Fair Division of Indivisible Items

Jugal Garg

UNIVERSITY OF
ILLINOIS

21st Max Planck Advanced Course on the Foundations of Computer Science
(ADFOCS)
August 24-28, 2020

Maximin Share (MMS) [B11]

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_{i}:=$ Maximum value of i 's least preferred bundle
- $\Pi:=$ Set of all partitions of items into n bundles
- $\mu_{i}:=\max _{A \in \Pi} \min _{A_{k} \in A} v_{i}\left(A_{k}\right)$
- MMS Allocation: A is called MMS if $v_{i}\left(A_{i}\right) \geq \mu_{i}, \forall i$

What is Known?

- Finding MMS value is NP-hard
\square PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- $n=2$: YES EXERCISE
- $n>2$: NO [PW14]
- α-MMS allocation: $v_{i}\left(A_{i}\right) \geq \alpha . \mu_{i}$
\square 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, G.MT18]
\square 3/4-MMS exists [GHSSY18]
$\square(3 / 4+1 /(12 n))$-MMS exists [G.T20]

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$
■ Valid Reduction (α-MMS): If there exists $S \subseteq M$ and $i^{*} \in N$
$\square v_{i^{*}}(S) \geq \alpha \cdot \mu_{i^{*}}^{n}(M)$
$\square \mu_{i}^{n-1}(M \backslash S) \geq \mu_{i}^{n}(M), \forall i \neq i^{*}$
\Rightarrow We can reduce the instance size!

Challenge

- Allocation of high-value items!
- If for all $i \in N$
$\square v_{i}(M)=n \Rightarrow \mu_{i} \leq 1$
$\square v_{i j} \leq \epsilon, \forall i, j$

Bag Filling Algorithm for $(1-\epsilon)$-MMS allocation:
Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove them

1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i
Step 2: Bag Filling

1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$

Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i
Step 2: Bag Filling

1/2-MMS Allocation

- μ_{i} is not known

Step 0: Normalize Valuations: $\sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i
\square After every valid reduction, normalize valuations
Step 2: Bag Filling

2/3-MMS Allocation [G.MT19]

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
- If all $v_{i j} \leq 1 / 3$ then?

Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i
Step 2: Generalized Bag Filling
\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i

Step 2: Generalized Bag Filling

\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

n

2/3-MMS Allocation [G.MT19]

- μ_{i} is not known

Step 0: Normalize Valuations: $\sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i
\square After every valid reduction, normalize valuations
Step 2: Generalized Bag Filling
\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

New Fairness Notions

- n agents, m indivisible items (like cell phone, painting, etc.)
- Each agent i has a valuation function over subset of items denoted by $v_{i}: 2^{m} \rightarrow \mathbb{R}$
- Goal: fair and efficient allocation

Fairness:
Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)
Maximum Nash Welfare (MNW)

Objectives

- Maximize the sum of valuations
(Utilitarian Welfare):

$$
U W(A)=\sum_{i} v_{i}\left(A_{i}\right)
$$

Objectives

- Maximize the sum of valuations
(Utilitarian Welfare):

$$
U W(A)=\sum_{i} v_{i}\left(A_{i}\right)
$$

- Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

$$
E W(A)=\min _{i} v_{i}\left(A_{i}\right)
$$

Objectives

- Maximize the sum of valuations
(Utilitarian Welfare):

$$
U W(A)=\sum_{i} v_{i}\left(A_{i}\right)
$$

- Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

$$
E W(A)=\min _{i} v_{i}\left(A_{i}\right)
$$

- Maximize the geometric mean of valuations (\approx Efficiency + Fairness, Maximum Nash Welfare):

$$
\mathrm{N} W(A)=\left(\prod_{i \in A} v_{i}\left(A_{i}\right)\right)^{1 / n} \quad \text { Scale-free }
$$

Maximum Nash Welfare (MNW)

■ Maximum Nash welfare (MNW): An allocation A that maximizes the Nash welfare among all feasible allocations i.e.,

$$
A^{*}=\arg \max _{A}\left(\prod_{i} v_{i}\left(A_{i}\right)\right)^{1 / n}
$$

Additive Valuations $\left(v_{i}\left(A_{i}\right)=\sum_{j \in A_{i}} v_{i j}\right)$:
■ Divisible Items: MNW \equiv CEEI \Rightarrow Envy-free + Prop + PO $+\ldots$
■ Indivisible Items: $\mathrm{MNW} \Rightarrow \mathrm{EF} 1+\mathrm{PO}+\Omega\left(\frac{1}{\sqrt{n}}\right)$-MMS [CKMPSW16]
\square Existence of EF1 + PO allocation

