Lecture 2: Computation of CE

ADFOCS 2020
$25^{\text {th }}$ August 2020

Ruta Mehta
I I L L I N O I S

(Recall) Fisher's Model

- Set A of n agents. Set G of m divisible goods.
- Each agent i has
\square budget of B_{i} euros
\square valuation function $v_{i}: R_{+}^{m} \rightarrow R_{+}$over bundles of goods.
Linear: for bundle $x_{i}=\left(x_{i 1}, \ldots, x_{i m}\right), v_{i}\left(x_{i}\right)=\sum_{j \in G} v_{i j} x_{i j}$
- Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces $p=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $X=\left(x_{1}, \ldots, x_{n}\right)$

- Optimal bundle: Agent i demands

$$
x_{i} \in \underset{x \in R_{m}^{+}: p \cdot x \leq B_{i}}{\operatorname{argmax}} v_{i}(x)
$$

- Market clears: For each good j, demand = supply

Fairness and efficiency guarantees:
Pareto optimal (PO)
Weighted Envy-free
Weighted Proportional
Maximizes W. NW.

Algorithm: Set up as a "flow problem"

Max Flow (One slide overview)

Directed Graph

Given $s, t \in V$. Capacity c_{e} for each edge $e \in E$. Find maximum flow from s to $t,\left(f_{e}\right)_{\mathrm{e} \in E}$ s.t.

- Capacity constraint

$$
f_{e} \leq c_{e}, \forall e \in E
$$

- Flow conservation: at every vertex $u \neq s, t$ total in-flow $=$ total out-flow

Theorem: Max-flow $=\underset{s-t}{\operatorname{Min}-c u t}$
s-t cut: $S \subset V, \mathrm{~s} \in S, t \notin S$
cut-value: $C(S)=\sum_{\substack{(u, v) \in E: \\ u \in S, v \notin S}} c_{(u, v)}$
Min s-t cut: $\min _{\substack{S \subset V \\ s \in S, t \notin S}} C(S)$

Can be solved in
strongly polynomial-time

CE Characterization

Pirces $p=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $X=\left(x_{1}, \ldots, x_{n}\right)$

■ Optimal bundle: Agent i demands $x_{i} \in \operatorname{argmax} v_{i}(x)$ $x: p \cdot x \leq B_{i}$
$\square p \cdot x_{i}=B_{i}$
$\square x_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\max _{k \in G} \frac{v_{i k}}{p_{k}}$, for all good j

■ Market clears: For each good j, demand = supply

$$
\sum_{i} x_{i j}=1
$$

Competitive Equilibrium \rightarrow Flow

Pirces $p=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $F=\left(f_{1}, \ldots, f_{n}\right)$

$$
f_{i j}=x_{i j} p_{j}(\text { money spent })
$$

$$
\begin{aligned}
& \sum_{j \in G} f_{i j}=B_{i} \\
& f_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\underbrace{\max _{k \in G} \frac{v_{i k}}{p_{k}}}_{\longleftrightarrow \text { Maximum bang-per-buck (MBB) }} \text { for all good } j
\end{aligned}
$$

- Market clears: For each good j, demand = supply

$$
\sum_{i \in N} f_{i j}=p_{j}
$$

Competitive Equilibrium \rightarrow Flow

$$
\begin{aligned}
& \text { Max-flow }=\text { min-cut } \\
& =\sum_{j \in G} p_{j}=\sum_{i \in A} B_{i}
\end{aligned}
$$

Issue: Eq. prices and hence also MBB edges not known!

CE: (p, F) s.t.

$$
\sum_{i \in N} f_{i j}=p_{j} \quad \sum_{j \in M} f_{i j}=B_{i}
$$

$f_{i j}>0$ on MBB edges
prices, keep increasing.

Maintain:

1. Flow only on MBB edges
2. \quad Min-cut $=\{s\}$ (goods are fully sold)

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in \mathrm{G}, p_{j}<\min _{i} \frac{B_{i}}{m}$, and at least one MBB edge to j

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

> Init: $\forall j \in G, p_{j}<\min _{i} \frac{B_{i}}{m}$, and at least one MBB edge to j

Increase p :

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$ And at least one MBB edge to j

Increase $\boldsymbol{p}: \uparrow \alpha$

Algorithm (Pictorial)

Observation: If α is increased further, then G_{F} can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$
And at least one MBB edge to j

Increase $\boldsymbol{p}: \uparrow \alpha$

Event 1: New cross-cutting min-cut
Agents in A_{F} exhaust all their money. G_{F} : Goods that have MBB edges only from A_{F}.

