Fair Division of Indivisible Items

Jugal Garg

21st Max Planck Advanced Course on the Foundations of Computer Science (ADFOCS) August 24-28, 2020

- Set N of n agents, Set M of m divisible items
- Agent *i* has a utility function $u_i \colon \mathbb{R}^m_+ \to \mathbb{R}$ over bundle of items
- Goal: fair and efficient allocation $x = (x_1, ..., x_n)$

Fairness: Envy-free (EF) Proportionality (Prop)

- Set N of n agents, Set M of m divisible items
- Agent *i* has a utility function $u_i \colon \mathbb{R}^m_+ \to \mathbb{R}$ over bundle of items
- Goal: fair and efficient allocation $x = (x_1, ..., x_n)$

Fairness: Envy-free (EF) Proportionality (Prop)

Efficiency:

Pareto optimal (PO)

- Set N of n agents, Set M of m divisible items
- Agent *i* has a utility function $u_i \colon \mathbb{R}^m_+ \to \mathbb{R}$ over bundle of items
- Goal: fair and efficient allocation $x = (x_1, ..., x_n)$

Fairness: Envy-free (EF) Proportionality (Prop)

Efficiency:

Pareto optimal (PO)

Maximum Nash Welfare (MNW) ≡ Competitive Equilibrium with Equal Incomes (CEEI)

- Set N of n agents, Set M of m divisible items
- Agent *i* has a utility function $u_i \colon \mathbb{R}^m_+ \to \mathbb{R}$ over bundle of items
- Goal: fair and efficient allocation $x = (x_1, ..., x_n)$

Fairness:

Envy-free (EF) Proportionality (Prop)

Efficiency:

Pareto optimal (PO)

Maximum Nash Welfare (MNW) ≡ Competitive Equilibrium with Equal Incomes (CEEI)

Today: Indivisible Items

- n agents, m indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
- Goal: fair and efficient allocation $A = (A_1, ..., A_n)$

Fairness: Envy-free (EF) Proportionality (Prop)

Efficiency: Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Today: Indivisible Items

- *n* agents, *m* indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
- Goal: fair and efficient allocation

Fairness:

Envy-free (EF) Proportionality (Prop)

Efficiency: Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Fairness Notions for Indivisible Items

- *n* agents, *m* indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
- Goal: fair and efficient allocation

Fairness: Envy-free (EF)	EF1 EFX	Lecture 3
Proportionality (Prop)	MMS Prop1	Lecture 4
Efficiency: Pareto optimal (PO)		
	Guarantees	Lecture 5
Maximum Nash Welfare (MNW)		

Envy-Freeness up to One Item (EF1) [B11]

• An allocation (A_1, \dots, A_n) is EF1 if

$$v_i(A_i) \ge v_i(A_j \setminus g), g \in A_j, \forall i, j$$

That is, agent *i* may envy agent *j*, but the envy can be eliminated if we remove a single item from j's bundle

Envy-Freeness up to One Item (EF1) [B11]

• An allocation (A_1, \dots, A_n) is EF1 if

$$v_i(A_i) \ge v_i(A_j \setminus g), g \in A_j, \forall i, j$$

That is, agent *i* may envy agent *j*, but the envy can be eliminated if we remove a single item from j's bundle

Additive Valuations: $v_i(S) = \sum_{j \in S} v_{ij}$

J. Garg (ADFOCS 2020)

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \Box Allocate *i* her most valuable item among the unallocated ones

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \Box Allocate *i* her most valuable item among the unallocated ones

Claim: The final allocation is EF1

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
 - \Box *i*: next agent in the round robin order
 - \Box Allocate *i* her most valuable item among the unallocated ones

Claim: The final allocation is EF1

Observe that intermediate (partial) allocation is also EF1

Envy-Cycle Procedure (General) [LMMS04]

■ General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$ (*M*: Set of all items)

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$
- Envy-graph of a partial allocation $(A_1, ..., A_n)$ where $\cup_i A_i \subseteq M$
 - \Box Vertices = Agents
 - □ Directed edge (i, j) if *i* envies *j* $(i.e., v_i(A_i) < v_i(A_j))$