MNW (additive)

■ APX-hard [Lee17]; 1.069-hardness [G.HM18]

Approximation:

- ρ-approximate MNW allocation $A: \rho$. NW $(A) \geq M N W$
$\square 2$ [CG15, CDGJMVY17], e [AOSS17]
$\square 1.45$ [BKV18] (pEF1 approach)
- Fairness Guarantees
\square Prop1 $+\mathrm{PO}+\frac{1}{2 n}-\mathrm{MMS}+2-\mathrm{MNW}$ [G.M19]

MNW: Generalizations

- Non-symmetric Agents (different entitlements/weights)
\square Weighted envy-free, weighted proportionality
\square MNW (weighted geometric mean)
- Beyond Additive Valuations

Additive $\subset \underset{\text { Sudget }}{\text { SCOXS } \subset \text { Rado }} \subset$ Submodular \subset Subadditive Budget additive

MNW: Generalizations

- Non-symmetric Agents (different entitlements/weights)
\square Weighted envy-free, weighted proportionality
\square MNW (weighted geometric mean)
- Beyond Additive Valuations

Additive $\subset \underset{\text { Budget additive }}{\text { SCOXS }} \subset$ Rubmodular \subset Subadditive Budget additive

The non-symmetric MNW Problem

- Non-symmetric MNW was proposed in [HS72, K77] and has been extensively studied and used in many applications
\square Agent i has a weight of w_{i}
$\operatorname{NW}(A)=\left(\prod_{i} v_{i}\left(A_{i}\right)^{w_{i}}\right)^{1 / \sum_{i} w_{i}}$ weighted geometric mean of agents' valuations
- $\mathrm{MNW}=\arg \max _{A} N W(A)$

■ ρ-approximate MNW allocation $A: \quad \rho$. NW $(A) \geq$ MNW

Example (additive)

$$
\mathrm{MNW}=\mathrm{NW}(A)=\left(10^{1} \cdot 3^{1}\right)^{1 / 2}
$$

Example (additive)

$\operatorname{NW}(A)=\left(10^{2} \cdot 3^{1}\right)^{1 / 3}$

Example (additive)

$\operatorname{NW}(A)=\left(10^{2} \cdot 3^{1}\right)^{1 / 3}<\left(20^{2} \cdot 1^{1}\right)^{1 / 3}=\operatorname{NW}\left(A^{\prime}\right)=\mathrm{MNW}$

MNW Approximations: Additive

	Lower bound	Upper Bound
Symmetric	1.069	1.45
Non-symmetric	1.069	$\mathrm{O}(n)$

n : \# of agents

Matching $(m=n)$

$$
\operatorname{NW}(A)=\left(\prod_{i} v_{i}\left(A_{i}\right)^{w_{i}}\right)^{1 / \sum_{i} w_{i}}
$$

$$
\mathrm{MNW}=\max _{\mathrm{A}} \operatorname{NW}(A) \equiv \max _{\mathrm{A}} \sum_{i} w_{i} \log v_{i}\left(A_{i}\right)
$$

Claim: If $m=n$, then max-weight matching outputs MNW

$m>n$

- How good is max-weight matching?

$$
\begin{aligned}
& \operatorname{NW}\left(A^{*}\right) \simeq m \\
& \operatorname{NW}(A) \simeq \sqrt{2 m}
\end{aligned}
$$

- Issue: Allocation of high-value items!

Round Robin Procedure

- H_{i} : Set of n highest-valued items for agent i
- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$

■ Guarantee?

- H_{i} : Set of n highest-valued items for agent i
- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$
- Round-Robin guarantees $\geq \frac{u_{i}}{n}$

MNW allocation A^{*} :

- g_{i}^{*} : highest-valued item in A_{i}^{*}
- $v_{i}\left(A_{i}^{*}\right) \leq n v_{i}\left(g_{i}^{*}\right)+u_{i}$

$$
\leq n\left(v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}\right)
$$

- If $v_{i}\left(A_{i}\right) \geq v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}$, then A is $O(n)$-approximation!

