
Box-Simplex Games
Algorithms, Applications, and Algorithmic Graph Theory

Aaron Sidford
Contact Info:
• email: sidford@stanford.edu
• website: www.aaronsidford.com

Stanford University
Departments of Management Science 
& Engineering and Computer Science

Part I

Feedback welcome! If you find any typos 
or anything is unclear or misleading, 

please email me and know!

For additional detail, see the companion paper, 
“Box-Simplex Games : Algorithms, Applications, 
and Algorithmic Graph Theory” on my website.



Lecture Plan

Today and Tomorrow
• Box-simplex games
• Their structure
• Applications
• Algorithms

Friday
• Interior point methods

Why?
• (Applications) Continuous and combinatorial.
• (Tools) New optimization methods
• (Reinforce) Modifications of common methods

• Introduction of state-of-the-art method



The Problem

Input
• 𝑛-dimensional box: 𝐵!" ≝ 𝑥 ∈ ℝ" 𝑥 ! ≤ 1}
• 𝑚-dimensional simplex: Δ# ≝ 𝑦 ∈ ℝ$%# 𝑦 & = 1}

Output:
• An approximate solution to

min
'∈)!"

max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦

Bounded vectors in ℝ!

Probability distributions 
on 𝑚 elements

Box-Simplex Game ℓ𝟏-ℓ$ Game



Key Motivating Questions

Question #1
How can we design efficient methods for solving box-simplex games?

Question #2
How can we leverage box-simplex solvers to solve continuous and 

combinatorial optimization problems?

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Talk Plan (Today and Tomorrow)

Part 1
Structure of 

box-simplex games

• Primal and dual problems
• Approximate solutions
• Discuss state-of-the-art runtimes

Part 2
Applications

Part 3
Algorithms

• Box-constrained ℓ$-regression
• Linear programming
• Maximum cardinality bipartite matching
• Undirected maximum flow

• ℓ$-Gradient Descent (constrained steepest descent)
• ℓ;-Mirror Descent (multiplicative weights)
• Mirror prox and primal dual regularizers

Friday
Interior Point 

Methods

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Primal Problem

Lemma: max
'∈+#

𝑑,𝑥 = max
-∈[#]

𝑑- for all 𝑑 ∈ ℝ# and therefore

𝑓012 𝑥 ≝ max
*∈+#

𝑓 𝑥, 𝑦 = 𝑐,𝑥 + max
-∈[#]

𝑨𝑥 − 𝑏 -

Proof:

• Let 𝑖∗ ∈ argmax-∈[#] 𝑑-. Note that 1-∗ ∈ Δ
#.

• ⇒ max
'∈+#

𝑑,𝑥 ≥ 𝑑,1-∗ = 𝑑-∗ = max
-∈[#]

𝑑-

• 𝑑- ≤ 𝑑-∗ and 𝑥- ≥ 0 for 𝑥 ∈ Δ# and 𝑖 ∈ [𝑚]
• ⇒ max

'∈+#
𝑑,𝑥 = max

'∈+#
∑-∈ # 𝑑-𝑥- ≤ max

'∈+#
∑-∈ # 𝑑-∗𝑥- = 𝑑-∗ = max

-∈[#]
𝑑-

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Dual Problem

Lemma: min
'∈)!"

𝑑,𝑥 = − 𝑑 & for all 𝑑 ∈ ℝ" and therefore

𝑓045 𝑦 ≝ min
'∈)!"

𝑓 𝑥, 𝑦 = −𝑏,𝑦 − 𝑨,𝑦 − 𝑏 &

Proof:
• Let sign 𝑑 ∈ ℝ" with sign 𝑑 - as 1 if 𝑑- > 0, −1 if 𝑑- < 0, and 0

othewise
• ⇒ min

'∈)!"
𝑑,𝑥 ≤ 𝑑, −sign 𝑑 = −∑-∈ " 𝑑- = − 𝑑 &

• 𝑥- ≤ 1 for all 𝑥 ∈ 𝐵!" and 𝑖 ∈ [𝑛]
• ⇒ min

'∈)!"
𝑑,𝑥 = min

'∈)!"
−∑-∈ " 𝑑- |𝑥-| ≥ min

'∈)!"
−∑-∈ " 𝑑- = − 𝑑 &

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• max

*∈+#
min
'∈)!"