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_i(S) \le v_i(T)$, $\forall S \subseteq T \subseteq M$
- Envy-graph of a partial allocation $(A_1, ..., A_n)$ where $\cup_i A_i \subseteq M$
 - \Box Vertices = Agents
 - □ Directed edge (i, j) if *i* envies *j* (i.e., $v_i(A_i) < v_i(A_j)$)
- Suppose we have a partial EF1 allocation
- Then, we can assign one unallocated item *j* to a source *i* (indegree 0 agent) and the resulting allocation is still EF1!

 \square No agent envies *i* if we remove *j*

• If there is no source in envy-graph, then

- \Box there must be cycles
- \Box How to eliminate them?

- If there is no source in envy-graph, then
 - \Box there must be cycles
 - □ keep eliminating them by exchanging bundles along each cycle
- Terminate?

- If there is no source in envy-graph, then
 - \Box there must be cycles
 - □ keep eliminating them by exchanging bundles along each cycle
- Terminate?
 - □ Number of edges decrease after each cycle is eliminated
- EF1?
 - □ Valuation of each agent?

- If there is no source in envy-graph, then
 - \Box there must be cycles
 - □ keep eliminating them by exchanging bundles along each cycle
- Terminate?
 - □ Number of edges decrease after each cycle is eliminated
- EF1?
 - □ Valuation of each agent?
 - □ The bundles remain the same We are only changing their owners!

Envy-Cycle Procedure [LMMS04]

- A ← (Ø, ..., Ø)
 R ← M // unallocated items
 While R ≠ Ø
 □ If envy-graph has no source, then there must be cycles
 □ Keep removing cycles by exchanging bundles until there is a source
 - \square Pick a source, say *i*, and allocate one item *g* from *R* to *i*

$$(A_i \leftarrow A_i \cup g; R \leftarrow R \setminus g)$$

Output A

Running Time?

How Good is an EF1 Allocation?

How Good is an EF1 Allocation?

Certainly not desirable!

J. Garg (ADFOCS 2020)

Issue: Many EF1 allocations!

We want an algorithm that outputs a good EF1 allocation
 Pareto optimal (PO)

- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation
 Pareto optimal (PO)
- Goal: EF1 + PO allocation
- Existence?
 - □ NO [CKMPS14] for general (subadditive) valuations
 - □ YES for additive valuations [CKMPS14]

- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation
 Pareto optimal (PO)
- Goal: EF1 + PO allocation
- Existence?
 - □ NO [CKMPS14] for general (subadditive) valuations
 - □ YES for additive valuations [CKMPS14] Computation?

EF1+PO (Additive)

• Computation: pseudo-polynomial time algorithm [BKV18]

Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

EF1+PO (Additive)

• Computation: pseudo-polynomial time algorithm [BKV18]

Complexity of finding an EF1+PO allocation

- Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]
- Approach: Achieve EF1 while maintaining PO
 PO certificate: competitive equilibrium!

Competitive Equilibrium (CE)

- *m* divisible items, *n* agents
 Each agent has budget of B_i
 Utility of agent *i* : ∑_j v_{ij} x_{ij}
- p_j : price of item j, f_{ij} : money flow from agent i to item j

Equilibrium (*p*, *f*):

1. Optimal bundle: $f_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \max_{k \in M} \frac{v_{ik}}{p_k}$

Maximum bang-per-buck (MBB) condition

2. Market clearing:

$$\sum_{j \in M} f_{ij} = B_i, \forall i \in N \quad and \quad \sum_{i \in N} f_{ij} = p_j, \forall j \in M$$

EF1+PO (additive) [BKV18]

- Approach: Achieve EF1 while maintaining PO
- Starting allocation A = (A₁, ..., A_n):
 Each item *j* is assigned to an agent with the highest valuation
 Set price of item *j* as p_j = max v_{ij}
- $p(A_i)$: total price of all items in $A_i \equiv$ total valuation of *i*

EF1+PO (additive) [BKV18]