A tight-set.

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$ And at least one MBB edge to j

Increase $\boldsymbol{p}: \uparrow \alpha$

Event 1: A tight subset G_{F}
Call it frozen: $\left(G_{F}, A_{F}\right)$.

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$
And at least one MBB edge to j
Increase $\boldsymbol{p}: \uparrow \alpha$
Event 1: A tight subset G_{F}
Call it frozen: $\left(G_{F}, A_{F}\right)$.
Freeze prices in G_{F}.
Increase prices in G_{D}.

Algorithm (Pictorial)

Invariants

Observation: If α is increased further, then \boldsymbol{S} can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$ And at least one MBB edge to j

Increase $\boldsymbol{p}: \uparrow \alpha$
Event 1: A tight subset $S \subseteq G_{D}$
$N(S)$: Neighbors of S
Move $(S, N(S))$ from dynamic to frozen.

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$
And at least one MBB edge to j
Increase $\boldsymbol{p}: \uparrow \alpha$
Event 1: A tight subset $S \subseteq G_{D}$
Move ($S, \mathrm{~N}(S)$) to frozen part
Freeze prices in G_{F}, and increase in G_{D}.

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$ And at least one MBB edge to j

Increase $\boldsymbol{p}: \uparrow \alpha$
Event 1: A tight subset $S \subseteq G_{D}$ Move ($S, \mathrm{~N}(S)$) from active to frozen Freeze prices in G_{F}, and increase in G_{D}.

OR

Event 2: New MBB edge
Must be between $i \in A_{D} \& j \in G_{F}$.
Recompute active and frozen.

Algorithm (Pictorial)

Invariants

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$
And at least one MBB edge to j

Increase $\boldsymbol{p}: \uparrow \alpha$
Event 1: A tight subset $S \subseteq G_{D}$ Move ($S, \mathrm{~N}(S)$) from active to frozen Freeze prices in G_{F}, and increase in G_{D}.

OR

Event 2: New MBB edge
Has to be from $i \in A_{D}$ to $j \in G_{F}$. Recompute active and frozen:
Move the component containing good j from frozen to active.

Algorithm (Pictorial)

Invariants

Observations: Prices only increase. Each increase can be lower bounded. Both the events can be computed efficiently.

$$
\Downarrow
$$

Converges to CE in finite time.

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Init: $\forall j \in M, p_{j}<\min _{i} \frac{B_{i}}{n}$
And at least one MBB edge to j
Increase $\boldsymbol{p}: \uparrow \alpha$
Event 1: A tight subset $S \subseteq G_{D}$ Move ($S, \mathrm{~N}(S)$) from active to frozen.
Freeze prices in G_{F}, and increase in G_{D}.

OR

Event 2: New MBB edge Must be from $i \in A_{D}$ to $j \in G_{F}$. Recompute active and frozen.

Stop: all goods are frozen.

Invariants

Example

Input

Event 1

1. Flow only on MBB edges
2. Min-cut $=\{s\}$ (goods are sold)

Event 2

Formal Description

- Init: $p \leftarrow$ "low-values" s.t. $\{s\}$ is a min-cut.
$\left(G_{D}, A_{D}\right) \leftarrow(G, A),\left(G_{F}, A_{F}\right) \leftarrow(\emptyset, \emptyset)$
- While $\left(G_{D} \neq \varnothing\right)$

$$
\alpha \leftarrow 1, p_{j} \leftarrow \alpha p_{j} \forall j \in G_{D} \text {. Increase } \alpha \text { until }
$$

Event 1: Set $S \subseteq G_{D}$ becomes tight.
$\mathrm{N}(S) \leftarrow$ agents w/ MBB edges to S (neighbors).
Move ($\mathrm{S}, \mathrm{N}(\mathrm{S})$) from $\left(G_{D}, A_{D}\right)$ to (G_{F}, A_{F}).
Event 2: New MBB edge appears between $i \in A_{D}$ and $j \in G_{F}$ Add $(j \rightarrow i)$ edge to graph.
Move component of j from $\left(G_{F}, A_{F}\right)$ to $\left(G_{D}, A_{D}\right)$.

