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 Set 𝑁𝑁 of 𝑛𝑛 agents, Set 𝑀𝑀 of 𝑚𝑚 divisible items
 Agent 𝑖𝑖 has a utility function 𝑢𝑢𝑖𝑖: ℝ+

𝑚𝑚 → ℝ over bundle of items
 Goal: fair and efficient allocation 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

Recap

Fairness:
Envy-free (EF)
Proportionality (Prop)
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 𝑛𝑛 agents, 𝑚𝑚 indivisible items (like cell phone, painting, etc.)
 Agent 𝑖𝑖 has a valuation function 𝑣𝑣𝑖𝑖 ∶ 2𝑚𝑚 → ℝ over subsets of items
 Goal: fair and efficient allocation 𝐴𝐴 = (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛)
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Fairness Notions for Indivisible Items

EF1      EFX

MMS    Prop1

Guarantees
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Envy-Freeness up to One Item (EF1) [B11]

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EF1 if 

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

That is, agent 𝑖𝑖 may envy agent 𝑗𝑗, but the envy can be eliminated if 
we remove a single item from 𝑗𝑗′𝑠𝑠 bundle
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Envy-Freeness up to One Item (EF1) [B11]

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EF1 if 

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

That is, agent 𝑖𝑖 may envy agent 𝑗𝑗, but the envy can be eliminated if 
we remove a single item from 𝑗𝑗′𝑠𝑠 bundle

 Existence? 
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Additive Valuations: 𝑣𝑣𝑖𝑖 𝑆𝑆 = ∑𝑗𝑗∈𝑆𝑆 𝑣𝑣𝑖𝑖𝑗𝑗

10

25

15
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Round Robin Algorithm (Additive)

 Fix an ordering of agents arbitrarily 
 While there is an item unallocated 

 𝑖𝑖: next agent in the round robin order
 Allocate 𝑖𝑖 her most valuable item among the unallocated ones
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Claim:  The final allocation is EF1
Observe that intermediate (partial) allocation is also EF1 

Round Robin Algorithm (Additive)

 Fix an ordering of agents arbitrarily 
 While there is an item unallocated 

 𝑖𝑖: next agent in the round robin order
 Allocate 𝑖𝑖 her most valuable item among the unallocated ones
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 General Monotonic Valuations: 𝑣𝑣𝑖𝑖 𝑆𝑆 ≤ 𝑣𝑣𝑖𝑖 𝑇𝑇 , ∀𝑆𝑆 ⊆ 𝑇𝑇 ⊆ 𝑀𝑀
(𝑀𝑀: Set of all items)

Envy-Cycle Procedure (General) [LMMS04]
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 Suppose we have a partial EF1 allocation 
 Then, we can assign one unallocated item 𝑗𝑗 to a source 𝑖𝑖 (in-

degree 0 agent) and the resulting allocation is still EF1!
 No agent envies 𝑖𝑖 if we remove 𝑗𝑗

Envy-Cycle Procedure (General) [LMMS04]
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 If there is no source in envy-graph, then 
 there must be cycles
 How to eliminate them? 
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 If there is no source in envy-graph, then 
 there must be cycles
 keep eliminating them by exchanging bundles along each cycle

 Terminate?
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 If there is no source in envy-graph, then 
 there must be cycles
 keep eliminating them by exchanging bundles along each cycle

 Terminate?
 Number of edges decrease after each cycle is eliminated 

 EF1?
 Valuation of each agent?
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 If there is no source in envy-graph, then 
 there must be cycles
 keep eliminating them by exchanging bundles along each cycle

 Terminate?
 Number of edges decrease after each cycle is eliminated 

 EF1?
 Valuation of each agent?
 The bundles remain the same – We are only changing their owners!
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𝐴𝐴 ← ∅, … ,∅
𝑅𝑅 ← 𝑀𝑀 // unallocated items
While 𝑅𝑅 ≠ ∅

 If envy-graph has no source, then there must be cycles
 Keep removing cycles by exchanging bundles until there is a source
 Pick a source, say 𝑖𝑖, and allocate one item 𝑔𝑔 from 𝑅𝑅 to 𝑖𝑖

(𝐴𝐴𝑖𝑖 ← 𝐴𝐴𝑖𝑖 ∪ 𝑔𝑔; 𝑅𝑅 ← 𝑅𝑅 ∖ 𝑔𝑔) 

Output 𝐴𝐴

 Running Time? 

Envy-Cycle Procedure [LMMS04]
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How Good is an EF1 Allocation?

1000

1000
1

1
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 Certainly not desirable! 

How Good is an EF1 Allocation?