Matching + Round-Robin [G.KK20]

- H_{i} : Set of $2 n$ highest-valued items for agent i
- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$
- Allocate one item to each agent using max-weight matching with weights $w_{i} \log \left(v_{i}(g)+\frac{u_{i}}{n}\right): \quad y_{i}^{*}$ is allocated to i
- $A \leftarrow$ Allocate remaining items using Round Robin

- H_{i} : Set of $2 n$ highest-valued items for agent i
- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$
- Allocate one item to each agent using max-weight matching with weights $w_{i} \log \left(v_{i}(g)+\frac{u_{i}}{n}\right): \quad y_{i}^{*}$ is allocated to i
- $A \leftarrow$ Allocate remaining items using Round Robin
- g_{i}^{*} : highest-valued item in A_{i}^{*}
- $v_{i}\left(A_{i}^{*}\right) \leq 2 n v_{i}\left(g_{i}^{*}\right)+u_{i} \Rightarrow \mathrm{MNW} \leq 2 n\left(\prod_{i}\left(v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}\right)^{w_{i}}\right)^{1 / \sum_{i} w_{i}}$
- $v_{i}\left(A_{i}\right) \geq v_{i}\left(y_{i}^{*}\right)+\frac{u_{i}}{n}$
$\Rightarrow \mathrm{NW}(A) \geq\left(\prod_{i}\left(v_{i}\left(y_{i}^{*}\right)+\frac{u_{i}}{n}\right)^{w_{i}}\right)^{\frac{1}{\Sigma_{i} w_{i}}} \geq\left(\prod_{i}\left(v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}\right)^{w_{i}}\right)^{\frac{1}{\Sigma_{i} w_{i}}}$
Theorem [G.KK20]: A is $2 n-\mathrm{MNW}+\mathrm{EF} 1$

Generalizations

- Non-symmetric Agents (different entitlements/weights)
\square Weighted envy-free, weighted proportionality
\square MNW (weighted geometric mean)
- Beyond Additive

Additive $\subset \underset{\text { Budget additive }}{\mathrm{SC} \subset \mathrm{OXS} \subset \text { Rado }} \subset$ Submodular \subset Subadditive
non-negative monotone: $v(S) \leq v(T), S \subseteq T$

Subadditive: $\quad v(A \cup B) \leq v(A)+v(B), \quad \forall A, B$

Additive valuations are restrictive

100

Additive valuations are restrictive

Additive valuations are restrictive

$$
125 \neq 100+100
$$

MNW Approximations: Symmetric Agents

Additive $\subset \underset{\text { Budget additive }}{\text { SC } \subset \text { OXS } \subset \text { Rado }} \subset$ Submodular \subset Subadditive

Valuation	Lower bound	Upper Bound
Additive Budget additive Separable concave	1.069	1.45
OXS Rado	1.069	$O(1)$
Submodular	1.58	$O(n)$
Subadditive	$O\left(n^{1-\epsilon}\right)$	$O(n)$

n : \# of agents

MNW Approximations: Non-symmetric Agents

Additive $\subset \underset{\text { Budget additive }}{\text { SC } \subset \text { OXS } \subset \text { Rado }} \subset$ Submodular \subset Subadditive

Valuation	Lower bound	Upper Bound
Additive Budget additive Separable concave OXS Rado	1.069	$O(n)$
Submodular	1.58	$O(n)$
Subadditive	$O\left(n^{1-\epsilon}\right)$	$O(n)$

n : \# of agents

Envy-free (EF) Allocation

Claim: An EF allocation A is $O(n)$-approximation

½-EFX Allocation

- $1 / 2$-EFX allocation $A: v_{i}\left(A_{i}\right) \geq \frac{1}{2} v_{i}\left(A_{j} \backslash g\right), \forall g \in A_{j}, \forall i, j$

Claim: If $\left|A_{i}\right| \geq 2, \forall i$, then A is $O(n)$-approximation

$O(n)$ Algorithm [CG.M20]

- H_{i} : Set of n highest-valued items for agent i
- Allocate one item per agent using max-weight matching with weights $w_{i} \log \left(v_{i}(g)+\frac{v_{i}\left(M \backslash H_{i}\right)}{n}\right): y_{i}^{*}$ is allocated to i
- $A \leftarrow$ Allocate remaining items using $1 / 2$-EFX algorithm

Claim: A is $O(n)$-MNW and $1 / 2$-EFX allocation

Claim: A is $O(n)$-MNW

Proof (sketch):