- Output (p, F)

Efficiently Computing Event 2

Event 2: New MBB edge appears between $i \in A_{D}$ and $j \in G_{F}$

Exercise :

Efficiently Computing Event 1

Event 1: Set $S^{*} \subseteq G_{D}$ becomes tight.

- $\alpha^{*}=\frac{\sum_{i \in N\left(S^{*}\right)} B_{i}}{\Sigma_{j \in S^{*}} p_{j}}$

$$
=\min _{S \subseteq G_{D}} \frac{\sum_{\frac{\sum_{\epsilon N(S)} B_{i}}{}}^{\sum_{j \in S} p_{j}}}{>}<\alpha(S)
$$

- Find $S^{*}=\operatorname{argmin} \alpha(S)$ $S \subseteq G_{D}$

Efficiently Computing Event 1

Event 1: Set $S^{*} \subseteq G_{D}$ becomes tight.

- $\alpha^{*}=\frac{\Sigma_{i \in N\left(S^{*}\right)} B_{i}}{\Sigma_{j \in S^{*}} p_{j}}$
$=\min _{S \subseteq G_{D}} \frac{\sum_{i \in N(S)} B_{i}}{\sum_{j \in S} p_{j}}>\alpha(S)$
- Find $S^{*}=\underset{S \subseteq G_{D}}{\operatorname{argmin}} \alpha(S)$

Efficiently Computing Event 1

Event 1: Set $S^{*} \subseteq G_{D}$ becomes tight.

- $\alpha(S)=\frac{\Sigma_{i \in N(S)} B_{i}}{\Sigma_{j \in S} p_{j}}$

$$
\text { Find } S^{*}=\underset{S \subseteq G_{D}}{\operatorname{argmin}} \alpha(S)
$$

Claim. Can be done in $\mathrm{O}(\mathrm{n})$ min-cut computations

Efficient Flow-based Algorithms

- Polynomial running-time
\square Compute balanced-flow: minimizing l_{2} norm of agents’ surplus [DPSV'08]
- Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter):

- Polynomial time [DM'16, DGM'17, CḾ18]
- Strongly polynomial for exchange
\square Flow + scaling + approximate LP [GV'19]

Hylland-Zeckhauser

(an extension)

Motivation: Matching

Goal: Design a method to match goods to agents so that

- The outcome is Pareto-optimal and envy-free
- Strategy-proof: Agents have no incentive to lie about their $v_{i j} s$.

Hylland-Zeckhauzer'79: Compute CEEI where every agent wants total amount of at most one unit.

But the outcome is a fractional allocation!
Think of it as probabilities/time-shares/... []

HZ Equilibrium

Given:

■ Agents $A=\{1, \ldots, n\}$, indivisible goods $G=\{1, \ldots, n\}$

- $v_{i j}$: value of agent i for good j.
\square If i gets $j \mathrm{w} /$ prob. $x_{i j}$, then the expected value is: $\sum_{j \in G} v_{i j} x_{i j}$

Want: prices $p=\left(p_{1}, \ldots, p_{n}\right)$, allocation $X=\left(x_{1}, \ldots, x_{n}\right)$

- Each good j is allocated: $\sum_{i \in A} x_{i j}=1$
- Each agent i gets an optimal bundle subject to
$\square \$ 1$ budget, and unit allocation.

$$
x_{i} \in \underset{x \in R_{+}^{m}}{\operatorname{argmax}}\left\{\sum_{j} v_{i j} x_{j} \mid \sum_{j} x_{j}=\mathbf{1}, \sum_{j} p_{j} x_{j} \leq 1\right\}
$$

HZ Equilibrium

Hyllander-Zeckhauzer'79

- Exists. Pareto optimal, Strategy proof in large markets.

Vazirani-Yannakakis'20

- Irrational equilibrium prices \Rightarrow not in PPAD

■ In FIXP

- Algorithm for bi-valued preferences:

$$
v_{i j} \in\left\{a_{i}, b_{i}\right\} \text { where } a_{i}, b_{i} \geq 0
$$

VY'20 Algorithm $\left(v_{i j} \in\{0,1\}\right)$

At equilibrium, an agent's utility is at most 1 .