1000

1000
1

1
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 Issue: Many EF1 allocations! 
 We want an algorithm that outputs a good EF1 allocation

 Pareto optimal (PO) 
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 Issue: Many EF1 allocations! 
 We want an algorithm that outputs a good EF1 allocation

 Pareto optimal (PO) 

 Goal: EF1 + PO allocation
 Existence?

 NO [CKMPS14] for general (subadditive) valuations 
 YES for additive valuations [CKMPS14]

submodular valuations
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Computation?



 Computation: pseudo-polynomial time algorithm [BKV18] 

 Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

EF1+PO (Additive)

Complexity of finding an EF1+PO allocation
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 Computation: pseudo-polynomial time algorithm [BKV18] 

 Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

 Approach: Achieve EF1 while maintaining PO
 PO certificate: competitive equilibrium! 

EF1+PO (Additive)

Complexity of finding an EF1+PO allocation
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 𝑝𝑝𝑗𝑗: price of item 𝑗𝑗,           𝑓𝑓𝑖𝑖𝑗𝑗: money flow from agent 𝑖𝑖 to item 𝑗𝑗

Competitive Equilibrium (CE) 
 𝑚𝑚 divisible items, 𝑛𝑛 agents             
 Utility of agent 𝑖𝑖 ∶ ∑𝑗𝑗 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

𝑓𝑓𝑖𝑖𝑗𝑗 > 0 ⇒
𝑣𝑣𝑖𝑖𝑗𝑗
𝑝𝑝𝑗𝑗

= max
𝑘𝑘∈𝑀𝑀

𝑣𝑣𝑖𝑖𝑘𝑘
𝑝𝑝𝑘𝑘

�
𝑗𝑗∈𝑀𝑀

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝐵𝐵𝑖𝑖 ,∀𝑖𝑖 ∈ 𝑁𝑁 𝑎𝑎𝑛𝑛𝑎𝑎 �
𝑖𝑖∈𝑁𝑁

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑗𝑗 , ∀𝑗𝑗 ∈ 𝑀𝑀

Equilibrium (𝑝𝑝,𝑓𝑓):  
1. Optimal bundle:  

2. Market clearing:
Maximum bang-per-buck (MBB) condition

 Each agent has budget of 𝐵𝐵𝑖𝑖
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EF1+PO (additive) [BKV18]

 Approach: Achieve EF1 while maintaining PO 
 Starting allocation 𝐴𝐴 = 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 :

 Each item 𝑗𝑗 is assigned to an agent with the highest valuation
 Set price of item 𝑗𝑗 as 𝑝𝑝𝑗𝑗= max

𝑖𝑖
𝑣𝑣𝑖𝑖𝑗𝑗

 𝑝𝑝 𝐴𝐴𝑖𝑖 : total price of all items in 𝐴𝐴𝑖𝑖 ≡ total valuation of 𝑖𝑖
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EF1+PO (additive) [BKV18]

 Approach: Achieve EF1 while maintaining PO 
 Starting allocation 𝐴𝐴 = 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 :

 Each item 𝑗𝑗 is assigned to an agent with the highest valuation
 Set price of item 𝑗𝑗 as 𝑝𝑝𝑗𝑗= max

𝑖𝑖
𝑣𝑣𝑖𝑖𝑗𝑗

 𝑝𝑝 𝐴𝐴𝑖𝑖 : total price of all items in 𝐴𝐴𝑖𝑖 ≡ total valuation of 𝑖𝑖

Example:

[15, 10, 20]

[1, 20, 10]

𝑝𝑝
15

20

20
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 Consider the integral allocation 𝐴𝐴 = 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛
 Each item 𝑗𝑗 is assigned to an agent with the highest valuation
 Set price of item 𝑗𝑗 as 𝑝𝑝𝑗𝑗= max

𝑖𝑖
𝑣𝑣𝑖𝑖𝑗𝑗

 𝑝𝑝 𝐴𝐴𝑖𝑖 : total price of all items in 𝐴𝐴𝑖𝑖 ≡ total valuation of 𝑖𝑖

𝑓𝑓𝑖𝑖𝑗𝑗 > 0 ⇒
𝑣𝑣𝑖𝑖𝑗𝑗
𝑝𝑝𝑗𝑗

= max
𝑘𝑘∈𝐺𝐺

𝑣𝑣𝑖𝑖𝑘𝑘
𝑝𝑝𝑘𝑘

�
𝑗𝑗

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑝𝑝(𝐴𝐴𝑖𝑖) ,∀𝑖𝑖 𝑎𝑎𝑛𝑛𝑎𝑎 �
𝑖𝑖

𝑓𝑓𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑗𝑗 , ∀𝑗𝑗

Equilibrium (𝑝𝑝,𝑓𝑓):  

