Box-Simplex Games
 Algorithms, Applications, and Algorithmic Graph Theory

Part I

Stanford University
Departments of Management Science
\& Engineering and Computer Science

Aaron Sidford

- email: sidford@stanford.edu
- website: www.aaronsidford.com

Lecture Plan

Today and Tomorrow

- Box-simplex games
- Their structure
- Applications
- Algorithms

Why?

- (Applications) Continuous and combinatorial.
- (Tools) New optimization methods
- (Reinforce) Modifications of common methods

Friday

- Interior point methods
- Introduction of state-of-the-art method

The Problem

Input

- n-dimensional box: $B_{\infty}^{n} \xlongequal{\text { def }}\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq 1\right\}$
- m-dimensional simplex: $\Delta^{m} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}_{\geq 0}^{m} \mid\|y\|_{1}=1\right\}$

Output:

- An approximate solution to

Key Motivating Questions

```
- Box: Bm}n\stackrel{n}{=}{x\in\mp@subsup{\mathbb{R}}{}{n}||x\mp@subsup{|}{\infty}{}\leq1
- Simplex: }\mp@subsup{\Delta}{}{m}\stackrel{\mathrm{ def }}{=}{y\in\mp@subsup{\mathbb{R}}{\geq0}{m}||y\mp@subsup{|}{1}{}=1
- }\mp@subsup{\operatorname{min}}{x\in\mp@subsup{B}{\infty}{n}}{}\mp@subsup{\operatorname{max}}{y\in\mp@subsup{\Delta}{}{m}}{m}f(x,y)\stackrel{\mathrm{ def }}{=}\mp@subsup{y}{}{\top}Ax+\mp@subsup{c}{}{\top}x-\mp@subsup{b}{}{\top}
```


Question \#1

How can we design efficient methods for solving box-simplex games?

Question \#2

How can we leverage box-simplex solvers to solve continuous and combinatorial optimization problems?

Talk Plan (Today and Tomorrow)

Part 1
Structure of box-simplex games

Part 2

Applications

Part 3

Algorithms

- Primal and dual problems
- Approximate solutions
- Discuss state-of-the-art runtimes

Friday
Interior Point
Methods

- Box-constrained ℓ_{∞}-regression
- Linear programming
- Maximum cardinality bipartite matching
- Undirected maximum flow
- ℓ_{∞}-Gradient Descent (constrained steepest descent)
- ℓ_{1}-Mirror Descent (multiplicative weights)
- Mirror prox and primal dual regularizers

Primal Problem

- Box: $B_{\infty}^{n} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq 1\right\}$
- Simplex: $\Delta^{m} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}_{\geq 0}^{m} \mid\|y\|_{1}=1\right\}$
- $\min _{x \in B_{\infty}^{n}} \max _{y \in \Delta^{m}} f(x, y) \stackrel{\text { def }}{=} y^{\top} A x+c^{\top} x-b^{\top} y$

Lemma: $\max _{x \in \Delta^{m}} d^{\top} x=\max _{i \in[m]} d_{i}$ for all $d \in \mathbb{R}^{m}$ and therefore

$$
f_{\max }(x) \stackrel{\text { def }}{=} \max _{y \in \Delta^{m}} f(x, y)=c^{\top} x+\max _{i \in[m]}[\boldsymbol{A} x-b]_{i}
$$

Proof:

- Let $i_{*} \in \operatorname{argmax}_{i \in[m]} d_{i}$. Note that $\overrightarrow{1}_{i_{*}} \in \Delta^{m}$.
$\cdot \Rightarrow \max _{x \in \Delta^{m}} d^{\top} x \geq d^{\top} \overrightarrow{1}_{i_{*}}=d_{i_{*}}=\max _{i \in[m]} d_{i}$
- $d_{i} \leq d_{i_{*}}$ and $x_{i} \geq 0$ for $x \in \Delta^{m}$ and $i \in[m]$
$\cdot \Rightarrow \max _{x \in \Delta^{m}} d^{\top} x=\max _{x \in \Delta^{m}} \sum_{i \in[m]} d_{i} x_{i} \leq \max _{x \in \Delta^{m}} \sum_{i \in[m]} d_{i_{*}} x_{i}=d_{i_{*}}=\max _{i \in[m]} d_{i}$