- Approach: Achieve EF1 while maintaining PO
- Starting allocation $A = (A_1, ..., A_n)$:

□ Each item *j* is assigned to an agent with the highest valuation □ Set price of item *j* as $p_j = \max_i v_{ij}$

• $p(A_i)$: total price of all items in $A_i \equiv$ total valuation of *i*

- Consider the integral allocation $A = (A_1, ..., A_n)$
 - \Box Each item *j* is assigned to an agent with the highest valuation
 - \Box Set price of item *j* as $p_j = \max_i v_{ij}$
- $p(A_i)$: total price of all items in $A_i \equiv$ total valuation of *i*

Claim: (*A*, *p*) is (integral) CE when agent *i* has $p(A_i)$ budget and linear utility function $\sum_j v_{ij} x_{ij}$

J. Garg (ADFOCS 2020)

Scaling Valuations with Prices

- Recall that envy-freeness is scale-free
- (*A*, *p*): CE
- Let's scale $v_{ij} \leftarrow v_{ij} \cdot \min_{k} \frac{p_k}{v_{ik}}$ $\implies v_{ij} \le p_j \text{ and } v_{ij} = p_j \text{ if } j \in A_i$

Prices can be treated as valuations at CE!

Price-Envy-Free [BKV18]

- (*A*, *p*): CE
- *A* is Envy-Free (EF) if

$$v_i(A_i) \ge v_i(A_j), \qquad \forall i, j$$
$$v_i(A_i) = p(A_i) \quad p(A_j) \ge v_i(A_j), \quad \forall i, j$$

Price-Envy-Free [BKV18]

- (*A*, *p*): CE
- *A* is Envy-Free (EF) if

$$v_i(A_i) \ge v_i(A_j), \qquad \forall i, j$$
$$v_i(A_i) = p(A_i) \quad p(A_j) \ge v_i(A_j), \qquad \forall i, j$$

• *A* is Price-Envy-Free (pEF) if

$$p(A_i) \ge p(A_j), \quad \forall i, j$$

- (*A*, *p*): CE
- *A* is Envy-Free (EF) if

$$v_i(A_i) \ge v_i(A_j), \qquad \forall i, j$$

$$v_i(A_i) = p(A_i) \qquad p(A_j) \ge v_i(A_j), \qquad \forall i, j$$

• *A* is Price-Envy-Free (pEF) if

$$p(A_i) \ge p(A_j), \quad \forall i, j$$

• $pEF \Rightarrow EF + PO$

- (*A*, *p*): CE
- *A* is Envy-Free (EF) if

$$v_i(A_i) \ge v_i(A_j), \qquad \forall i, j$$

$$v_i(A_i) = p(A_i) \qquad p(A_j) \ge v_i(A_j), \qquad \forall i, j$$

• *A* is Price-Envy-Free (pEF) if

$$p(A_i) \ge p(A_j), \quad \forall i, j$$

• $pEF \Rightarrow EF + PO$

$$35 = v_1(A_1) \ge v_1(A_2) = 10$$

 $20 = v_2(A_2) \ge v_2(A_1) = 11$

- (*A*, *p*): CE
- *A* is Envy-Free (EF) if

$$v_i(A_i) \ge v_i(A_j), \qquad \forall i, j$$

$$v_i(A_i) = p(A_i) \qquad p(A_j) \ge v_i(A_j), \qquad \forall i, j$$

• *A* is Price-Envy-Free (pEF) if

$$p(A_i) \ge p(A_j), \qquad \forall i, j$$

• $pEF \Rightarrow EF + PO$

$$35 = p(A_1) \ge p(A_2) = 20$$
$$20 = p(A_2) < p(A_1) = 35$$

- (*A*, *p*): CE
- *A* is Envy-Free (EF) if

$$v_i(A_i) \ge v_i(A_j), \qquad \forall i, j$$
$$v_i(A_i) = p(A_i) \qquad p(A_i) \ge v_i(A_i), \qquad \forall i, j$$

May not exist!

