Fair Division of Indivisible Items

Jugal Garg

UNIVERSITY OF
ILLINOIS

21st Max Planck Advanced Course on the Foundations of Computer Science
(ADFOCS)
August 24-28, 2020

Recap

- Set N of n agents, Set M of m divisible items

■ Agent i has a utility function $u_{i}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ over bundle of items

- Goal: fair and efficient allocation $x=\left(x_{1}, \ldots, x_{n}\right)$

Fairness:
Envy-free (EF)
Proportionality (Prop)

Recap

- Set N of n agents, Set M of m divisible items

■ Agent i has a utility function $u_{i}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ over bundle of items

- Goal: fair and efficient allocation $x=\left(x_{1}, \ldots, x_{n}\right)$

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)

Recap

- Set N of n agents, Set M of m divisible items

■ Agent i has a utility function $u_{i}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ over bundle of items

- Goal: fair and efficient allocation $x=\left(x_{1}, \ldots, x_{n}\right)$

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW)
\equiv Competitive Equilibrium with Equal Incomes (CEEI)

Recap

■ Set N of n agents, Set M of m divisible items
■ Agent i has a utility function $u_{i}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ over bundle of items

- Goal: fair and efficient allocation $x=\left(x_{1}, \ldots, x_{n}\right)$

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW)

\equiv Competitive Equilibrium with Equal Incomes (CEEI)

Today: Indivisible Items

- n agents, m indivisible items (like cell phone, painting, etc.)
- Agent i has a valuation function $v_{i}: 2^{m} \rightarrow \mathbb{R}$ over subsets of items

■ Goal: fair and efficient allocation $A=\left(A_{1}, \ldots, A_{n}\right)$

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Today: Indivisible Items

- n agents, m indivisible items (like cell phone, painting, etc.)
- Agent i has a valuation function $v_{i}: 2^{m} \rightarrow \mathbb{R}$ over subsets of items

■ Goal: fair and efficient allocation

Fairness:

Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Fairness Notions for Indivisible Items

- n agents, m indivisible items (like cell phone, painting, etc.)
- Agent i has a valuation function $v_{i}: 2^{m} \rightarrow \mathbb{R}$ over subsets of items
- Goal: fair and efficient allocation

Fairness:

Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW)

EF1	EFX	Lecture 3
MMS	Prop1	Lecture 4
Guarantees		Lecture 5

Envy-Freeness up to One Item (EF1) [B11]

- An allocation $\left(A_{1}, \ldots, A_{n}\right)$ is EF1 if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

That is, agent i may envy agent j, but the envy can be eliminated if we remove a single item from $j^{\prime} s$ bundle

Envy-Freeness up to One Item (EF1) [B11]

- An allocation $\left(A_{1}, \ldots, A_{n}\right)$ is EF1 if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

That is, agent i may envy agent j, but the envy can be eliminated if we remove a single item from $j^{\prime} s$ bundle

- Existence?

Additive Valuations: $v_{i}(S)=\sum_{j \in S} v_{i j}$

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
$\square i$: next agent in the round robin order
\square Allocate i her most valuable item among the unallocated ones

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
$\square i$: next agent in the round robin order
\square Allocate i her most valuable item among the unallocated ones

Claim: The final allocation is EF1

Round Robin Algorithm (Additive)

- Fix an ordering of agents arbitrarily
- While there is an item unallocated
$\square i$: next agent in the round robin order
\square Allocate i her most valuable item among the unallocated ones

Claim: The final allocation is EF1
Observe that intermediate (partial) allocation is also EF1

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_{i}(S) \leq v_{i}(T), \forall S \subseteq T \subseteq M$
(M : Set of all items)

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_{i}(S) \leq v_{i}(T), \forall S \subseteq T \subseteq M$

■ Envy-graph of a partial allocation $\left(A_{1}, \ldots, A_{n}\right)$ where $\cup_{i} A_{i} \subseteq M$
\square Vertices $=$ Agents
\square Directed edge (i, j) if i envies j (i.e., $\left.v_{i}\left(A_{i}\right)<v_{i}\left(A_{j}\right)\right)$

Envy-Cycle Procedure (General) [LMMS04]