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Primal Dual Relationship

Primal Problem
• min
'∈)!"

𝑓012 𝑥 = max
*∈+#

𝑓 𝑥, 𝑦

• 𝑓012 𝑥 = 𝑐,𝑥 + max
-∈[#]

𝑨𝑥 − 𝑏 -

Dual Problem
• max
*∈+#

𝑓045 𝑦 = min
'∈)!"

𝑓 𝑥, 𝑦

• 𝑓045 𝑦 = −𝑏,𝑦 − 𝑨,𝑦 − 𝑏 &

Comparison
• Trivially: 𝑓012 𝑥 ≥ 𝑓045(𝑦) (weak duality)
• Interestingly:min

'∈)!"
𝑓012 𝑥 = max

*∈+#
𝑓045 𝑦 (strong duality)

We will prove algorithmically later

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Approximate Solutions

Primal Problem
• min
'∈)!"

𝑓012 𝑥 = max
*∈+#

𝑓 𝑥, 𝑦

• 𝑓012 𝑥 = 𝑐,𝑥 + max
-∈[#]

𝑨𝑥 − 𝑏 -

Dual Problem
• max
*∈+#

𝑓045 𝑦 = min
'∈)!"

𝑓 𝑥, 𝑦

• 𝑓045 𝑦 = −𝑏,𝑦 − 𝑨,𝑦 − 𝑏 &

Approximate Solutions
• Let 𝑥∗ ∈ argmin

'∈)!"
𝑓012 𝑥 and 𝑦∗ ∈ argmax

*∈+#*∈+#
𝑓045 𝑦

• 𝜖-approximate primal solution: 𝑥6 ∈ 𝐵!" with 𝑓012 𝑥6 ≤ 𝑓012 𝑥∗ + 𝜖
• 𝜖-approximate dual solution: 𝑦6 ∈ Δ# with 𝑓045 𝑦6 ≥ 𝑓045 𝑦∗ − 𝜖
• 𝜖-approximate (primal-dual) saddle point (or equilibrium): 𝑥6 , 𝑦6 ∈ 𝐵!"×Δ#

𝑓012 𝑥6 − 𝑓045 𝑦6 ≤ 𝜖

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Equilibrium

Primal Problem
• min
'∈)!"

𝑓012 𝑥 = max
*∈+#

𝑓 𝑥, 𝑦

• 𝑓012 𝑥 = 𝑐,𝑥 + max
-∈[#]

𝑨𝑥 − 𝑏 -

Dual Problem
• max
*∈+#

𝑓045 𝑦 = min
'∈)!"

𝑓 𝑥, 𝑦

• 𝑓045 𝑦 = −𝑏,𝑦 − 𝑨,𝑦 − 𝑏 &

𝝐-approximate (primal-dual) saddle point (or equilibrium)
• Definition: 𝑥% , 𝑦% ∈ 𝐵&'×Δ( and 𝑓)*+ 𝑥% − 𝑓),- 𝑦% ≤ 𝜖
• Duality gap: gap 𝑥% , 𝑦% = 𝑓)*+ 𝑥% − 𝑓),- 𝑦%

• Total 𝑓 𝑥% , 𝑦% change by best responses: = 𝑓)*+ 𝑥% − 𝑓 𝑥% , 𝑦% + 𝑓 𝑥% , 𝑦% − 𝑓),- 𝑦%
• Sum of 𝑥% and 𝑦% suboptimality: = 𝑓)*+ 𝑥% − 𝑓 𝑥% , 𝑦% + 𝑓 𝑥% , 𝑦% − 𝑓),- 𝑦%

Don’t need 𝑥∗ and 𝑦∗ to compute!