Dual Problem

- Box: $B_{\infty}^{n} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq 1\right\}$
- Simplex: $\Delta^{m} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}_{\geq 0}^{m} \mid\|y\|_{1}=1\right\}$
- $\max _{y \in \Delta^{m}} \min _{x \in B_{\infty}^{n}} f(x, y) \stackrel{\text { def }}{=} y^{\top} A x+c^{\top} x-b^{\top} y$

Lemma: $\min _{x \in B_{\infty}^{n}} d^{\top} x=-\|d\|_{1}$ for all $d \in \mathbb{R}^{n}$ and therefore

$$
f_{\min }(y) \stackrel{\text { def }}{=} \min _{x \in B_{\infty}^{n}} f(x, y)=-b^{\top} y-\left\|\boldsymbol{A}^{\top} y-b\right\|_{1}
$$

Proof:

- Let $\operatorname{sign}(d) \in \mathbb{R}^{n}$ with $\operatorname{sign}(d)_{i}$ as 1 if $d_{i}>0,-1$ if $d_{i}<0$, and 0 othewise

$$
\cdot \Rightarrow \min _{x \in B_{\infty}^{n}} d^{\top} x \leq d^{\top}(-\operatorname{sign}(d))=-\sum_{i \in[n]}\left|d_{i}\right|=-\|d\|_{1}
$$

- $\left|x_{i}\right| \leq 1$ for all $x \in B_{\infty}^{n}$ and $i \in[n]$
$\cdot \Rightarrow \min _{x \in B_{\infty}^{n}} d^{\top} x=\min _{x \in B_{\infty}^{n}}-\sum_{i \in[n]}\left|d_{i}\right|\left|x_{i}\right| \geq \min _{x \in B_{\infty}^{n}}-\sum_{i \in[n]}\left|d_{i}\right|=-\|d\|_{1}$

Primal Dual Relationship

- Box: $B_{\infty}^{n} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq 1\right\}$
- Simplex: $\Delta^{m} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}_{\geq 0}^{m} \mid\|y\|_{1}=1\right\}$
- $\min _{x \in B_{\infty}^{n}} \max _{y \in \Delta^{m}} f(x, y) \stackrel{\text { def }}{=} y^{\top} A x+c^{\top} x-b^{\top} y$

Primal Problem

- $\min _{x \in B_{\infty}^{n}} f_{\text {max }}(x)=\max _{y \in \Delta^{m}} f(x, y)$
- $f_{\text {max }}(x)=c^{\top} x+\max _{i \in[m]}[\boldsymbol{A} x-b]_{i}$

Dual Problem

- $\max _{y \in \Delta^{m}} f_{\text {min }}(y)=\min _{x \in B_{\infty}^{n}} f(x, y)$
- $f_{\text {min }}(y)=-b^{\top} y-\left\|A^{\top} y-b\right\|_{1}$

Comparison

- Trivially: $f_{\max }(x) \geq f_{\min }(y)$ (weak duality)
- Interestingly: $\min _{x \in B_{\infty}^{n}} f_{\max }(x)=\max _{y \in \Delta^{m}} f_{\min }(y)$ (strong duality)

We will prove algorithmically later

Approximate Solutions

Primal Problem

- $\min _{x \in B_{\infty}^{n}} f_{\max }(x)=\max _{y \in \Delta^{m}} f(x, y)$
- $f_{\text {max }}(x)=c^{\top} x+\max _{i \in[m]}[A x-b]_{i}$
- Box: $B_{\infty}^{n} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq 1\right\}$
- Simplex: $\Delta^{m} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}_{\geq 0}^{m} \mid\|y\|_{1}=1\right\}$
- $\min _{x \in B_{\infty}^{n}} \max _{y \in \Delta^{m}} f(x, y) \stackrel{\text { def }}{=} y^{\top} A x+c^{\top} x-b^{\top} y$