- General Monotonic Valuations: $v_{i}(S) \leq v_{i}(T), \forall S \subseteq T \subseteq M$
- Envy-graph of a partial allocation $\left(A_{1}, \ldots, A_{n}\right)$ where $\mathrm{U}_{i} A_{i} \subseteq M$
\square Vertices $=$ Agents
\square Directed edge (i, j) if i envies j (i.e., $\left.v_{i}\left(A_{i}\right)<v_{i}\left(A_{j}\right)\right)$
- Suppose we have a partial EF1 allocation
- Then, we can assign one unallocated item j to a source i (indegree 0 agent) and the resulting allocation is still EF1!
\square No agent envies i if we remove j
- If there is no source in envy-graph, then
\square there must be cycles
\square How to eliminate them?
- If there is no source in envy-graph, then
\square there must be cycles
\square keep eliminating them by exchanging bundles along each cycle
■ Terminate?
- If there is no source in envy-graph, then
\square there must be cycles
\square keep eliminating them by exchanging bundles along each cycle
- Terminate?
\square Number of edges decrease after each cycle is eliminated
- EF1?
\square Valuation of each agent?
- If there is no source in envy-graph, then
\square there must be cycles
\square keep eliminating them by exchanging bundles along each cycle
- Terminate?
\square Number of edges decrease after each cycle is eliminated
- EF1?
\square Valuation of each agent?
\square The bundles remain the same - We are only changing their owners!

Envy-Cycle Procedure [Lmms04]

$A \leftarrow(\emptyset, \ldots, \varnothing)$
$R \leftarrow M / /$ unallocated items
While $R \neq \emptyset$
\square If envy-graph has no source, then there must be cycles
\square Keep removing cycles by exchanging bundles until there is a source
\square Pick a source, say i, and allocate one item g from R to i

$$
\left(A_{i} \leftarrow A_{i} \cup g ; R \leftarrow R \backslash g\right)
$$

Output A

- Running Time? EXERCISE

How Good is an EF1 Allocation?

How Good is an EF1 Allocation?

- Certainly not desirable!

- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation \square Pareto optimal (PO)
- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation \square Pareto optimal (PO)
- Goal: EF1 + PO allocation
- Existence?
\square NO [CKMPS14] for general (subadditive) valuations
\square YES for additive valuations [CKMPS14]

submodular valuations
- Issue: Many EF1 allocations!
- We want an algorithm that outputs a good EF1 allocation \square Pareto optimal (PO)
- Goal: EF1 + PO allocation
- Existence?
\square NO [CKMPS14] for general (subadditive) valuations
\square YES for additive valuations [CKMPS14]
Computation?
submodular valuations

$\mathrm{EF} 1+\mathrm{PO}$ (Additive)

■ Computation: pseudo-polynomial time algorithm [BKV18] OPEN Complexity of finding an EF1+PO allocation

■ Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

$\mathrm{EF} 1+\mathrm{PO}$ (Additive)

■ Computation: pseudo-polynomial time algorithm [BKV18] OPEN Complexity of finding an EF1+PO allocation

■ Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

- Approach: Achieve EF1 while maintaining PO
$\square \mathrm{PO}$ certificate: competitive equilibrium!

Competitive Equilibrium (CE)

- m divisible items, n agents
- Each agent has budget of B_{i}

■ Utility of agent $i: \sum_{j} v_{i j} x_{i j}$

- p_{j} : price of item $j, \quad f_{i j}$: money flow from agent i to item j

Equilibrium (p, f) :

1. Optimal bundle: $f_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\max _{k \in M} \frac{v_{i k}}{p_{k}}$

Maximum bang-per-buck (MBB) condition
2. Market clearing:

$$
\sum_{j \in M} f_{i j}=B_{i}, \forall i \in N \quad \text { and } \quad \sum_{i \in N} f_{i j}=p_{j}, \forall j \in M
$$

$\mathrm{EF} 1+\mathrm{PO}$ (additive) [BKV18]

- Approach: Achieve EF1 while maintaining PO
- Starting allocation $A=\left(A_{1}, \ldots, A_{n}\right)$:
\square Each item j is assigned to an agent with the highest valuation
\square Set price of item j as $p_{j}=\max _{i} v_{i j}$
- $p\left(A_{i}\right)$: total price of all items in $A_{i} \equiv$ total valuation of i