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



State-of-the-art

Theorem: there is a method which can compute an 𝜖-approximate 
saddle point in time L𝑂 nnz 𝑨 𝑨 9:,!/𝜖

Notation
• nnz 𝑨 ≝ 𝑛 + 𝑚 + number of nonzero entries in 𝑨

• 𝑨 9:,! ≝ sup
'<%

𝑨' !
' !

= max ℓ& norm of row of 𝑨

• L𝑂(⋅) hides logarithmic factors in nnz 𝑨 , 𝑨 9:,!/𝜖

size of the input

“ℓ" operator norm”
bounds up to constant how 

suboptimal primal/dual solutions 
which just optimize 𝑏 and 𝑐 are

Nearly linear time 
algorithm

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



First-order method

Theorem: there is a method which solves box-simplex games to 
accuracy 𝜖 in time L𝑂 nnz 𝑨 𝑨 9:,!/𝜖 .

• First order method: only access objective by evaluating the function 
and computing the gradient, ∇𝑓 𝑥, 𝑦 = (𝑨,𝑦 + 𝑐, 𝑨𝑥 − 𝑏)
• Note: only need 𝑏, 𝑐, and matrix vector multiplies. 
• Can compute in parallel L𝑂(1) depth and 𝑂(nnz 𝑨 ) work.

• The method for this theorem?
• First order method + matrix vector multiplies with |𝑨|
• Parallel with L𝑂(1) depth 

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑥 ∈ ℝ$%

# 𝑥 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦

Entrywise
absolute value



History and More State-of-the-art

First Order Methods

• >𝑂 nnz 𝑨 𝑨 "#,%/𝜖
• First in [S17] 
• Later variants (influencing this 

presentation [JST19,CST21,AJJST21]
• Prior state of the art

• >𝑂(nnz 𝑨 𝑨 "#,%
& /𝜖&) – folklore / [S13, 

KLOS14] (influencing this presentation)
• >𝑂 nnz 𝑨 𝑛 𝑨 "#,%/𝜖 - AGD and 

smoothing.
• [ST18] alternative approach and 

improvements in sparse case

Interior Point Methods

• [CLS19,B20] >𝑂(max{𝑚, 𝑛}') where 𝜔 < 2.373 is fast 
matrix multiplication constant

• [BLLSSSW21] >𝑂(𝑚𝑛 +min{𝑚, 𝑛}&.))

• [LS14,LS15] >𝑂(nnz 𝑨 min 𝑚, 𝑛 + min 𝑚, 𝑛 &.))

𝑤 < 2.373 is current fast matrix multiplication (FMM) constant [W13]



Talk Plan (Today and Tomorrow)

Part 1
Structure of 

box-simplex games

• Primal and dual problems
• Approximate solutions
• Discuss state-of-the-art runtimes

Part 2
Applications

Part 3
Algorithms

• Box-constrained ℓ$-regression
• Linear programming
• Maximum cardinality bipartite matching
• Undirected maximum flow

• ℓ$-Gradient Descent (constrained steepest descent)
• ℓ;-Mirror Descent (multiplicative weights)
• Mirror prox and primal dual regularizers

Friday
Interior Point 

Methods
ü

• Box: 𝐵"! ≝ 𝑥 ∈ ℝ! 𝑥 " ≤ 1}
• Simplex: Δ# ≝ 𝑦 ∈ ℝ$%

# 𝑦 & = 1}
• min

'∈)!"
max
*∈+#

𝑓 𝑥, 𝑦 ≝ 𝑦,𝑨𝑥 + 𝑐,𝑥 − 𝑏,𝑦



Problem #1: Box-constrained ℓ!-Regression

Box-constrained ℓ$ Regressioon
• Input: matrix 𝑨 ∈ ℝC×E and vector 𝑏 ∈ ℝC

• Problem: OPT$ = min
F∈G!"