Dual Problem

- $\max _{y \in \Delta^{m}} f_{\text {min }}(y)=\min _{x \in B_{\infty}^{n}} f(x, y)$
- $f_{\text {min }}(y)=-b^{\top} y-\left\|\boldsymbol{A}^{\top} y-b\right\|_{1}$

Approximate Solutions

- Let $x_{*} \in \underset{x \in B_{\infty}^{n}}{\operatorname{argmin}} f_{\max }(x)$ and $y_{*} \in \underset{y \in \Delta^{m} y \in \Delta^{m}}{\operatorname{argmax}} f_{\min }(y)$
- ϵ-approximate primal solution: $x_{\epsilon} \in B_{\infty}^{n}$ with $f_{\max }\left(x_{\epsilon}\right) \leq f_{\max }\left(x_{*}\right)+\epsilon$
- ϵ-approximate dual solution: $y_{\epsilon} \in \Delta^{m}$ with $f_{\min }\left(y_{\epsilon}\right) \geq f_{\min }\left(y_{*}\right)-\epsilon$
- ϵ-approximate (primal-dual) saddle point (or equilibrium): $\left(x_{\epsilon}, y_{\epsilon}\right) \in B_{\infty}^{n} \times \Delta^{m}$

$$
f_{\max }\left(x_{\epsilon}\right)-f_{\min }\left(y_{\epsilon}\right) \leq \epsilon
$$

Equilibrium

Primal Problem

- $\min _{x \in B_{\infty}^{n}} f_{\max }(x)=\max _{y \in \Delta^{m}} f(x, y)$
- $f_{\text {max }}(x)=c^{\top} x+\max _{i \in[m]}[A x-b]_{i}$
- Box: $B_{\infty}^{n} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}^{n} \mid\|x\|_{\infty} \leq 1\right\}$
- Simplex: $\Delta^{m} \stackrel{\text { def }}{=}\left\{y \in \mathbb{R}_{\geq 0}^{m} \mid\|y\|_{1}=1\right\}$
- $\min _{x \in B_{\infty}^{n}} \max _{y \in \Delta^{m}} f(x, y) \stackrel{\text { def }}{=} y^{\top} A x+c^{\top} x-b^{\top} y$

Dual Problem

- $\max _{y \in \Delta^{m}} f_{\text {min }}(y)=\min _{x \in B_{\infty}^{n}} f(x, y)$
- $f_{\text {min }}(y)=-b^{\top} y-\left\|\boldsymbol{A}^{\top} y-b\right\|_{1}$
$\underline{\epsilon \text {-approximate (primal-dual) saddle point (or equilibrium) }}$
- Definition: $\left(x_{\epsilon}, y_{\epsilon}\right) \in B_{\infty}^{n} \times \Delta^{m}$ and $f_{\max }\left(x_{\epsilon}\right)-f_{\min }\left(y_{\epsilon}\right) \leq \epsilon$
- Duality gap: $\operatorname{gap}\left(x_{\epsilon}, y_{\epsilon}\right)=f_{\max }\left(x_{\epsilon}\right)-f_{\min }\left(y_{\epsilon}\right)$
- Total $f\left(x_{\epsilon}, y_{\epsilon}\right)$ change by best responses: $=f_{\max }\left(x_{\epsilon}\right)-f\left(x_{\epsilon}, y_{\epsilon}\right)+\left[f\left(x_{\epsilon}, y_{\epsilon}\right)-f_{\min }\left(y_{\epsilon}\right)\right]$
- Sum of x_{ϵ} and y_{ϵ} suboptimality: $=f_{\max }\left(x_{\epsilon}\right)-f\left(x_{\epsilon}, y_{\epsilon}\right)+\left[f\left(x_{\epsilon}, y_{\epsilon}\right)-f_{\min }\left(y_{\epsilon}\right)\right]$

State-of-the-art

Theorem: there is a method which can compute an ϵ-approximate saddle point in time $\tilde{O}\left(\mathrm{nnz}(\boldsymbol{A})\|\boldsymbol{A}\|_{\mathrm{op}, \infty} / \epsilon\right)$

