Fair Division of Indivisible Items

Jugal Garg

UNIVERSITY OF
ILLINOIS

21st Max Planck Advanced Course on the Foundations of Computer Science
(ADFOCS)
August 24-28, 2020

Envy-Freeness up to One Item (EF1) [B11]

- An allocation $\left(A_{1}, \ldots, A_{n}\right)$ is EF1 if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

That is, agent i may envy agent j, but the envy can be eliminated if we remove a single item from $j^{\prime} s$ bundle

Scaling Valuations with Prices

- Envy-freeness is scale-free
- (A, p): CE
- Let's scale $v_{i j} \leftarrow v_{i j} \cdot \min _{k} \frac{p_{k}}{v_{i k}}$
$\Rightarrow v_{i j} \leq p_{j}$ and $v_{i j}=p_{j}$ if $j \in A_{i}$
Prices can be treated as valuations at CE!

Price-Envy-Free (additive) [BKV18]

- $(A, p): \mathrm{CE}$

■ A is EF 1 if $\quad v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j$

$$
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j} \backslash g\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

- A is Price-EF1 (pEF1) if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

- $\mathrm{pEF} 1 \Rightarrow \mathrm{EF} 1+\mathrm{PO}$
- (A, p) : CE
- A is EF 1 if $\quad v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad g \in A_{j}, \quad \forall i, j$

$$
v_{i}\left(A_{i}\right)=p\left(A_{i}\right) \quad p\left(A_{j} \backslash g\right) \geq v_{i}\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

- A is Price-EF1 (pEF1) if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

- $\mathrm{pEF} 1 \Rightarrow \mathrm{EF} 1+\mathrm{PO}$
pEF1?

$$
\begin{aligned}
& 35=p\left(A_{1}\right)>p\left(A_{2} \backslash g_{2}\right)=0 \\
& 20=p\left(A_{2}\right)>p\left(A_{1} \backslash g_{3}\right)=15
\end{aligned}
$$

Theorem [BKV18]: There exists a pseudo-polynomial time procedure to find a pEF1 allocation

- (A, p) : CE
- A is pEF 1 if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

- If $\min _{i} p\left(A_{i}\right) \geq \max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)$ then ?

Theorem [BKV18]: There exists a pseudo-polynomial time procedure to find a pEF1 allocation

- (A, p) : CE
- A is pEF 1 if

$$
p\left(A_{i}\right) \geq p\left(A_{j} \backslash g\right), \quad \exists g \in A_{j}, \quad \forall i, j
$$

- If $\min _{i} p\left(A_{i}\right) \geq \max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)$ then ?

$\min _{i} p\left(A_{i}\right)$
(least spender)
$\max _{j} \min _{g \in A_{j}} p\left(A_{j} \backslash g\right)$
(big spender)

Procedure [BKV18]

While A is not pEF 1
$k \leftarrow \arg \min _{i} p\left(A_{i}\right) / /$ least spender
$T \leftarrow$ Agents and items, k can reach in MBB residual network

While A is not pEF 1
$k \leftarrow \arg \min _{i} p\left(A_{i}\right) / /$ least spender
$T \leftarrow$ Agents and items, k can reach in MBB residual network If k can reach l in T such that $p\left(A_{l} \backslash g_{l}\right)>p\left(A_{k}\right)$

Pick the nearest such l
$P \leftarrow$ Path from l to k
$A \leftarrow$ Reassign items along P until $p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right) \leq p\left(A_{k}\right)$

While A is not pEF1
$k \leftarrow \arg \min _{i} p\left(A_{i}\right) / / l$ east spender
$T \leftarrow$ Agents and items, k can reach in MBB residual network If k can reach l in T such that $p\left(A_{l} \backslash g_{l}\right)>p\left(A_{k}\right)$

Pick the nearest such l
$P \leftarrow$ Path from l to k
$A \leftarrow$ Reassign items along P until $p\left(\left(A_{j} \cup g_{j+1}\right) \backslash g_{j}\right) \leq p\left(A_{k}\right)$
else increase prices of items in T by a same factor until
Event 1: new MBB edge
Event 2: k is not least spender anymore
Event 3: A becomes pEF1

Lemma: The procedure converges to a pEF1 allocation in finite time!
Pseudo-polynomial time: Round $v_{i j} s$ to the nearest integer powers of $(1+\epsilon)$ for a suitably small $\epsilon>0$ and then run the procedure

New Fairness Notions

- n agents, m indivisible items (like cell phone, painting, etc.)
- Each agent i has a valuation function over subset of items denoted by $v_{i}: 2^{m} \rightarrow \mathbb{R}$
- Goal: fair and efficient allocation

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)
Maximum Nash Welfare (MNW)

Proportionality up to One Item (Prop1)

- A set N of n agents, a set M of m indivisible items
- Proportionality (Prop): Allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ is proportional if each agent gets at least $1 / n$ share of all items:

$$
v_{i}\left(A_{i}\right) \geq \frac{v_{i}(M)}{n}, \quad \forall i \in N
$$

Proportionality up to One Item (Prop1)

- A set N of n agents, a set M of m indivisible items
- Prop: $A=\left(A_{1}, \ldots, A_{n}\right)$ is proportional if each agent gets at least $1 / n$ share of all items:

$$
v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(M), \quad \forall i \in N
$$

- Prop1: A is proportional up to one item if each agent gets at least $1 / n$ share of all items after adding one more item from outside:

$$
v_{i}\left(A_{i} \cup\{g\}\right) \geq \frac{1}{n} v_{i}(M), \quad \exists g \in M \backslash A_{i}, \forall i \in N
$$

Prop1

- EF1 implies Prop1 for subadditive valuations EXERCISE
\Rightarrow Envy-cycle procedure outputs a Prop1 allocation
- Additive Valuations
$\square \mathrm{EF} 1+\mathrm{PO}$ allocation exists but no polynomial-time algorithm is known!
\square Prop1 +PO ?