- $Y \leftarrow \mathrm{U}_{i} y_{i}^{*} ; \quad g_{i}^{*}$: highest-valued item in MNW allocation A_{i}^{*}
- $v_{i}\left(A_{i}^{*}\right) \leq n v_{i}\left(g_{i}^{*}\right)+v_{i}\left(M \backslash H_{i}\right)=n\left(v_{i}\left(g_{i}^{*}\right)+\frac{v_{i}\left(M \backslash H_{i}\right)}{n}\right)$
$\Rightarrow \mathrm{MNW} \leq n\left(\prod_{i}\left(v_{i}\left(g_{i}^{*}\right)+\frac{v_{i}\left(M \backslash H_{i}\right)}{n}\right)^{w_{i}}\right)^{1 / \sum_{i} w_{i}}$
- $v_{i}\left(A_{i}\right) \geq v_{i}\left(y_{i}^{*}\right)$
- $v_{i}\left(A_{i}\right) \geq \frac{v_{i}(M \backslash Y)}{4 n} \geq \frac{v_{i}\left(M \backslash H_{i}\right)-n v_{i}\left(y_{i}^{*}\right)}{4 n}$

- $v_{i}\left(A_{i}\right) \geq \frac{1}{8}\left(v_{i}\left(y_{i}^{*}\right)+\frac{v_{i}\left(M \backslash H_{i}\right)}{n}\right)$
$\operatorname{NW}(A) \geq \frac{1}{8}\left(\Pi_{i}\left(v_{i}\left(y_{i}^{*}\right)+\frac{v_{i}\left(M \backslash H_{i}\right)}{n}\right)^{w_{i}}\right)^{\frac{1}{\Sigma_{i} w_{i}}} \geq \frac{1}{8}\left(\Pi_{i}\left(v_{i}\left(g_{i}^{*}\right)+\frac{v_{i}\left(M \backslash H_{i}\right)}{n}\right)^{w_{i}}\right)^{\frac{1}{\Sigma_{i} w_{i}}}$

MNW Approximations: Symmetric Agents

Additive $\subset \mathrm{SC} \subset$ OXS \subset Rado \subset Submodular \subset Subadditive Budget additive

Valuation	Lower bound	Upper Bound
Additive Budget additive Separable concave	1.069	1.45
OXS Rado	1.069	$O(1)$
Submodular	1.58	$O(n)$

n : \# of agents

MNW Approximations: Non-symmetric Agents

Additive $\subset \underset{\text { Budget additive }}{\text { SC } \subset \text { OXS } \subset \text { Rado }} \subset$ Submodular \subset Subadditive

Valuation	Lower bound	Upper Bound
Additive Budget additive Separable concave OXS Rado	1.069	$O(n)$
Submodular	1.58	$O(n)$

n : \# of agents

- [BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018
- [CCG.GHM18] Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. On Fair Division for Indivisible Items. In: FSTTCS 2018
- [CDGJMVY17] Richard Cole, Nikhil R. Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani, and Sadra Yazdanbod. Convex program duality, Fisher markets, and Nash social welfare. In: EC 2017
- [CG15] Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible items. In: STOC 2015
- [CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016
- [G.MT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019
- [G.HM18] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social welfare with budget-additive valuations. In: SODA 2018
- [G.KK20] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. "Approximating Nash Social Welfare under Submodular Valuations through (Un)Matchings". In: SODA 2020
- [G.HV20] Jugal Garg, Edin Husic, and Laszlo Vegh. "Approximating Nash Social Welfare for asymmetric agents with Rado-valuations". Unpublished, 2020
- [CG.M20] Bhaskar Ray Chaudhury, Jugal Garg, and Ruta Mehta. "Fair and Efficient Allocations under Subadditive Valuations". In: arxiv: 2005.06511
- [G.M20] Jugal Garg and Peter McGlaughlin. "Improving Nash Social Welfare Approximations". In: Journal of Artificial Intelligence Research, 68: 225-245 (2020)
- [BBKS20] Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram. "Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations" In: ESA 2020
- [AOSS17] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. "Nash Social Welfare, Matrix Permanent, and Stable Polynomials". In: ITCS 2017
- [K77] E. Kalai. "Nonsymmetric Nash Solutions and Replications of 2-person Bargaining". In: International Journal of Game Theory 6 (1977), pp. 129-133
- [HS72] J. Harsanyi and R. Selten. "A Generalized Nash Solution for Two-person Bargaining Games with Incomplete Information". In: Management Science 18 (1972), pp. 80-106.