• *A* is Price-Envy-Free (pEF) if

$$p(A_i) \ge p(A_j), \quad \forall i, j$$

• $pEF \Rightarrow EF + PO$

pEF?

$$35 = p(A_1) \ge p(A_2) = 20$$
$$20 = p(A_2) < p(A_1) = 35$$

■ (*A*, *p*): CE

- A is EF1 if $v_i(A_i) \ge v_i(A_j \setminus g)$, $g \in A_j$, $\forall i, j$ $v_i(A_i) = p(A_i)$ $p(A_j \setminus g) \ge v_i(A_j \setminus g)$, $g \in A_j$, $\forall i, j$
- *A* is Price-EF1 (pEF1) if

 $p(A_i) \ge p(A_j \setminus g), \qquad g \in A_j, \qquad \forall i, j$

• $pEF1 \Rightarrow EF1 + PO$

■ (*A*, *p*): CE

• A is EF1 if $v_i(A_i) \ge v_i(A_j \setminus g), \quad g \in A_j, \quad \forall i, j$ $v_i(A_i) = p(A_i) \quad p(A_j \setminus g) \ge v_i(A_j \setminus g), \quad g \in A_j, \quad \forall i, j$

• A is Price-EF1 (pEF1) if

$$p(A_i) \ge p(A_j \setminus g), \qquad g \in A_j, \qquad \forall i, j$$

• $pEF1 \Rightarrow EF1 + PO$

pEF1?

$$35 = p(A_1) > p(A_2 \setminus g_2) = 0$$

$$20 = p(A_2) > p(A_1 \setminus g_3) = 15$$

Theorem [BKV18]: There exists a pseudo-polynomial time procedure to find a pEF1 allocation

(A, p): CE A is pEF1 if p(A_i) ≥ p(A_j \ g), g ∈ A_j, ∀i, j

■ If $\min_{i} p(A_i) \ge \max_{j} \min_{g \in A_j} p(A_j \setminus g)$ then ? (least spender) (big spender)

Procedure [BKV18]

While *A* is not pEF1

 $k \leftarrow \arg\min_{i} p(A_i)$ //least spender

 $T \leftarrow$ Agents and items, *k* can reach in MBB residual network

While *A* is not pEF1

 $k \leftarrow \arg\min_{i} p(A_i)$ //least spender

 $T \leftarrow \text{Agents and items}, k \text{ can reach in MBB residual network}$

- If k can reach l in T such that $p(A_l \setminus g_l) > p(A_k)$
 - Pick the nearest such l
 - $P \leftarrow$ Path from *l* to *k*

 $A \leftarrow \text{Reassign items along } P \text{ until } p((A_j \cup g_{j+1}) \setminus g_j) \le p(A_k)$

While *A* is not pEF1

 $k \leftarrow \arg\min_{i} p(A_i)$ //least spender

 $T \leftarrow \text{Agents and items}, k \text{ can reach in MBB residual network}$

- If k can reach l in T such that $p(A_l \setminus g_l) > p(A_k)$
 - Pick the nearest such l
 - $P \leftarrow$ Path from l to k

 $A \leftarrow \text{Reassign items along } P \text{ until } p((A_j \cup g_{j+1}) \setminus g_j) \le p(A_k)$

else increase prices of items in T by a same factor until
 Event 1: new MBB edge
 Event 2: k is not least spender anymore
 Event 3: A becomes pEF1

Lemma: The procedure converges to a pEF1 allocation in finite time!

Pseudo-polynomial time: Round $v'_{ij}s$ to the nearest integer powers of $(1 + \epsilon)$ for a suitably small $\epsilon > 0$ and then run the procedure

Analysis [BKV18]

Lemma:
$$\min_i p(A_i)$$
 1

Proof (sketch): prices 1

- $p(A_i)$ can only increase for agents not on P
- For agents on *P*
 - $l: p(A_l \setminus g_l) > p(A_k)$
 - $j: p((A_j \cup g_{j+1}) \setminus g_j) > p(A_k)$

Lemma: $\max_{j} \min_{g \in A_j} p(A_j \setminus g) \quad \bigcup \quad (\text{big spender}) \quad ($