𝑨𝑥 − 𝑏 $

• Goal: find 𝜖-additive approximation, i.e. 𝑥H ∈ 𝐵$E with 𝑨𝑥H − 𝑏 $ ≤ OPT$ + 𝜖

Claim: can compute in 3𝑂(nnz 𝑨 𝑨 IJ,$𝜖K;)
Proof:

• 𝑨𝑥 − 𝑏 $ = max
L∈[C]

max 𝑨𝑥 − 𝑏 L , − 𝑨𝑥 − 𝑏 L = max
O∈P#$

𝑦Q 𝑨𝑥 − 𝑏
−(𝑨𝑥 − 𝑏)

• New matrix has same ‖ ⋅ ‖IJ,$ and just double nnz

Warm-up



Problem #2: Linear Programming

Approximate Linear Programming
• Input: 𝑨 ∈ ℝC×E, 𝑏 ∈ ℝC, 𝑐 ∈ ℝE, and 𝜖, 𝛿, 𝐷 ≥ 0
• Problem: OPTRS = min

F∈ℝ" | 𝑨FUV
𝑐Q𝑥

• Promise: ∃𝑥∗
RS ∈ argmin

F∈ℝ" | 𝑨FUV
𝑐Q𝑥 with 𝑥∗

RS
$
≤ 𝐷

• Goal: find 𝑥H,X with 𝑐Q𝑥H,X ≤ OPTRS and 𝑨𝑥H,X ≥ 𝑏 − 𝛿1

Notes
• One of many ways to formulate the problem. 
• Key difficulty: how handle that constraint 𝑨𝑥 ≥ 𝑏?
• Recurring idea: penalty functions in the objective



Linear Programming

Approach
• 𝑝 𝑥 ≝ 𝑀 ⋅ max 0, max

.∈[(]
𝑏 −𝑨𝑥 .

• OPT2 = min
3∈ℝ"| 3 !67

𝑐8𝑥 + 𝑝(𝑥)

Claim: For 𝑀 = 𝜖 + 2 𝑐 9𝑅 𝛿:9 any 𝜖-
approximate minimizer to OPT; problem is 
(𝜖, 𝛿)-approximate linear program solution.

Theorem: Can compute (𝜖, 𝛿)-approximate 
linear program solution in 

F𝑂 nnz 𝑨 ⋅
𝐷 𝑨 <;,&

𝛿 max 1,
𝐷 𝑐 9
𝜖

Proof of Theorem from Claim
Can write penalized problem as box-simplex 
• �̅� = 𝐷*+𝑥 and ̅𝑐 = 𝐷𝑐

• Y𝑨 =
−𝐷𝑀𝑨
0,-

and 𝑏 =
−𝑀𝑏
0,-

Penalized problem is the same as

min
/̅∈1-.

̅𝑐-�̅� + max
2∈[45+]

Y𝑨�̅� − 𝑏 2

Note that Y𝑨 78,% = 𝑂 𝐷𝑀 𝑨 78,% and 
𝑀/𝜖 = 𝑂(𝛿*+max 1, 𝐷 𝑐 +𝜖*+ )

Input: 𝑨 ∈ ℝ#×!, 𝑏 ∈ ℝ# , 𝑐 ∈ ℝ!, and 𝜖, 𝛿, 𝐷 ≥ 0
Problem: OPT01 = min

'∈ℝ" | 𝑨'$5
𝑐,𝑥

Promise: ∃𝑥∗
01 ∈ argmin

'∈ℝ" | 𝑨'$5
𝑐,𝑥 with 𝑥∗

01

"
≤ 𝐷

Goal: find 𝑥7,9 with 𝑐,𝑥 ≤ OPT01 and 𝑨𝑥 ≥ 𝑏 − 𝛿1



Linear Programming

Approach
• 𝑝 𝑥 ≝ 𝑀 ⋅ max 0, max

.∈[(]
𝑏 −𝑨𝑥 .

