"
Lecture 2: Computation of CE

ADFOCS 2020
25t" August 2020

Ruta Mehta
I LLINOTIS

"
(Recall) Fisher’s Model

m Sct A of n agents. Set G of m divisible goods.

m Each agent i has
budget of B; euros

valuation function v;: RI* — R, over bundles of goods.

Linear: for bundle x; = (x;q1, ..., Xjm), V; (x;) = Zjea VijXij

m Supply of every good 1s one.

(Recall) Competitive Equilibrium

Pirces p = (p4, ..., P;y) and allocation X = (x4, ..., X;,)

m Optimal bundle: Agent i demands

Fairness and efficiency
x; € argmax v;(x)

R 1 ox<B. guarantees:
HERm: PAsB Pareto optimal (PO)
Weighted Envy-free
m Market clears: For each good j, Weighted Proportional

demand = supply Maximizes W. NW.

Algorithm: Set up as a “flow problem™

Max Flow (One slide overview)

Directed Graph Theorem: Max-flow = Min-cut
(V,E) s-t s-t

s-tcut: S clV,ses, t&s

O cut-value: C(S) = Z Clu,v)

(u,v)€EE:
UES,VES

Min s-t cut: min C(S)
ScvV:
SES,tES

Given s,t € V. Capacity c, for each edge e € E.
Find maximum flow from s to t, (f.)ecg S-t.

* (Capacity constraint

fe < ce, Ve EE Can be solved in

e Flow consewa‘Flon: at every vertex u # s, t strong ly polynomial—time
total in-flow = total out-flow

CE Characterization

Pirces p = (p4, ..., P;y) and allocation X = (x4, ..., x;,)

m Optimal bundle: Agent i demands x; € argmax v; (x)
X:p-X<Bj
p-x;=b;
x;; >0 = ~2 = max 2 for all good |
Y pj keG Pk’ £00¢

m Market clears: For each good j, demand = supply

Z.X'ij = 1.

I

Competitive Equilibrium — Flow
F = (fl’ ---»fn)

fij = x;jp; (money spent)

ZjEGfij = B;
Vii V;
fij > 0 = =|max =
pj |keG Pk

L— Maximum bang-per-buck (MBB)

Zfij = pj

IEN

Competitive Equilibrium — Flow

G A
capacities /O J CE: (p, F) s.t
@ k‘ Zfij:pj Zfij:Bi
JO yre e t iEN JEM
S px/p fij > 0 on MBB edges
(& [] []
a0 6
Max-flow 1
MBB edges Fix [DPSV’08]: Start with low
Max-flow = min-cut prices, keep increasing.
=DjecPj = LieaBi Maintain;

1. Flow only on MBB edges

Issue: Eq. prices and hence 2. Min-cut = {s} (goods are fully sold)

also MBB edges not known!

Algorithm (Pictorial)

G

MBB
edges
oo cap.

A

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € G, p; < min ﬁ, and
I m
at least one MBB edge to j

Invariants

Al g()rlthm (Pictori al) I. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G A
Init: Vj € G, p; < min ﬁ, and
l m
MBB at least one MBB edge to j
edges
oo cap. Increase p:
vij
argmax —

jEG Dj

Invariants

Al g()rlthm (Pictori al) I. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G A
Init: Vj € M, p; < m_inﬂ
l n

MBB And at least one MBB edge to j
edges
oo cap. Increase p: T «

T
vij

= argmax—-—
jeGc aDj

Algorithm (Pictorial)

Observation: If « 1s increased further,
then G can not be fully sold. And {s}
will cease to be a min-cut.

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: New cross-cutting min-cut

Agents in Ar exhaust all their money.

Gr: Goods that have MBB edges only
from Ap.

A tight-set.

Algorithm (Pictorial)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset G
Call it frozen: (G, Af).

Algorithm (Pictorial)

G (dynamic) A

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset G
Call it frozen: (Gr, Af).
Freeze prices in Gp.
Increase prices in Gp.

Invariants

Al g ()rithm (Pictori al) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G (dynamic) A

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset S € G
(frozen) N(S): Neighbors of S

Move (S,N(S)) from dynamic to
frozen.

Observation: If « 1s increased further,
then S can not be fully sold. And {s}
will cease to be a min-cut.

Algorithm (Pictorial)

(dynamic)

Invariants
1. Flow only on MBB edges
2. Min-cut = {s} (goods are sold)

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset S € G

Move (S,N(S)) to frozen part

Freeze prices in Gg, and
increase in Gp.

Invariants

Al g orithm (Pictori al) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G (dynamic) A

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset S € G

Move (S,N(S)) from active to frozen

Freeze prices in G, and
increase in Gp.