Nearly linear time

algorithm

Notation

- $\mathrm{nnz}(\boldsymbol{A}) \stackrel{\text { def }}{=} n+m+$ number of nonzero entries in \boldsymbol{A}
- $\|\boldsymbol{A}\|_{\mathrm{op}, \infty} \stackrel{\text { def }}{=} \sup _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\max \ell_{1}$ norm of row of \boldsymbol{A}
- $\tilde{O}(\cdot)$ hides logarithmic factors in $\mathrm{nnz}(\boldsymbol{A}),\|\boldsymbol{A}\|_{\mathrm{op}, \infty} / \epsilon$

First-order method

Theorem: there is a method which solves box-simplex games to accuracy ϵ in time $\tilde{O}\left(\operatorname{nnz}(\boldsymbol{A})\|A\|_{\mathrm{op}, \infty} / \epsilon\right)$.

- First order method: only access objective by evaluating the function and computing the gradient, $\nabla f(x, y)=\left(\boldsymbol{A}^{\top} y+c, \boldsymbol{A} x-b\right)$
- Note: only need b, c, and matrix vector multiplies.
- Can compute in parallel $\tilde{O}(1)$ depth and $O(\operatorname{nnz}(\boldsymbol{A}))$ work.
- The method for this theorem?
- First order method + matrix vector multiplies with $|\boldsymbol{A}|$
- Parallel with $\tilde{O}(1)$ depth

History and More State-of-the-art

First Order Methods

Interior Point Methods

- $\tilde{O}\left(\mathrm{nnz}(\boldsymbol{A})\|\boldsymbol{A}\|_{\mathrm{op}, \infty} / \epsilon\right)$
- First in [S17]
- Later variants (influencing this presentation [JST19,CST21,AJJST21]
- Prior state of the art
- $\tilde{O}\left(\operatorname{nnz}(A)\|A\|_{\text {op }, \infty}^{2} / \epsilon^{2}\right)$ - folklore / [S13, KLOS14] (influencing this presentation)
- [CLS19,B20] $\tilde{O}\left(\max \{m, n\}^{\omega}\right)$ where $\omega<2.373$ is fast matrix multiplication constant
- [BLLSSSW21] $\tilde{O}\left(m n+\min \{m, n\}^{2.5}\right)$
- $\left[\right.$ LS14,LS15] $\tilde{O}\left(\mathrm{nnz}(\boldsymbol{A}) \sqrt{\min \{m, n\}}+\min \{m, n\}^{2.5}\right)$
- $\tilde{O}\left(\operatorname{nnz}(\boldsymbol{A}) \sqrt{n}\|\boldsymbol{A}\|_{\mathrm{op}, \infty} / \epsilon\right)$ - AGD and smoothing.
- [ST18] alternative approach and improvements in sparse case

Talk Plan (Today and Tomorrow)

Part 1
Structure of box-simplex games

Part 2

Applications

Part 3

Algorithms

- Primal and dual problems
- Approximate solutions
- Discuss state-of-the-art runtimes

Friday

Interior Point
Methods

- Box-constrained ℓ_{∞}-regression
- Linear programming
- Maximum cardinality bipartite matching
- Undirected maximum flow
- ℓ_{∞}-Gradient Descent (constrained steepest descent)
- ℓ_{1}-Mirror Descent (multiplicative weights)
- Mirror prox and primal dual regularizers

Problem \#1: Box-constrained ℓ_{∞}-Regression

Box-constrained ℓ_{∞} Regressioon

- Input: matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^{m}$
- Problem: $\mathrm{OPT}_{\infty}=\min _{x \in B_{\infty}^{n}}\|\boldsymbol{A} x-b\|_{\infty}$
- Goal: find ϵ-additive approximation, i.e. $x_{\epsilon} \in B_{\infty}^{n}$ with $\left\|\boldsymbol{A} x_{\epsilon}-b\right\|_{\infty} \leq \mathrm{OPT}_{\infty}+\epsilon$

Claim: can compute in $\tilde{O}\left(\operatorname{nnz}(\boldsymbol{A})\|A\|_{o p, \infty} \epsilon^{-1}\right)$
Proof:

- $\|\boldsymbol{A} x-b\|_{\infty}=\max _{i \in[m]}\left[\max \left\{[\boldsymbol{A} x-b]_{i},-[\boldsymbol{A} x-b]_{i}\right\}\right]=\max _{y \in \Delta^{2 m}} y^{\top}\binom{\boldsymbol{A} x-b}{-(\boldsymbol{A} x-b)}$
- New matrix has same $\|\cdot\|_{o p, \infty}$ and just double nnz

Problem \#2: Linear Programming

Approximate Linear Programming

- Input: $\boldsymbol{A} \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$, and $\epsilon, \delta, D \geq 0$
- Problem: $\mathrm{OPT}_{\mathrm{lp}}=\min _{x \in \mathbb{R}^{n} \mid A x \geq b} c^{\top} x$
- Promise: $\exists x_{*}^{\mathrm{lp}} \in \underset{x \in \mathbb{R}^{n} \mid A x \geq b}{\operatorname{argmin}} c^{\top} x$ with $\left\|x_{*}^{\mathrm{lp}}\right\|_{\infty} \leq D$
- Goal: find $x_{\epsilon, \delta}$ with $c^{\top} x_{\epsilon, \delta} \leq \mathrm{OPT}_{\mathrm{lp}}$ and $\boldsymbol{A} x_{\epsilon, \delta} \geq b-\delta \overrightarrow{1}$

Notes

- One of many ways to formulate the problem.
- Key difficulty: how handle that constraint $\boldsymbol{A} x \geq b$?
- Recurring idea: penalty functions in the objective

Linear Programming

Approach

- $p(x) \stackrel{\text { def }}{=} M \cdot \max \left\{0, \max _{i \in[m]}[b-\boldsymbol{A} x]_{i}\right\}$
- $\mathrm{OPT}_{\mathrm{p}}=\min _{x \in \mathbb{R}^{n}\| \| x \|_{\infty} \leq R} c^{\top} x+p(x)$

Claim: For $M=\left(\epsilon+2\|c\|_{1} R\right) \delta^{-1}$ any ϵ approximate minimizer to OPT_{p} problem is (ϵ, δ)-approximate linear program solution.

Theorem: Can compute (ϵ, δ)-approximate linear program solution in

$$
\tilde{O}\left(\mathrm{nnz}(\boldsymbol{A}) \cdot \frac{D\|\boldsymbol{A}\|_{o p, \infty}}{\delta} \max \left\{1, \frac{D\|c\|_{1}}{\epsilon}\right\}\right)
$$

```
Input: A \in \mathbb{R}
Problem: OPT Tp
Promise: }\exists\mp@subsup{x}{*}{\textrm{lp}}\in\underset{x\in\mp@subsup{\mathbb{R}}{}{n}|Ax\geqb}{\operatorname{argmin}}\mp@subsup{c}{}{\top}x\mathrm{ with }|\mp@subsup{x}{*}{\textrm{lp}}\mp@subsup{|}{\infty}{}\leq
Goal: find }\mp@subsup{x}{\epsilon,\delta}{}\mathrm{ with c}\mp@subsup{c}{}{\top}x\leq\mp@subsup{\textrm{OPT}}{\textrm{lp}}{}\mathrm{ and }Ax\geqb-\delta\vec{1
```


Proof of Theorem from Claim

Can write penalized problem as box-simplex

- $\bar{x}=D^{-1} x$ and $\bar{c}=D c$
- $\overline{\boldsymbol{A}}=\binom{-D M \boldsymbol{A}}{\overrightarrow{0}_{n}^{\top}}$ and $b=\binom{-M b}{\overrightarrow{0}_{n}^{\top}}$

Penalized problem is the same as

$$
\min _{\bar{x} \in B_{\infty}^{n}} \bar{c}^{\top} \bar{x}+\max _{i \in[m+1]}[\bar{A} \bar{x}-b]_{i}
$$

