}$$

HZ Equilibrium

Hyllander-Zeckhauzer'79

Exists. Pareto optimal, Strategy proof in large markets.

Vazirani-Yannakakis'20

• Irrational equilibrium prices \Rightarrow not in PPAD

In FIXP

Algorithm for bi-valued preferences:

 $v_{ij} \in \{a_i, b_i\}$ where $a_i, b_i \ge 0$

VY'20 Algorithm $(v_{ij} \in \{0,1\})$

Want: (p, X)All goods are sold. Each agent *i* gets $x_i \in argmax$ $\sum_{j\in G} v_{ij} x_j$ $x:\sum_{j} x_{j} = 1, \sum_{j} p_{j} x_{j} \le 1$

At equilibrium, an agent's utility is at most 1.

Perfect matching \Rightarrow An equilibrium is,

- Allocation on the matching edges
- Zero prices

Want:
$$(p, X)$$

Each good *j* is sold (1 unit)
Each agent *i* gets
 $x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \le 1}{\sum_{j \in G} v_{ij} x_j}$

No perfect matching Min vertex cover: $(G_1 \cup A_2)$ $\Box \operatorname{No} A_1 - G_2$ edge

Want:
$$(p, X)$$

Each good *j* is sold (1 unit)
Each agent *i* gets
 $x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\sum_{j \in G} v_{ij} x_j}$

No perfect matching Min vertex cover: $(G_1 \cup A_2)$ \square No $A_1 - G_2$ edge \square For each $S \subseteq A_2$, $|N(S) \cap G_2| \ge |S|$ \blacksquare Else get smaller VC by replacing S with $N(S) \cap G_2$

Max matching in (G_2, A_2) matches all of A_2 .

Subgraph (G_2, A_2) satisfies hall's condition for A_2 .

Max matching

Want: (p, X)Each good *j* is sold (1 unit) Each agent *i* gets $x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$

No perfect matching Min vertex cover: $(G_1 \cup A_2)$ \square No $A_1 - G_2$ edge \square For each $S \subseteq A_2$, $|N(S) \cap G_2| \ge |S|$ \blacksquare Max matching in (G_2, A_2) matches all of A_2 .

Max matching

Running-time: Strongly polynomial

Want: (p, X)Each good *j* is sold (1 unit) Each agent *i* gets $\sum_{\substack{x:\sum_{j} x_{j}=1,\sum_{j} p_{j} x_{j} \leq 1}} \sum_{j \in G} v_{ij} x_{j}$ $x_i \in$

No perfect matching Min vertex cover: $(G_1 \cup A_2)$

- Eq. Prices: CEEI prices for G_1 , and 0 prices for G_2
- Eq. Allocation
 - $\Box i \in A_2$ gets her matched good
 - □ $i \in A_1$ gets CEEI allocation + unmatched goods from G_2

VY'20 Algorithm bi-values: $v_{ij} \in \{a_i, b_i\}, 0 \le a_i < b_i$

Reduces to $v_{ij} \in \{0,1\}$

Exercise.

Open Questions

HZ Equilibrium

Computation for the general case.

Is it hard? OR is it (approximation) polynomial-time?

Efficient algorithm when #goods or #agents is a constant [DK'08, AKT'17]

□ Cell-decomposition and enumeration

What about chores?

■ CEEI exists but may form a non-convex set [BMSY'17]

Efficient Computation?
 Open: Fisher as well as for CEEI
 For constantly many agents (or chores) [BS'19, GM'20]
 Fast path-following algorithm [CGMM.'20]

■ Hardness result for an exchange model [CGMM.'20]

References.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of the 2017 ACM Conference on Economics and Computation*. 2017.

[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna. Econometrica, 85(6):1847–1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social Choice and Welfare, 52(3):395–417, 2019.

[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." *arXiv preprint arXiv:1907.01766* (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." *Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems*. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. *arXiv* preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the Complexity of Fair and Efficient Division of Chores. *arXiv preprint arXiv:2008.00285*.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." *Journal of the ACM (JACM)* 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets." *arXiv preprint arXiv:2004.01348* (2020).

THANK YOU

R. Mehta (ADFOCS'20)