Prop1 + PO [BK19]

- (p, x): CEEI
- x is envy-free \Rightarrow proportional
- we can assume that support of x is a forest (set of trees)
- In each tree:
\square Make some agent the root
\square Assign each item to its parent agent

Claim: The output of the above algorithm is Prop1 +PO

Prop1 + PO [BK19]

- (p, x): CEEI
- x is envy-free \Rightarrow proportional
- we can assume that support of x is a forest (set of trees)
- In each tree:
\square Make some agent the root
\square Assign each item to its parent agent

Claim: The output of the above algorithm is Prop1 +PO

Fairness Notions for Indivisible Items

- n agents, m indivisible items (like cell phone, painting, etc.)
- Each agent i has a valuation function over subset of items denoted by $v_{i}: 2^{m} \rightarrow \mathbb{R}$
- Goal: fair and efficient allocation

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)
Maximum Nash Welfare (MNW)

EF1	EFX	Lecture 3
Prop1	MMS	Lecture 4
Guarantees	Lecture 5	

Proportionality

- A set N of n agents, a set M of m indivisible items
- Proportionality: Allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ is proportional if each agent gets at least $1 / n$ share of all items:

$$
v_{i}\left(A_{i}\right) \geq \frac{v_{i}(M)}{n}, \quad \forall i \in N
$$

Maximin Share (MMS) [B11]

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_{i}:=$ Maximum value of $i^{\prime} s$ least preferred bundle

Maximin Share (MMS) [B11]

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_{i}:=$ Maximum value of i 's least preferred bundle
- $\Pi:=$ Set of all partitions of items into n bundles
- $\mu_{i}:=\max _{A \in \Pi} \min _{A_{k} \in A} v_{i}\left(A_{k}\right)$
- MMS Allocation: A is called MMS if $v_{i}\left(A_{i}\right) \geq \mu_{i}, \forall i$

MMS value/partition/allocation

Assume additive valuations

What is Known?

- Finding MMS value is NP-hard
\square PTAS for finding MMS value [W97]

Existence (MMS allocation)?
■ $n=2$: YES EXERCISE

- $n>2$: NO [PW14]

What is Known?

- Finding MMS value is NP-hard
\square PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- $n=2$: YES EXERCISE
- $n>2$: NO [PW14]
- α-MMS allocation: $v_{i}\left(A_{i}\right) \geq \alpha . \mu_{i}$
\square 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, G.MT18]
\square 3/4-MMS exists [GHSSY18]
$\square(3 / 4+1 /(12 n))$-MMS exists [G.T20]

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$
■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}$, $\forall i \in N$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$
■ Valid Reduction (α-MMS): If there exists $S \subseteq M$ and $i^{*} \in N$
$\square v_{i^{*}}(S) \geq \alpha \cdot \mu_{i^{*}}^{n}(M)$
$\square \mu_{i}^{n-1}(M \backslash S) \geq \mu_{i}^{n}(M), \forall i \neq i^{*}$
\Rightarrow We can reduce the instance size!

Challenge

- Allocation of high-value items!
- If for all $i \in N$
$\square v_{i}(M)=n \Rightarrow \mu_{i} \leq 1$
$\square v_{i j} \leq \epsilon, \forall i, j$

Challenge

- Allocation of high-value items!
- If for all $i \in N$
$\square v_{i}(M)=n \Rightarrow \mu_{i} \leq 1$
$\square v_{i j} \leq \epsilon, \forall i, j$

Bag Filling Algorithm for $(1-\epsilon)$-MMS allocation:
Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove them

Warm Up: 1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
- If all $v_{i j} \leq 1 / 2$ then ?

1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$

Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i

Step 2: Bag Filling

1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$

Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i

Step 2: Bag Filling

1/2-MMS Allocation

- μ_{i} is not known

Step 0: Normalize Valuations: $\sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i
\square After every valid reduction, normalize valuations
Step 2: Bag Filling

2/3-MMS Allocation [G.MT19]

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
- If all $v_{i j} \leq 1 / 3$ then?

Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i
Step 2: Generalized Bag Filling
\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i

Step 2: Generalized Bag Filling

\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

n

2/3-MMS Allocation [G.MT19]

- μ_{i} is not known

Step 0: Normalize Valuations: $\sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i
\square After every valid reduction, normalize valuations
Step 2: Generalized Bag Filling
\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

Summary

Covered

- Additive Valuations:
\square Prop1 + PO (polynomial-time algorithm)
\square 2/3-MMS allocation (polynomial-time algorithm)

Not Covered

- More general valuations \square MMS [GHSSY18]
■ Groupwise-MMS [BBKN18]
- Chores
\square 11/9-MMS [HL19]

Major Open Questions (additive)

■ c-MMS + PO: polynomial-time algorithm for a constant $c>0$
■ Existence of $4 / 5-\mathrm{MMS}$ allocation? For 5 agents?

- [AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)
- [BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: AAAI 2018
- [BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017
- [BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAAI 2019
- [BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018
- [B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political Economy 119.6 (2011)
- [CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016
- [G.MT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019
- [G.T20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020
- [GHSSY18] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In EC 2018
- [HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In: arxiv:1907.04505
- [KBKZO9] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: Algorithmic Decision Theory (ADT). 2009
- [KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: J. ACM 65.2 (2018), 8:1-8:27
- [PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014
- [W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In: Operations Research Letters 20.4 (1997)