Perfect matching \Rightarrow An equilibrium is,

- Allocation on the matching edges
- Zero prices

VY'20 Algorithm

 $\left(v_{i j} \in\{0,1\}\right)$

Want: (p, X)
Each good j is sold (1 unit) Each agent i gets
$x_{i} \in \underset{x: \Sigma_{j} x_{j}=1, \Sigma_{j} p_{j} x_{j} \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{i j} x_{j}$

No perfect matching
■ Min vertex cover: $\left(G_{1} \cup A_{2}\right)$
\square No $A_{1}-G_{2}$ edge

VY'20 Algorithm

 $\left(v_{i j} \in\{0,1\}\right)$

Want: (p, X)
Each good j is sold (1 unit) Each agent i gets
$x_{i} \in \underset{x: \Sigma_{j} x_{j}=1, \Sigma_{j} p_{j} x_{j} \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{i j} x_{j}$

No perfect matching

■ Min vertex cover: $\left(G_{1} \cup A_{2}\right)$
\square No $A_{1}-G_{2}$ edge
\square For each $S \subseteq A_{2},\left|N(S) \cap G_{2}\right| \geq|S|$

- Else get smaller VC by replacing S with $N(S) \cap G_{2}$

$$
\sqrt{n}
$$

Max matching in $\left(G_{2}, A_{2}\right)$ matches all of A_{2}.

Subgraph $\left(G_{2}, A_{2}\right)$ satisfies hall's condition for A_{2}.

VY'20 Algorithm

 $\left(v_{i j} \in\{0,1\}\right)$CEEI

Max matching

Want: (p, X)
Each good j is sold (1 unit) Each agent i gets
$x_{i} \in \underset{x: \Sigma_{j} x_{j}=1, \Sigma_{j} p_{j} x_{j} \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{i j} x_{j}$

No perfect matching

■ Min vertex cover: $\left(G_{1} \cup A_{2}\right)$
\square No $A_{1}-G_{2}$ edge
\square For each $S \subseteq A_{2},\left|N(S) \cap G_{2}\right| \geq|S|$

- Max matching in $\left(G_{2}, A_{2}\right)$ matches all of A_{2}.

VY'20 Algorithm

$\left(v_{i j} \in\{0,1\}\right)$

Max matching

Running-time:
Strongly polynomial

Want: (p, X)
Each good j is sold (1 unit) Each agent i gets
$x_{i} \in \underset{x: \sum_{j} x_{j}=1, \sum_{j} p_{j} x_{j} \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{i j} x_{j}$

No perfect matching

- Min vertex cover: $\left(G_{1} \cup A_{2}\right)$
- Eq. Prices: CEEI prices for G_{1}, and 0 prices for G_{2}
- Eq. Allocation
$\square i \in A_{2}$ gets her matched good
$\square i \in \mathrm{~A}_{1}$ gets CEEI allocation + unmatched goods from G_{2}

VY'20 Algorithm
 bi-values: $v_{i j} \in\left\{a_{i}, b_{i}\right\}, 0 \leq a_{i}<b_{i}$

Reduces to $v_{i j} \in\{0,1\}$

Exercise.

Open Questions

HZ Equilibrium

Computation for the general case.
 Is it hard? OR is it (approximation) polynomial-time?

- Efficient algorithm when \#goods or \#agents is a constant [DK'08, AKT'17]
\square Cell-decomposition and enumeration

What about chores?

■ CEEI exists but may form a non-convex set [BMSY’17]

- Efficient Computation?
\square Open: Fisher as well as for CEEI
\square For constantly many agents (or chores) [BS'19, GM'20]
\square Fast path-following algorithm [CGMM.'20]

■ Hardness result for an exchange model [CGMm.20]

References.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of the 2017 ACM Conference on Economics and Computation. 2017.
[BMSY17] Anna Bogomolnaia, Herv'e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847-1871, 2017.
[BMSY19] Anna Bogomolnaia, Herv'e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social Choice and Welfare, 52(3):395-417, 2019.
[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint arXiv:1907.01766 (2019).
[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems. 2020.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., \& Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv preprint arXiv:2008.02753.
[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., \& Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.
[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.
[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM (JACM) 55.5 (2008): 1-18.
[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293314, 1979.
[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

THANK YOU