EF1+PO (additive) [BKV18]

- Approach: Achieve EF1 while maintaining PO
- Starting allocation $A=\left(A_{1}, \ldots, A_{n}\right)$:
\square Each item j is assigned to an agent with the highest valuation
\square Set price of item j as $p_{j}=\max _{i} v_{i j}$
- $p\left(A_{i}\right)$: total price of all items in $A_{i} \equiv$ total valuation of i

Example:
p

- Consider the integral allocation $A=\left(A_{1}, \ldots, A_{n}\right)$
\square Each item j is assigned to an agent with the highest valuation
\square Set price of item j as $p_{j}=\max _{i} v_{i j}$
- $p\left(A_{i}\right)$: total price of all items in $A_{i} \equiv$ total valuation of i

Claim: (A, p) is (integral) CE when agent i has $p\left(A_{i}\right)$ budget and linear utility function $\sum_{j} v_{i j} x_{i j}$

Equilibrium (p, f) :
budget

1. Optimal bundle (MBB):

$$
\begin{equation*}
f_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\max _{k \in G} \frac{v_{i k}}{p_{k}} \tag{1,20,10}
\end{equation*}
$$

2. Market clearing:

$$
\sum_{j} f_{i j}=p\left(A_{i}\right), \forall i \quad \text { and } \quad \sum_{i} f_{i j}=p_{j}, \forall j
$$

Scaling Valuations with Prices

- Recall that envy-freeness is scale-free
- (A, p) : CE
- Let's scale $v_{i j} \leftarrow v_{i j} \cdot \min _{k} \frac{p_{k}}{v_{i k}}$
$\Rightarrow v_{i j} \leq p_{j}$ and $v_{i j}=p_{j}$ if $j \in A_{i}$
Prices can be treated as valuations at CE!

Price-Envy-Free [BKV18]

- (A, p) : CE
- A is Envy-Free (EF) if

$$
\begin{array}{cl}
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j \\
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j
\end{array}
$$

Price-Envy-Free [BKV18]

- (A, p) : CE
- A is Envy-Free (EF) if

$$
\begin{array}{cl}
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j \\
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j
\end{array}
$$

- A is Price-Envy-Free (pEF) if

$$
p\left(A_{i}\right) \geq p\left(A_{j}\right), \quad \forall i, j
$$

Price-Envy-Free [BKV18]

- (A, p) CE
- A is Envy-Free (EF) if

$$
\begin{array}{cc}
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j \\
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j
\end{array}
$$

- A is Price-Envy-Free (pEF) if

$$
p\left(A_{i}\right) \geq p\left(A_{j}\right), \quad \forall i, j
$$

- $\mathrm{pEF} \Rightarrow \mathrm{EF}+\mathrm{PO}$

Price-Envy-Free [BKV18]

- (A, p) : CE
- A is Envy-Free (EF) if

$$
\begin{array}{cc}
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j \\
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j
\end{array}
$$

- A is Price-Envy-Free (pEF) if

$$
p\left(A_{i}\right) \geq p\left(A_{j}\right), \quad \forall i, j
$$

- $\mathrm{pEF} \Rightarrow \mathrm{EF}+\mathrm{PO}$

EF?

$$
\begin{aligned}
& 35=v_{1}\left(A_{1}\right) \geq v_{1}\left(A_{2}\right)=10 \\
& 20=v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right)=11
\end{aligned}
$$

budget
$35[15,10,20]$

Price-Envy-Free [BKV18]

- (A, p) : CE
- A is Envy-Free (EF) if

$$
\begin{array}{cc}
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j \\
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j
\end{array}
$$

- A is Price-Envy-Free (pEF) if

$$
p\left(A_{i}\right) \geq p\left(A_{j}\right), \quad \forall i, j
$$

- $\mathrm{pEF} \Rightarrow \mathrm{EF}+\mathrm{PO}$
pEF?

$$
\begin{aligned}
& 35=p\left(A_{1}\right) \geq p\left(A_{2}\right)=20 \\
& 20=p\left(A_{2}\right)<p\left(A_{1}\right)=35
\end{aligned}
$$

budget

Price-Envy-Free [BKV18]

- (A, p) CE
- A is Envy-Free (EF) if

$$
\begin{array}{cc}
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j \\
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j}\right) \geq v_{i}\left(A_{j}\right), & \forall i, j
\end{array}
$$

May not exist!