Note that $\|\overline{\boldsymbol{A}}\|_{o p, \infty}=O\left(D M\|A\|_{\rho p, \infty}\right)$ and
$M / \epsilon=O\left(\delta^{-1} \max _{\max }, D\|c\|_{1} \epsilon^{-1\}}\right)$ $M / \epsilon=O\left(\delta^{-1} \max \left\{1, D\|c\|_{1} \epsilon^{-1}\right\}\right)^{p, \infty}$

Linear Programming

```
Input: A \in 政
Problem: OPT Tp
Promise: }\exists\mp@subsup{x}{*}{\textrm{lp}}\in\underset{x\in\mp@subsup{\mathbb{R}}{}{n}|Ax\geqb}{\operatorname{argmin}}\mp@subsup{c}{}{\top}x\mathrm{ with }|\mp@subsup{x}{*}{\textrm{lp}}\mp@subsup{|}{\infty}{}\leq
Goal: find }\mp@subsup{x}{\epsilon,\delta}{}\mathrm{ with c}\mp@subsup{c}{}{\top}x\leq\mp@subsup{\textrm{OPT}}{\textrm{lp}}{}\mathrm{ and }Ax\geqb-\delta\vec{1
```


Approach

- $p(x) \stackrel{\text { def }}{=} M \cdot \max \left\{0, \max _{i \in[m]}[b-\boldsymbol{A} x]_{i}\right\}$
- $\mathrm{OPT}_{\mathrm{p}}=\min _{x \in \mathbb{R}^{n}\|x\|_{\infty} \leq R} c^{\top} x+p(x)$

Claim: For $M=\left(\epsilon+2\|c\|_{1} R\right) \delta^{-1}$ any ϵ approximate minimizer to OPT_{p} problem is (ϵ, δ)-approximate linear program solution.

Theorem: Can compute (ϵ, δ)-approximate linear program solution in

$$
\tilde{O}\left(\mathrm{nnz}(\boldsymbol{A}) \cdot \frac{D\|\boldsymbol{A}\|_{o p, \infty}}{\delta} \max \left\{1, \frac{D\|c\|_{1}}{\epsilon}\right\}\right)
$$

Proof of Claim

- Let x_{ϵ} be ϵ-approximate minimizer
- Since $x_{*}^{\text {lp }}$ is feasible for penalized problem, $\mathrm{OPT}_{\mathrm{p}} \leq \mathrm{OPT}_{\mathrm{lp}}$
- $c^{\top} x_{\epsilon}+p\left(x_{\epsilon}\right) \leq \mathrm{OPT}_{\mathrm{p}}+\epsilon \leq \mathrm{OPT}_{\mathrm{lp}}+\epsilon$
- $p\left(x_{\epsilon}\right) \leq \epsilon+c^{\top}\left(x_{*}^{\mathrm{lp}}-x_{\epsilon}\right)$
- $c^{\top}\left(x_{*}^{\mathrm{lp}}-x_{\epsilon}\right) \leq\|c\|_{1}\left\|x_{*}^{\mathrm{lp}}-x_{\epsilon}\right\|_{\infty}$
- $\left\|x_{*}^{\mathrm{lp}}-x_{\epsilon}\right\|_{\infty} \leq\left\|x_{*}^{\mathrm{lp}}\right\|_{\infty}+\left\|x_{\epsilon}\right\|_{\infty}$

Problem \#3: Bipartite Matching

Maximum Cardinality (Bipartite) Matching (MCM)

- Input: undirected, bipartite graph $G=(V, E)$
- Matching: $M \subseteq E$ such that $e_{1} \cap e_{2}=\emptyset$ for all $e_{1}, e_{2} \in M$ with $e_{1} \neq e_{2}$
- Problem: compute matching M_{*} of maximum cardinality $\left|M_{*}\right|$
- Goal: find $(1-\epsilon)$-approximate MCM, i.e. matching M_{ϵ} with $\left|M_{\epsilon}\right| \geq(1-\epsilon)\left|M_{*}\right|$

$G=(V, E)$

Matching M

Year	Authors	Runtime $\widetilde{\boldsymbol{O}}(\cdot)$
$1969-1973$	Dinic, Karzanov, Hopcroft, Karp	$\|E\| \sqrt{\|V\|}$
1981	Ibarra, Moran	$\|V\|^{\omega}$
2013	Mądry	$\|E\|^{10 / 7}$

Note: procedure will use very little graph structure.