• OPT2 = min
3∈ℝ"| 3 !67

𝑐8𝑥 + 𝑝(𝑥)

Claim: For 𝑀 = 𝜖 + 2 𝑐 9𝑅 𝛿:9 any 𝜖-
approximate minimizer to OPT; problem is 
(𝜖, 𝛿)-approximate linear program solution.

Theorem: Can compute (𝜖, 𝛿)-approximate 
linear program solution in 

F𝑂 nnz 𝑨 ⋅
𝐷 𝑨 <;,&

𝛿 max 1,
𝐷 𝑐 9
𝜖

Proof of Claim
• Let 𝑥% be 𝜖-approximate minimizer

• Since 𝑥∗
>2 is feasible for penalized 

problem, OPT2 ≤ OPT>2
• 𝑐8𝑥% +𝑝 𝑥% ≤ OPT2 + 𝜖 ≤ OPT>2 + 𝜖

• 𝑝 𝑥% ≤ 𝜖 + 𝑐8(𝑥∗
>2 − 𝑥%)

• 𝑐8 𝑥∗
>2 − 𝑥% ≤ 𝑐 9 𝑥∗

>2 − 𝑥% &

• 𝑥∗
>2 − 𝑥% &

≤ 𝑥∗
>2

&
+ 𝑥% &

Input: 𝑨 ∈ ℝ#×!, 𝑏 ∈ ℝ# , 𝑐 ∈ ℝ!, and 𝜖, 𝛿, 𝐷 ≥ 0
Problem: OPT01 = min

'∈ℝ" | 𝑨'$5
𝑐,𝑥

Promise: ∃𝑥∗
01 ∈ argmin

'∈ℝ" | 𝑨'$5
𝑐,𝑥 with 𝑥∗

01

"
≤ 𝐷

Goal: find 𝑥7,9 with 𝑐,𝑥 ≤ OPT01 and 𝑨𝑥 ≥ 𝑏 − 𝛿1



Problem #3: Bipartite Matching

Maximum Cardinality (Bipartite) Matching (MCM)
• Input: undirected, bipartite graph 𝐺 = (𝑉, 𝐸)
• Matching: 𝑀 ⊆ 𝐸 such that 𝑒; ∩ 𝑒d = ∅ for all 𝑒;, 𝑒d ∈ 𝑀 with 𝑒; ≠ 𝑒d
• Problem: compute matching 𝑀∗ of maximum cardinality |𝑀∗|
• Goal: find (1 − 𝜖)-approximate MCM, i.e. matching 𝑀H with 𝑀H ≥ (1 − 𝜖)|𝑀∗|

𝐺 = (𝑉, 𝐸) Matching 𝑀



MCM History

• Result: can use box-simplex solver to compute (1 − 𝜖)-approximate MCM in k𝑂(|𝐸|𝜖:&) time and k𝑂(𝜖:&) depth

• Time matched by Dinic, Karzanov, Hopcroft, Karp and Allen-Zhu, Orecchia 2015

• Unaware of alternative method that gets this parallelism and this time.

• Alternative method either have large 𝜖, |𝐸|, or |𝑉| dependence

• Also, implementable semi-streaming (Assadi, Jambulapati, Jin, S, Tian 2021)

Year Authors Runtime m𝑶(⋅)

1969-1973 Dinic, Karzanov, Hopcroft, Karp |𝐸| |𝑉|

1981 Ibarra, Moran |𝑉|;

2013 Mądry |𝐸|&%/=

2020 Liu, S |𝐸|&&/>?@(&)

2020 Liu, Kathuria, S |𝐸|C/D?@(&)

2020 Brand, Lee, Nanongkai, Peng, 
Saranurak, S, Song, Wang |𝐸| + |𝑉|&.F

𝑤 < 2.373 is current fast matrix multiplication (FMM) constant [W13]

Fundamental, incredibly well-studied, notoriously difficult (to improve) problem.