- A is Price-Envy-Free (pEF) if

$$
p\left(A_{i}\right) \geq p\left(A_{j}\right), \quad \forall i, j
$$

- $\mathrm{pEF} \Rightarrow \mathrm{EF}+\mathrm{PO}$
pEF?

$$
\begin{aligned}
& 35=p\left(A_{1}\right) \geq p\left(A_{2}\right)=20 \\
& 20=p\left(A_{2}\right)<p\left(A_{1}\right)=35
\end{aligned}
$$

budget

- $(A, p): \mathrm{CE}$

■ A is EF 1 if $\quad v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j$

$$
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j} \backslash g\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

- A is Price-EF1 (pEF1) if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

- $\mathrm{pEF} 1 \Rightarrow \mathrm{EF} 1+\mathrm{PO}$
- (A, p) : CE
- A is EF 1 if $\quad v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j$

$$
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j} \backslash g\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

- A is Price-EF1 (pEF1) if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

- $\mathrm{pEF} 1 \Rightarrow \mathrm{EF} 1+\mathrm{PO}$
pEF1?

$$
\begin{aligned}
& 35=p\left(A_{1}\right)>p\left(A_{2} \backslash g_{2}\right)=0 \\
& 20=p\left(A_{2}\right)>p\left(A_{1} \backslash g_{3}\right)=15
\end{aligned}
$$

- (A, p) : CE
- A is EF 1 if $\quad v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j$

$$
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j} \backslash g\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

- A is Price-EF1 (pEF1) if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

■ $\mathrm{pEF} 1 \Rightarrow \mathrm{EF} 1+\mathrm{PO}$
budget
pEF1?

$$
\begin{aligned}
& 35=p\left(A_{1}\right)>p\left(A_{2} \backslash g_{2}\right)=0 \\
& 20=p\left(A_{2}\right)>p\left(A_{1} \backslash g_{3}\right)=15
\end{aligned}
$$

Theorem [BKV18]: There exists a pseudo-polynomial time procedure to find a pEF1 allocation

- (A, p) : CE
- A is pEF 1 if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

- If $\min _{i} p\left(A_{i}\right) \geq \max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)$ then ?
(least spender) (big spender)

Procedure [BKV18]

While A is not pEF 1
$k \leftarrow \arg \min _{i} p\left(A_{i}\right) / /$ least spender
$T \leftarrow$ Agents and items, k can reach in MBB residual network

While A is not pEF 1
$k \leftarrow \arg \min _{i} p\left(A_{i}\right) / /$ least spender
$T \leftarrow$ Agents and items, k can reach in MBB residual network If k can reach l in T such that $p\left(A_{l} \backslash g_{l}\right)>p\left(A_{k}\right)$

Pick the nearest such l
$P \leftarrow$ Path from l to k
$A \leftarrow$ Reassign items along P until $p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right) \leq p\left(A_{k}\right)$

While A is not pEF1
$k \leftarrow \arg \min _{i} p\left(A_{i}\right) / /$ least spender
$T \leftarrow$ Agents and items, k can reach in MBB residual network If k can reach l in T such that $p\left(A_{l} \backslash g_{l}\right)>p\left(A_{k}\right)$

Pick the nearest such l
$P \leftarrow$ Path from l to k
$A \leftarrow$ Reassign items along P until $p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right) \leq p\left(A_{k}\right)$
else increase prices of items in T by a same factor until
Event 1: new MBB edge
Event 2: k is not least spender anymore
Event 3: A becomes pEF1

Lemma: The procedure converges to a pEF1 allocation in finite time!
Pseudo-polynomial time: Round $v_{i j}^{\prime} s$ to the nearest integer powers of $(1+\epsilon)$ for a suitably small $\epsilon>0$ and then run the procedure

Analysis [BKV18]