Proof (sketch)

- $\max_{j} \min_{g \in A_{j}} p(A_{j} \setminus g) > \min_{i} p(A_{i})$
- Prices $\uparrow \Rightarrow$ No big spender is in T

Lemma: $\max_{j} \min_{g \in A_j} p(A_j \setminus g) \quad \bigcup \quad (\text{big spender})$

Proof (sketch)

$$\max_{j} \min_{g \in A_j} p(A_j \setminus g) > \min_{i} p(A_i)$$

- Prices $\uparrow \Rightarrow$ No big spender is in T
- On path P:

$$\Box j: \quad p(A_j \setminus g_j) < p(A_k)$$
$$p((A_j \cup g_{j+1}) \setminus g_j) > p(A_k)$$
$$p((A_j \cup g_{j+1} \setminus g_j) \setminus g_{j+1}) = p(A_j \setminus g_j) < p(A_k)$$

Proof (sketch)

- $\max_{j} \min_{g \in A_j} p(A_j \setminus g) > \min_{i} p(A_i)$
- Prices $\uparrow \Rightarrow$ No big spender is in T
- On path P:

$$\exists j: p(A_j \setminus g_j) < p(A_k)$$
$$p((A_j \cup g_{j+1}) \setminus g_j) \le p(A_k)$$

New Fairness Notions

- *n* agents, *m* indivisible items (like cell phone, painting, etc.)
- Each agent *i* has a valuation function over subset of items denoted by v_i : $2^m \to \mathbb{R}$
- Goal: fair and efficient allocation

Fairness: Envy-free (EF)	EF1 EFX	Lecture 3
Proportionality (Prop)	MMS Prop1	Lecture 4
Efficiency: Pareto optimal (PO)		
Maximum Nash Welfare (MNW)	Guarantees	Lecture 5
IVIAXIIIIUIII INASII WEITATE (IVIIN W)	Quaraillees	

Envy-Freeness up to One Item (EF1)

• An allocation $(A_1, ..., A_n)$ is EF1 if

$$v_i(A_i) \ge v_i(A_j \setminus g), \quad g \in A_j, \quad \forall i, j$$

That is, agent *i* may envy agent *j*, but the envy can be eliminated if we remove a single item from j's bundle

Envy-Freeness up to Any Item (EFX) [CKMPS14]

• An allocation (A_1, \dots, A_n) is EFX if

$$v_i(A_i) \ge v_i(A_j \setminus g), \quad \forall g \in A_j, \quad \forall i, j$$

That is, agent *i* may envy agent *j*, but the envy can be eliminated if we remove any single item from j's bundle

EFX: Existence

General Valuations [PR18]

□ Identical Valuations

 $\Box n = 2$

Additive Valuations $\Box n = 3$ [CG.M20]

Additive (n > 3), General (n > 2)"Fair division's biggest problem" [P20]

Summary

Covered

- EF1 (existence/polynomialtime algorithm)
- EF1 + PO (existence/pseudopolynomial time algorithm)

EFX

Not Covered

- EFX for 3 (additive) agents
- Partial EFX allocations
 - □ Little Charity [CKMS20]
 - □ High Nash welfare [CGH19]

Chores

EF1 (existence/ polynomialtime algorithm) EXERCISE

Major Open Questions (additive valuations)

- EF1+PO: Polynomial-time algorithm
- EF1+PO: Existence for chores
- EFX : Existence

- [BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish.
 Finding fair and efficient allocations. In: EC 2018
- [B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political Economy 119.6 (2011)
- [CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016
- [CGH20] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high Nash welfare: The virtue of donating items. In: EC 2019
- [CG.M20] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn: EFX Exists for Three Agents. In: EC 2020
- [CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity guarantees almost envy-freeness. In: SODA 2020
- [KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009
- [LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. "On approximately fair allocations of indivisible goods". In: EC 2004

- [PR18] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In: SODA 2018
- [P20] Ariel Procaccia: An answer to fair division's most enigmatic question: technical perspective. In: *Commun. ACM 63(4): 118 (2020)*