Note: procedure will use 
very little graph structure.

Improvements since 1980s 
all use interior point 

methods which we may 
discuss on Friday.



Approach

Fractional Matching: in the MCM problem 𝑓 ∈ ℝ$%` is a fractional 
matching if for all 𝑎 ∈ 𝑉 it is the case that ∑a∈b(c) 𝑓{c,a} ≤ 1.

Theorem [GPST91]: There is an algorithm which given any fractional 
matching 𝑓 ∈ ℝ$%` can compute an integral matching of cardinality at 
least 𝑓 & in time  L𝑂( 𝐸 ) and depth L𝑂(1).

Corollary: The minimum ℓ&-norm of a fractional matching is |𝑀∗| and it 
suffices to compute a fractional matching of ℓ&-norm ≥ (1 − 𝜖)|𝑀∗|.

𝑁 𝑎 ≝ 𝑏 ∈ 𝑉 𝑎, 𝑏 ∈ 𝐸 denotes the neighbors of 𝐴

• Input: undirected, bipartite graph 𝐺 = (𝑉, 𝐸)
• Matching: 𝑀 ⊆ 𝐸; 𝑒& ∩ 𝑒G = ∅ for all 𝑒& , 𝑒G ∈ 𝑀 with 𝑒& ≠ 𝑒G
• Problem: compute matching 𝑀∗ maximizing |𝑀∗|
• Goal: matching 𝑀7 with 𝑀7 ≥ (1 − 𝜖)|𝑀∗|



Linear Algebraic Representation

Unsigned (edge-vertex) Incidence Matrix: 𝑩 ∈ ℝ!×# with

𝑩 $,& ,' = %1 𝑐 ∈ {𝑎, 𝑏}
0 otherwise

for all 𝑎, 𝑏 ∈ 𝐸 and 𝑐 ∈ 𝑉

Lemma: 𝑓 ∈ ℝ()! is a fractional matching if and only if 𝑩 *𝑓 ≤ 1.
Proof: 𝑩 *𝑓 $ = ∑ &,' ∈! 𝑓{&,'} 𝑩 $,& ,' = ∑&∈.($) 𝑓{$,&}

Upshot: it suffices to solve
max

1∈ℝ?@A | 𝑩 B156
1*𝑓 or equivalently min

1∈ℝ?@A | 𝑩 B156
−1

*
𝑓



Penalty and Rounding

Overflow (excess): overOlow 𝑓 ≝ max{0, 𝑩 8𝑓 − 1} entrywise
Note: 𝑓 ∈ ℝC is a fractional matching if and only if overOlow 𝑓 = 0

Lemma: given 𝑓 ∈ ℝDEC let V𝑓 ∈ ℝC be defined for all 𝑎, 𝑏 ∈ 𝐸 with V𝑓{G,H} = 0 if 𝑓G,H = 0
and otherwise

V𝑓{G,H} = 𝑓G,H 1 −max
overOlow(𝑓) G

𝑩 8𝑓 G
,
overOlow(𝑓) H

𝑩 8𝑓 H
Then 0 ≤ V𝑓 ≤ 𝑓, V𝑓 is a fractional matching, and 𝑓 − V𝑓 9 ≤ overOlow 𝑓 9.

Proof: 𝑓{G,H} ⋅
JKLMN>JO(Q) %

𝑩 &Q %
is the relative contribution of 𝑓{G,H} to overflow

Upshot: − 𝑀∗ = min
Q∈ℝ'()

−18𝑓 +∑G∈T overOlow 𝑓 G and given any 𝜖-additive minimizer 
can compute matching of size ≥ 𝑀∗ − 𝜖 in time F𝑂 𝐸 .