Lemma: $\min _{i} p\left(A_{i}\right) \uparrow$
Proof (sketch): prices \uparrow

- $p\left(A_{i}\right)$ can only increase for agents not on P
- For agents on P

$$
\begin{aligned}
& l: \quad p\left(A_{l} \backslash g_{l}\right)>p\left(A_{k}\right) \\
& j: p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right)>p\left(A_{k}\right)
\end{aligned}
$$

Lemma: $\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right) \rrbracket$ (big spender)
Proof (sketch)

- $\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)>\min _{i} p\left(A_{i}\right)$
- Prices $\widehat{\boldsymbol{~}} \Rightarrow$ No big spender is in T

Lemma: $\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right) ~ 刁$ (big spender)
Proof (sketch)
■ $\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)>\min _{i} p\left(A_{i}\right)$

- Prices $\hat{\imath} \Rightarrow$ No big spender is in T
- On path P :

$\square j: \quad p\left(A_{j} \backslash g_{j}\right)<p\left(A_{k}\right)$ $p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right)>p\left(A_{k}\right)$
$p\left(\left(A_{j} \cup g_{j+1} \backslash g_{j}\right) \backslash g_{j+1}\right)=p\left(A_{j} \backslash g_{j}\right)<p\left(A_{k}\right)$

Lemma: $\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right) ~(b i g$ spender)
Proof (sketch)
■ $\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)>\min _{i} p\left(A_{i}\right)$

- Prices $\uparrow \Rightarrow$ No big spender is in T
- On path P :

$$
\begin{array}{ll}
\square j: & p\left(A_{j} \backslash g_{j}\right)<p\left(A_{k}\right) \\
& p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right) \leq p\left(A_{k}\right)
\end{array}
$$

New Fairness Notions

- n agents, m indivisible items (like cell phone, painting, etc.)
- Each agent i has a valuation function over subset of items denoted by $v_{i}: 2^{m} \rightarrow \mathbb{R}$
- Goal: fair and efficient allocation

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)
Maximum Nash Welfare (MNW)

EF1	EFX	Lecture 3
MMS Prop1	Lecture 4	
Guarantees	Lecture 5	

Envy-Freeness up to One Item (EF1)

- An allocation $\left(A_{1}, \ldots, A_{n}\right)$ is EF1 if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j
$$

That is, agent i may envy agent j, but the envy can be eliminated if we remove a single item from $j^{\prime} s$ bundle

Envy-Freeness up to Any Item (EFX) [CKMPS14]

- An allocation $\left(A_{1}, \ldots, A_{n}\right)$ is EFX if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad \forall g \in A_{j}, \quad \forall i, j
$$

That is, agent i may envy agent j, but the envy can be eliminated if we remove any single item from $j^{\prime} s$ bundle

EF1?
$[15,10,20]$

EFX?
[1, 20, 10]

EFX: Existence

- General Valuations [PR18]
\square Identical Valuations

$$
n=2
$$

EXERCISE

- Additive Valuations
$\square n=3$ [CG.M20]

Additive $(n>3)$, General $(n>2)$
"Fair division's biggest problem" [P20]

Summary

Covered

- EF1 (existence/polynomialtime algorithm)
- EF1 + PO (existence/pseudopolynomial time algorithm)
- EFX

Not Covered

- EFX for 3 (additive) agents
- Partial EFX allocations
$\square \quad$ Little Charity [CKMS20]
High Nash welfare [CGH19]
- Chores
\square EF1 (existence/ polynomialtime algorithm) EXERCISE

Major Open Questions (additive valuations)

- EF1+PO: Polynomial-time algorithm
- EF1+PO: Existence for chores
- EFX : Existence
- [BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018
- [B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political Economy 119.6 (2011)
- [CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016
- [CGH20] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high Nash welfare: The virtue of donating items. In: EC 2019
- [CG.M20] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn: EFX Exists for Three Agents. In: EC 2020
- [CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity guarantees almost envy-freeness. In: SODA 2020
- [KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: Algorithmic Decision Theory (ADT). 2009
- [LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. "On approximately fair allocations of indivisible goods". In: EC 2004
- [PR18] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In: SODA 2018
- [P20] Ariel Procaccia: An answer to fair division's most enigmatic question: technical perspective. In: Commun. ACM 63(4): 118 (2020)