1. Optimal bundle (MBB):  

2. Market clearing:

Claim: 𝐴𝐴,𝑝𝑝 is (integral) CE when agent 𝑖𝑖 has 𝑝𝑝(𝐴𝐴𝑖𝑖) budget and 
linear utility function ∑𝑗𝑗 𝑣𝑣𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

[15, 10, 20]

[1, 20, 10]

15

20

20

35

20

budget
𝑝𝑝
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Scaling Valuations with Prices

 Recall that envy-freeness is scale-free 
 (𝐴𝐴,𝑝𝑝): CE

 Let’s scale 𝑣𝑣𝑖𝑖𝑗𝑗 ← 𝑣𝑣𝑖𝑖𝑗𝑗 ⋅ min
𝑘𝑘

𝑝𝑝𝑘𝑘
𝑣𝑣𝑖𝑖𝑘𝑘

⟹ 𝑣𝑣𝑖𝑖𝑗𝑗 ≤ 𝑝𝑝𝑗𝑗 and 𝑣𝑣𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑗𝑗 if 𝑗𝑗 ∈ 𝐴𝐴𝑖𝑖
Prices can be treated as valuations at CE! 
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Price-Envy-Free [BKV18]

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is Envy-Free (EF) if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗
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Price-Envy-Free [BKV18]

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is Envy-Free (EF) if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-Envy-Free (pEF) if

𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗
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Price-Envy-Free [BKV18]

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is Envy-Free (EF) if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-Envy-Free (pEF) if
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 pEF ⇒ EF + PO

37J. Garg (ADFOCS 2020)



Price-Envy-Free [BKV18]

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is Envy-Free (EF) if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-Envy-Free (pEF) if
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 pEF ⇒ EF + PO

EF?
35 = 𝑣𝑣1 𝐴𝐴1 ≥ 𝑣𝑣1 𝐴𝐴2 = 10

20 = 𝑣𝑣2 𝐴𝐴2 ≥ 𝑣𝑣2 𝐴𝐴1 = 11

38

[15, 10, 20]

[1, 20, 10]

15

20

20

35

20

budget
𝑝𝑝
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Price-Envy-Free [BKV18]

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is Envy-Free (EF) if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-Envy-Free (pEF) if
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 pEF ⇒ EF + PO

pEF?
35 = 𝑝𝑝 𝐴𝐴1 ≥ 𝑝𝑝 𝐴𝐴2 = 20
20 = 𝑝𝑝 𝐴𝐴2 < 𝑝𝑝 𝐴𝐴1 = 35
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[15, 10, 20]

[1, 20, 10]

15

20
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Price-Envy-Free [BKV18]

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is Envy-Free (EF) if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-Envy-Free (pEF) if
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 pEF ⇒ EF + PO

May not exist!

pEF?
35 = 𝑝𝑝 𝐴𝐴1 ≥ 𝑝𝑝 𝐴𝐴2 = 20
20 = 𝑝𝑝 𝐴𝐴2 < 𝑝𝑝 𝐴𝐴1 = 35

40

[15, 10, 20]

[1, 20, 10]

15

20

20

35

20

budget
𝑝𝑝
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𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗
 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is EF1 if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-EF1 (pEF1) if

 pEF1 ⇒ EF1 + PO
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗
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𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗
 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is EF1 if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-EF1 (pEF1) if

 pEF1 ⇒ EF1 + PO
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

pEF1?
35 = 𝑝𝑝 𝐴𝐴1 > 𝑝𝑝 𝐴𝐴2 ∖ 𝑔𝑔2 = 0
20 = 𝑝𝑝 𝐴𝐴2 > 𝑝𝑝 𝐴𝐴1 ∖ 𝑔𝑔3 = 15

[15, 10, 20]

[1, 20, 10]
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𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗
 𝐴𝐴,𝑝𝑝 : CE
 𝐴𝐴 is EF1 if

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = 𝑝𝑝 𝐴𝐴𝑖𝑖 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴 is Price-EF1 (pEF1) if

 pEF1 ⇒ EF1 + PO
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

pEF1?
35 = 𝑝𝑝 𝐴𝐴1 > 𝑝𝑝 𝐴𝐴2 ∖ 𝑔𝑔2 = 0
20 = 𝑝𝑝 𝐴𝐴2 > 𝑝𝑝 𝐴𝐴1 ∖ 𝑔𝑔3 = 15

[15, 10, 20]

[1, 20, 10]

15

20

20

35

20

budget
𝑝𝑝
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Theorem [BKV18]: There exists a pseudo-polynomial time procedure 
to find a pEF1 allocation



 𝐴𝐴 is pEF1 if

 If  min
𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ max

𝑗𝑗
min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 then ? 