In contrast to previous problem where we just solved 
approximately and bounded how infeasible, here we 

add a penalty term that allows us to reason more 
directly about obtaining a feasible solution.



The Result
Question #1: how to encode overhlow(𝑓)?
• Tool: max 0, 𝑎 = +

&
𝑎 + 𝑎

• Suffices to compute 𝜖|𝑀∗| additive approximation to
min
9∈ℝHIJ

−1-𝑓 +
1
21

- 𝑩 -𝑓 +
1
2 𝑉 +

1
2 𝑩 -𝑓 − 1

+

Question #2: how to put 𝑓 in simplex?
• Suppose 𝜈 ≥ |𝑀∗|, then suffices to work with 𝑥 = +

; 𝑓, 1 −
+
; 𝑓 + ∈ Δ < 5+

• Let 𝑏 = (− ;
&1 < , 0), and let 𝑨 = ;

& 𝑩
- with 0 column added

• Suffices to compute 𝜖|𝑀∗| additive approximation to min
/∈= J KL

𝑏-𝑥 + 𝑨𝑥 − 1 +

• Suffices to compute 𝜖|𝑀∗| additive approximation to max/∈= J KL −𝑏-𝑥 − 𝑨𝑥 − 1 +
• Note that 𝑨 "#,% = 𝜈 so can solve in >𝑂 < ;

> 𝑴∗
. 

• Get result by picking 𝜈 as every power of 2 between 0 and 2|𝑉|!

• over{low 𝑓 ≝ max{0, 𝑩 ,𝑓 − 1}
• 𝜖|𝑀∗| additive approximation to min

M∈ℝ$%
&
−1,𝑓 + ∑N∈O over{low 𝑓 N suffices

What is 𝑩 1? =2 ⋅ 1 !

Can also computing 2 
approximation by greedy.



Improvable?

Theorem: Given any algorithm which compute an 𝜖-approximate MCM for any 
input 𝜖 ∈ (0,1) in time 3𝑂( 𝐸 𝜖KX) for some fixed constant 𝛿, there is an algorithm 
that computes exact MCM in time 3𝑂( 𝐸 ⋅ 𝑉

*
+,*).

Proof
• Given any 𝜖-approximate MCM, there are at most 𝜖 𝑀∗ ≤ 𝜖|𝑉| more edges that 

could be matched.
• Augmenting paths finds at least one more matched edge in time 𝑂( 𝐸 )
• Total time: 3𝑂( 𝐸 𝜖KX + 𝜖 𝐸 𝑉 ) solving for 𝛿 yields result

Implication: k𝑂( 𝐸 𝜖:&) time 1 − 𝜖 -approximate MCM yields k𝑂( 𝐸 𝑉 ) time exact MCM
Barrier to improving: only improvements known to date use interior point methods   



Problem #4: Flow Problems

s

t

• Graph 𝐺 = (𝑉, 𝐸)
• Vertices 𝑠, 𝑡 ∈ 𝑉

Goal
Send 1 unit of flow, 𝑓 ∈ ℝ<, 

between 𝑠 and 𝑡 in the 
“best” way possible. 

What should we minimize?

Length

x
@∈<

𝑓@

Congestion
max
@∈A

|𝑓@|

Shortest Path

k𝑂( 𝐸 )

Maximum Flow

k𝑂(min{ 𝐸 D/G , 𝐸 ⋅ 𝑉 G/D)
[K73,ET75,GR98]

Energy

x
@∈<

𝑓@ &

Electric Flow
Laplacian System Solving

k𝑂( 𝐸 )
[ST04]

𝑓 &

𝑓 "

𝑓 G

Natural family of problems in 
combinatorial optimization.

Introduce more broadly 

No improvement until 2013, 
will discuss Friday.