(frozen)

OR

Event 2: New MBB edge
Must be between i € Ap & J € Gp.
Recompute active and frozen.

Invariants

Al g()rlthm (Pictori al) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

G (dynamic) A

Init: Vj € M, p; < m_in%
l
And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset S € G

Move (S,N(S)) from active to frozen
Freeze prices in G, and
increase in Gp.

OR

Event 2: New MBB edge
Has to be from i € Ap to j € Gp.
Recompute active and frozen:
Move the component containing
good J from frozen to active.

Invariants

Al g ()rithm (Pictori al) 1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)
G A

(frozen)

Init: Vj € M, p; < m_in%
l
S And at least one MBB edge to j

Increase p: T «a

Event 1: A tight subset S € G
Move (S, N(S)) from active to frozen.

Freeze prices in G, and

increase in Gp.
Observations: Prices only increase.

Each increase can be lower bounded. OR
Both the events can be computed Event 2: New MBB edge
efficiently. ﬂ Must be from i € Ap to j € Gp.

Recompute active and frozen.

Converges to CE in finite time. Stop: all goods are frozen.

Invariants
1. Flow only on MBB edges

2. Min-cut = {s} (goods are sold)

Init.
©
i/Hi\Sbt
A
B
Event 2
i{“:\i 5 t
& 1
B

Formal Description

m Init: p « “low-values” s.t. {s} is a min-cut.
(Gp,Ap) < (G,A), (Gp,Ap) < (0,0)
m While(G, # 0)
a < 1, pj < ap; Vj € Gp. Increase a until
Event 1: Set S € G becomes tight.
N(S) < agents w/ MBB edges to S (neighbors).
Move (S,N(S)) from (Gp, Ap) to (Gg, Ag).
Event 2: New MBB edge appears between i € A and j € Gg
Add (j = i) edge to graph.
Move component of j from (G, Ar) to (Gp, Ap).

m Output (p, F)

Efficiently Computing Event 2

Event 2: New MBB edge appears between i € Ap and j € G

Exercise ©

Efficiently Computing Event 1

a=1

G

MBB
edges
oo cap.

1Increase a

Event 1: Set S* € G becomes tight.

« _ Zien(s*) Bi

z:jeS* pj

= min
SCGp

2ien(s) Bi

m Find §* = argmin a(S)

SCSGp

Efficiently Computing Event 1

. * C .
MBB Event 1: Set S™ € G becomes tight.

edges « _ XieN(s®) Bi

B g =
z:jeS"‘ Pj

— min Yien(s) Bi
SSGp| LjesPj a(S)

m Find §* = argmin a(S)
SCGp

Efficiently Computing Event 1

MBB
edges

Event 1: Set S* € G becomes tight.

_ 2ien(s) Bi
m a(S) = —Zjes b

Find §* = argmin a(S)
SCGp

Claim. Can be done in O(n) min-cut
computations

"
Efficient Flow-based Algorithms

m Polynomial running-time

Compute balanced-flow: minimizing [, norm of agents’
surplus [DPSV’08]

m Strongly polynomial: Flow + scaling [orlin’10]

Exchange model (barter):
m Polynomial time [pm’16, DGM*17, CM’18]

m Strongly polynomial for exchange
Flow + scaling + approximate LP [GV’19]

Hylland-Zeckhauser

(an extension)

Motivation: Matching

Indivisible

Agent :
goods e Goal: Design a method to match
10 i 1 goods to agents so that
: oy : * The outcome is Pareto-optimal and
1 O— J O 1
s) envy-free
: : * Strategy-proof: Agents have no
n O cs D incentive to lie about their v;;s.

Hylland-Zeckhauzer’79: Compute CEEI where every agent wants
total amount of at most one unit.

But the outcome 1s a fractional allocation!
Think of 1t as probabilities/time-shares/... []

HZ Equilibrium

Given:
m Agents A = {1, ...,n}, indivisible goods G = {1, ..., n}
m v;;: value of agent i for good j.

If i gets j w/ prob. x;;, then the expected value is:), jeg VijXij

Want: prices p = (pq, ..., pn), allocation X = (x4, ..., x,,)
m Each good j is allocated: },;e 4 x;; = 1

m Each agent i gets an optimal bundle subject to

$1 budget, and unit allocation.
X; € argmax Zvijxj Zx]- = 1,ijxj <1
L j 7

HZ Equilibrium

Hyllander-Zeckhauzer’79

m Exists. Pareto optimal, Strategy proof in large markets.