- Result: can use box-simplex solver to compute $(1-\epsilon)$-approximate MCM in $\tilde{O}\left(|E| \epsilon^{-1}\right)$ time and $\tilde{O}\left(\epsilon^{-1}\right)$ depth
- Time matched by Dinic, Karzanov, Hopcroft, Karp and Allen-Zhu, Orecchia 2015
- Unaware of alternative method that gets this parallelism and this time.
- Alternative method either have large $\epsilon,|E|$, or $|V|$ dependence
- Also, implementable semi-streaming (Assadi, Jambulapati, Jin, S, Tian 2021)
$w<2.373$ is current fast matrix multiplication (FMM) constant [W13]

Approach

$N(a) \stackrel{\text { def }}{=}\{b \in V \mid\{a, b\} \in E\}$ denotes the neighbors of A

- Input: undirected, bipartite graph $G=(V, E)$
- Matching: $M \subseteq E ; e_{1} \cap e_{2}=\emptyset$ for all $e_{1}, e_{2} \in M$ with $e_{1} \neq e_{2}$
- Problem: compute matching M_{*} maximizing $\left|M_{*}\right|$
- Goal: matching M_{ϵ} with $\left|M_{\epsilon}\right| \geq(1-\epsilon)\left|M_{*}\right|$

Fractional Matching: in the MCM problem $f \in \mathbb{R}_{\geq 0}^{E}$ is a fractional matching if for all $a \in V$ it is the case that $\sum_{b \in N(a)} f_{\{a, b\}} \leq 1$.

Theorem [GPST91]: There is an algorithm which given any fractional matching $f \in \mathbb{R}_{\geq 0}^{E}$ can compute an integral matching of cardinality at least $\|f\|_{1}$ in time $\tilde{O}(|E|)$ and depth $\tilde{O}(1)$.

Corollary: The minimum ℓ_{1}-norm of a fractional matching is $\left|M_{*}\right|$ and it suffices to compute a fractional matching of ℓ_{1}-norm $\geq(1-\epsilon)\left|M_{*}\right|$.

Linear Algebraic Representation

Unsigned (edge-vertex) Incidence Matrix: $|\boldsymbol{B}| \in \mathbb{R}^{E \times V}$ with

$$
|B|_{\{a, b\}, c}=\left\{\begin{array}{ll}
1 & c \in\{a, b\} \\
0 & \text { otherwise }
\end{array} \text { for all }\{a, b\} \in E \text { and } c \in V\right.
$$

Lemma: $f \in \mathbb{R}_{\geq 0}^{E}$ is a fractional matching if and only if $|\boldsymbol{B}|^{\top} f \leq 1$.
Proof: $\left[|\boldsymbol{B}|^{\top} f\right]_{a}=\sum_{\{b, c\} \in E} f_{\{b, c\}}|\boldsymbol{B}|_{\{a, b\}, c}=\sum_{b \in N(a)} f_{\{a, b\}}$
Upshot: it suffices to solve

$$
\max _{f \in \mathbb{R}_{0}^{E_{0} \|\left. B\right|^{\top} f \leq \overrightarrow{1}}} \overrightarrow{1}^{\top} f \text { or equivalently } \min _{f \in \mathbb{R}_{\geq 0}^{E} \|\left. B\right|^{\top} f \leq \overrightarrow{1}}(-\overrightarrow{1})^{\top} f
$$

Penalty and Rounding

Overflow (excess): overflow $(f) \stackrel{\text { def }}{=} \max \left\{\overrightarrow{0},|\boldsymbol{B}|^{\top} f-\overrightarrow{1}\right\}$ entrywise Note: $f \in \mathbb{R}^{E}$ is a fractional matching if and only if overflow $(f)=\overrightarrow{0}$