𝑝𝑝 𝐴𝐴𝑖𝑖 ≥ 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

 𝐴𝐴,𝑝𝑝 : CE

44J. Garg (ADFOCS 2020)

(least spender) (big spender)



While 𝐴𝐴 is not pEF1 
𝑘𝑘 ← arg min

𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖 //least spender

𝑇𝑇 ←Agents and items, 𝑘𝑘 can reach in MBB residual network

𝑘𝑘

𝑇𝑇

Procedure [BKV18]    
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While 𝐴𝐴 is not pEF1 
𝑘𝑘 ← arg min

𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖 //least spender

𝑇𝑇 ←Agents and items, 𝑘𝑘 can reach in MBB residual network
If 𝑘𝑘 can reach 𝑙𝑙 in 𝑇𝑇 such that 𝑝𝑝 𝐴𝐴𝑙𝑙 ∖ 𝑔𝑔𝑙𝑙 > 𝑝𝑝(𝐴𝐴𝑘𝑘)

Pick the nearest such 𝑙𝑙
𝑃𝑃 ← Path from 𝑙𝑙 to 𝑘𝑘
𝐴𝐴 ← Reassign items along 𝑃𝑃 until 𝑝𝑝 (𝐴𝐴𝑗𝑗 ∪ 𝑔𝑔𝑗𝑗+1) ∖ 𝑔𝑔𝑗𝑗 ≤ 𝑝𝑝 𝐴𝐴𝑘𝑘

𝑘𝑘

𝑙𝑙-1

𝑙𝑙

𝑔𝑔𝑙𝑙

𝑔𝑔𝑙𝑙−1

𝑃𝑃
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While 𝐴𝐴 is not pEF1 
𝑘𝑘 ← arg min

𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖 //least spender

𝑇𝑇 ←Agents and items, 𝑘𝑘 can reach in MBB residual network
If 𝑘𝑘 can reach 𝑙𝑙 in 𝑇𝑇 such that 𝑝𝑝 𝐴𝐴𝑙𝑙 ∖ 𝑔𝑔𝑙𝑙 > 𝑝𝑝(𝐴𝐴𝑘𝑘)

Pick the nearest such 𝑙𝑙
𝑃𝑃 ← Path from 𝑙𝑙 to 𝑘𝑘
𝐴𝐴 ← Reassign items along 𝑃𝑃 until 𝑝𝑝 (𝐴𝐴𝑗𝑗 ∪ 𝑔𝑔𝑗𝑗+1) ∖ 𝑔𝑔𝑗𝑗 ≤ 𝑝𝑝 𝐴𝐴𝑘𝑘

else increase prices of items in 𝑇𝑇 by a same factor until 
Event 1: new MBB edge
Event 2: 𝑘𝑘 is not least spender anymore
Event 3: 𝐴𝐴 becomes pEF1

𝑘𝑘

𝑇𝑇
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min
𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖 max

𝑗𝑗
min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔

Lemma: The procedure converges to a pEF1 allocation in finite time!

Pseudo-polynomial time: Round 𝑣𝑣𝑖𝑖𝑗𝑗′ 𝑠𝑠 to the nearest integer powers 
of (1 + 𝜖𝜖) for a suitably small 𝜖𝜖 > 0 and then run the procedure

Complexity of finding an EF1+PO allocation!
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Analysis [BKV18]

Lemma: min
𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖

Proof (sketch): prices
 𝑝𝑝 𝐴𝐴𝑖𝑖 can only increase for agents not on 𝑃𝑃
 For agents on 𝑃𝑃

𝑙𝑙: 𝑝𝑝 𝐴𝐴𝑙𝑙 ∖ 𝑔𝑔𝑙𝑙 > 𝑝𝑝(𝐴𝐴𝑘𝑘)
𝑗𝑗: 𝑝𝑝 (𝐴𝐴𝑗𝑗 ∪ 𝑔𝑔𝑗𝑗+1) ∖ 𝑔𝑔𝑗𝑗 > 𝑝𝑝 𝐴𝐴𝑘𝑘

𝑘𝑘

𝑗𝑗

𝑙𝑙

𝑔𝑔𝑙𝑙

𝑔𝑔𝑗𝑗

𝑔𝑔𝑗𝑗+1

𝑃𝑃
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Lemma: max
𝑗𝑗

min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔

Proof (sketch)

 max
𝑗𝑗

min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 > min
𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖

 Prices     ⇒No big spender is in 𝑇𝑇

(big spender)

𝑘𝑘

𝑇𝑇
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Lemma: max
𝑗𝑗

min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔

Proof (sketch)

 max
𝑗𝑗

min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 > min
𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖

 Prices     ⇒No big spender is in 𝑇𝑇
 On path 𝑃𝑃: 

 𝑗𝑗: 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔𝑗𝑗 < 𝑝𝑝 𝐴𝐴𝑘𝑘

(big spender)

𝑝𝑝 (𝐴𝐴𝑗𝑗 ∪ 𝑔𝑔𝑗𝑗+1 ) ∖ 𝑔𝑔𝑗𝑗 > 𝑝𝑝(𝐴𝐴𝑘𝑘)

𝑝𝑝 (𝐴𝐴𝑗𝑗 ∪ 𝑔𝑔𝑗𝑗+1 ∖ 𝑔𝑔𝑗𝑗) ∖ 𝑔𝑔𝑗𝑗+1 = 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔𝑗𝑗 < 𝑝𝑝(𝐴𝐴𝑘𝑘)

𝑘𝑘

𝑗𝑗

𝑙𝑙

𝑔𝑔𝑙𝑙

𝑔𝑔𝑗𝑗

𝑔𝑔𝑗𝑗+1

𝑃𝑃
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Lemma: max
𝑗𝑗

min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔

Proof (sketch)

 max
𝑗𝑗

min
𝑔𝑔∈𝐴𝐴𝑗𝑗

𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 > min
𝑖𝑖
𝑝𝑝 𝐴𝐴𝑖𝑖

 Prices     ⇒No big spender is in 𝑇𝑇
 On path 𝑃𝑃: 

 𝑗𝑗: 𝑝𝑝 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔𝑗𝑗 < 𝑝𝑝 𝐴𝐴𝑘𝑘

(big spender)

𝑝𝑝 (𝐴𝐴𝑗𝑗 ∪ 𝑔𝑔𝑗𝑗+1 ) ∖ 𝑔𝑔𝑗𝑗 ≤ 𝑝𝑝(𝐴𝐴𝑘𝑘)

𝑘𝑘

𝑗𝑗

𝑙𝑙

𝑔𝑔𝑙𝑙

𝑔𝑔𝑗𝑗

𝑔𝑔𝑗𝑗+1
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 𝑛𝑛 agents, 𝑚𝑚 indivisible items (like cell phone, painting, etc.)
 Each agent 𝑖𝑖 has a valuation function over subset of items 

denoted by 𝑣𝑣𝑖𝑖 ∶ 2𝑚𝑚 → ℝ
 Goal: fair and efficient allocation

New Fairness Notions

Fairness:
Envy-free (EF)
Proportionality (Prop)

Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW) 

EF1      EFX

MMS    Prop1

Guarantees

Lecture 3

Lecture 4

Lecture 5
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Envy-Freeness up to One Item (EF1)

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EF1 if 

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , 𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

That is, agent 𝑖𝑖 may envy agent 𝑗𝑗, but the envy can be eliminated if 
we remove a single item from 𝑗𝑗′𝑠𝑠 bundle
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Envy-Freeness up to Any Item (EFX) [CKMPS14]

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EFX if 

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑗𝑗 ∖ 𝑔𝑔 , ∀𝑔𝑔 ∈ 𝐴𝐴𝑗𝑗 , ∀𝑖𝑖, 𝑗𝑗

That is, agent 𝑖𝑖 may envy agent 𝑗𝑗, but the envy can be eliminated if 
we remove any single item from 𝑗𝑗′𝑠𝑠 bundle

[15, 10, 20]

[1, 20, 10]

EF1 ? 

EFX ? 
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EFX: Existence

 General Valuations [PR18]  
 Identical Valuations 
 𝑛𝑛 = 2

 Additive Valuations 
 𝑛𝑛 = 3 [CG.M20]   

Additive (𝑛𝑛 > 3), General (𝑛𝑛 > 2)
“Fair division’s biggest problem” [P20]
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Summary

Covered
 EF1 (existence/polynomial-

time algorithm)
 EF1 + PO (existence/pseudo-

polynomial time algorithm)
 EFX 

Not Covered
 EFX for 3 (additive) agents
 Partial EFX allocations

 Little Charity [CKMS20]
 High Nash welfare [CGH19]

 Chores
 EF1 (existence/ polynomial-

time algorithm)

Major Open Questions (additive valuations)
 EF1+PO: Polynomial-time algorithm 
 EF1+PO: Existence for chores
 EFX : Existence 
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