If instead of sending 1 unit of flow from 
𝑠 to 𝑡, route arbitrary demand problem 

is called transshipment and is non-trivial

See Rasmus Kyng’s talks

Focus for today



Graph 𝐺 = (𝑉, 𝐸)
• 𝑛 vertices 𝑉
• 𝑚 edges 𝐸

Capacities
• 𝑢 ∈ 1,… , 𝑈 �

Terminals
• Source 𝑠 ∈ 𝑉
• Sink 𝑡 ∈ 𝑉

The Maximum Flow Problem

Goal
compute maximum 𝑠 → 𝑡 flow

s

t
8

1

3

3

4
4

1
2

1
1

3

1

3

3

1

2

1

𝒔 → 𝒕 Flow
flow in = flow out 
for all 𝑣 ∉ {𝑠, 𝑡}

Capacity Constraints
• Directed: 𝑓! ∈ 0, 𝑢!
• Undirected: 𝑓! ∈ [−𝑢! , 𝑢!]

Value of Flow
total flow leaving 𝑠 or 

entering 𝑡

Flow
𝑓 ∈ ℝ< where 𝑓@ =

amount of flow on edge 𝑒

Introduce maximum flow problem more formally



Authors Time for 𝝐-Approximate Undirected Flow Capacitated (𝐔 ≠ 𝟏)

⋮ ⋮ ⋮
[Kar98] k𝑂(𝑚 𝑛𝜖:&) Yes

[CKMST11] k𝑂(𝑚𝑛&/D𝜖:&&/D) Yes

[LRS13] k𝑂(𝑚𝑛&/D𝜖:G/D No

[S13,KLOS14] 𝑂(𝑚&?@ & 𝜖:G) Yes

[P16] k𝑂(𝑚𝜖:G) Yes

[S17] k𝑂(𝑚𝜖:&) Yes

[ST18] k𝑂(𝑚 + 𝑚𝑛𝜖:&) Yes

Undirected Maxflow
s

t

{ℓ&-ish

{ℓ"

{ℓG

Step 1 (Combinatorial Advance)
Build coarse ℓ"-approximator

(e.g. oblivious routing or 
congestion approximator)
to change representation.

(𝟏 − 𝝐)-Approximate Flow
feasible 𝑠 → 𝑡 flow of value ≥ 1 − 𝜖 𝑂𝑃𝑇

How?
Work more directly in 
ℓ! . Reduction to and 

methods for box-
simplex-like games.

Step 2 (Optimization Advance)
Apply iterative method to boost 
accuracy (e.g. gradient descent, 
area-convex dual extrapolation, 
mirror prox, coordinate descent)

Note (Further Implications)
Parallel optimal transport [JST19], 

streaming matching [JST20], 
optimization methods [CST21] 

Note: there are additional improvements with log(𝜖:&). 
Such results give exact directed flow algorithms.



Authors Time for 𝝐-Approximate Undirected Flow Capacitated (𝐔 ≠ 𝟏)

⋮ ⋮ ⋮
[Kar98] k𝑂(𝑚 𝑛𝜖:&) Yes

[CKMST11] k𝑂(𝑚𝑛&/D𝜖:&&/D) Yes

[LRS13] k𝑂(𝑚𝑛&/D𝜖:G/D No

[S13,KLOS14] 𝑂(𝑚&?@ & 𝜖:G) Yes

[P16] k𝑂(𝑚𝜖:G) Yes

[S17] k𝑂(𝑚𝜖:&) Yes

[ST18] k𝑂(𝑚 + 𝑚𝑛𝜖:&) Yes

Talk Plan
s

t

{ℓ&-ish

{ℓ"

{ℓG

(𝟏 − 𝝐)-Approximate Flow
feasible 𝑠 → 𝑡 flow of value ≥ 1 − 𝜖 𝑂𝑃𝑇

• Talk 1 & 2: Focus on k𝑂(𝑚𝜖:&) runtime.
• Talk 3: Discuss state-of-the art small 𝜖 results



Thank you
Questions?

Contact Info:
• email: sidford@stanford.edu
• website: www.aaronsidford.com

Aaron Sidford