Vazirani-Y annakakis’20

m [rrational equilibrium prices = not in PPAD
m In FIXP

m Algorithm for bi-valued preferences:
vij S {Cli, bl} where a;, bi >0

VY’20 Algorithm

(vij €{0,1})

G A
10 21
.. vij =1 f
jO— il
no s N

Want: (p, X)
All goods are sold.
Each agent i gets

X; € argmax 2 jeG VijXj
x:Z]- xj=1,Zj pjxj<1

At equilibrium, an agent’s
utility 1s at most 1.

Perfect matching = An equilibrium is,

m Allocation on the matching edges

m Zero prices

VY’20 Algorithm Want: (p, X)

Each good j 1s sold (1 unit)
(vij €10,1) Each agent i gets

X; € argmax 2jec Vij¥;
XZ] szllzj pjxj<1

G A
v =1 , .
@ cdges . No perfect matching
@23 m Min vertex cover: (G; U A,)
No A, — G, edge

VY’20 Algorithm Want: (p, X)

Each good j 1s sold (1 unit)
(vij €10,1) Each agent i gets
X; € argmax 2jec Vij¥;

XZ] szllzj pjxj<1

v =1 .
edges . No perfect matching

@ o m Min vertex cover:(G; U A4,)
2 No A; — G, edge
ForeachS € A,, IN(S) N G,| = |S]

m Else get smaller VC by replacing S with
N(S) NG,

Max matching in (G, A;) p Subgraph (G,, A,) satisfies
matches all of 4,. hall’s condition for A,.

VY’20 Algorithm Want: (p, X)

(vij €{0,1})

CEEI
/ .
NS
("

9. Y
8

R/ J

Max matching

Each good j 1s sold (1 unit)
Each agent i gets

X; € argmax 2jec Vij¥;
XZ] szllzj pjxj<1

No perfect matching

m Min vertex cover:(G; U A4,)
No A; — G, edge
Foreach S € A4,, IN(S) N G,| = |S]
m Max matching in (G, A,) matches all of A,.

VY’20 Algorithm Want: (p, X)

Each good j 1s sold (1 unit)
(vij €10,1) Each agent i gets
CEEI Xi € argmax 2jec Vij¥;

Prices x:Y; xj=1% pjxjs1

s <

p at

CEEI .
L\ A\ No perfect matching

-) _

0 R m Min vertex cover:(G; U 4,)

0 gy) m Eq. Prices: CEEI prices for G, and
Max matching 0 prices for G,

m Eq. Allocation

i € A, gets her matched good @

i € A gets CEEI allocation +
unmatched goods from G, @

Running-time:
Strongly polynomial

VY’20 Algorithm

bi-values: v;; € {a;, b;},0 < a; < b;

Reduces to v;; € {0,1}

Exercise.

Open Questions

HZ Equilibrium

Computation for the general case.

Is it hard? OR 1s 1t (approximation) polynomial-time?

m Efficient algorithm when #goods or #agents 1s a
constant [pk’os, AKT’17]

Cell-decomposition and enumeration

What about chores?

m CEEI exists but may form a non-convex set [BMSY’17]

m Efficient Computation?
Open: Fisher as well as for CEEI

For constantly many agents (or chores) [BS’19, GM’20]
Fast path-following algorithm [CGMM.*20]

m Hardness result for an exchange model [camm. 20

References.

[AKTI17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." Proceedings of
the 2017 ACM Conference on Economics and Computation. 2017.

[BMSY17] Anna Bogomolnaia, Herv e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna.
Econometrica, 85(6):1847-1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social
Choice and Welfare, 52(3):395-417, 2019.

[BS19] Branzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." arXiv preprint
arXiv:1907.01766 (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. arXiv
preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the
Complexity of Fair and Efficient Division of Chores. arXiv preprint arXiv:2008.00285.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." Journal of the ACM
(JACM) 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293—
314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided
Matching Markets." arXiv preprint arXiv:2004.01348 (2020).

THANK YOU

	Slide Number 1
	(Recall) Fisher’s Model
	(Recall) Competitive Equilibrium
	Max Flow (One slide overview)
	CE Characterization
	Competitive Equilibrium → Flow
	Competitive Equilibrium → Flow
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Algorithm (Pictorial)
	Example
	Formal Description
	Efficiently Computing Event 2
	Efficiently Computing Event 1
	Efficiently Computing Event 1
	Efficiently Computing Event 1
	Efficient Flow-based Algorithms
	Hylland-Zeckhauser�(an extension)
	Motivation: Matching
	HZ Equilibrium
	HZ Equilibrium
	VY’20 Algorithm �(𝑣 𝑖𝑗 ∈ 0,1)
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Open Questions
	HZ Equilibrium
	What about chores?
	References.
	Slide Number 40