Lemma: given $f \in \mathbb{R}_{\geq 0}^{E}$ let $\tilde{f} \in \mathbb{R}^{E}$ be defined for all $\{a, b\} \in E$ with $\tilde{f}_{\{a, b\}}=0$ if $f_{\{a, b\}}=0$ and otherwise

$$
\tilde{f}_{\{a, b\}}=f_{\{a, b\}}\left(1-\max \left\{\frac{[\operatorname{overflow}(f)]_{a}}{\left[|\boldsymbol{B}|^{\top} f\right]_{a}}, \frac{[\operatorname{overflow}(f)]_{b}}{\left[|\boldsymbol{B}|^{\top} f\right]_{b}}\right\}\right)
$$

Then $0 \leq \tilde{f} \leq f, \tilde{f}$ is a fractional matching, and $\|f-\tilde{f}\|_{1} \leq\|\operatorname{overflow}(f)\|_{1}$. Proof: $f_{\{a, b\}} \cdot \frac{\text { [overflow }(f)] a}{\left[|B|^{\top} f\right]_{a}}$ is the relative contribution of $f_{\{a, b\}}$ to overflow

Upshot: $-\left|M_{*}\right|=\min _{f \in \mathbb{R}^{E_{5}}}-\overrightarrow{1}^{\top} f+\sum_{a \in V}[\operatorname{overflow}(f)]_{a}$ and given any ϵ-additive minimizer can compute matching ${ }^{f \in \mathbb{R}=0}$ of size $\geq\left|M_{*}\right|-\epsilon$ in time $\widetilde{O}(|E|)$.

The Result

- overflow $(f) \stackrel{\text { def }}{=} \max \left\{\overrightarrow{0},|\boldsymbol{B}|^{\top} f-\overrightarrow{1}\right\}$
- $\epsilon\left|M_{*}\right|$ additive approximation to $\min _{f \in \mathbb{R}_{\geq 0}^{E}}-\overrightarrow{1}^{\top} f+\sum_{a \in V}[\operatorname{overflow}(f)]_{a}$ suffices

Question \#1: how to encode overflow (f) ?

- Tool: $\max \{0, a\}=\frac{1}{2}[a+|a|] \quad$ What is $|B| \overrightarrow{1}$? $=2 \cdot \overrightarrow{1}$!
- Suffices to compute $\epsilon\left|M_{*}\right|$ additive approximation to

$$
\min _{f \in \mathbb{R}_{\geq 0}^{E}}-\overrightarrow{1}^{\top} f+\frac{1}{2} \overrightarrow{1}^{\top}|\boldsymbol{B}|^{\top} f+\frac{1}{2}|V|+\left\|\frac{1}{2}|\boldsymbol{B}|^{\top} f-\overrightarrow{1}\right\|_{1}
$$

Question \#2: how to put f in simplex?

- Suppose $v \geq\left|M_{*}\right|$, then suffices to work with $x=\left(\frac{1}{v} f, 1-\frac{1}{v}\|f\|_{1}\right) \in \Delta^{|E|+1}$
- Let $b=\left(-\frac{v}{2} \overrightarrow{1}_{|E|}, 0\right)$, and let $\boldsymbol{A}=\frac{v}{2}|\boldsymbol{B}|^{\top}$ with 0 column added
- Suffices to compute $\epsilon\left|M_{*}\right|$ additive approximation to $\min _{x \in \Delta^{|E|+1}} b^{\top} x+\|\boldsymbol{A} x-\overrightarrow{1}\|_{1}$
- Suffices to compute $\epsilon\left|M_{*}\right|$ additive approximation to $\max _{x \in \Delta^{|E|+1}}-b^{\top} x-\|\boldsymbol{A} x-\overrightarrow{1}\|_{1}$
- Note that $\|A\|_{\text {op, } \infty}=v$ so can solve in $\tilde{O}\left(\frac{|E| v}{\epsilon\left|\boldsymbol{M}_{*}\right|}\right)$.
- Get result by picking v as every power of 2 between 0 and $2|V|$!

Improvable?

Theorem: Given any algorithm which compute an ϵ-approximate MCM for any input $\epsilon \in(0,1)$ in time $\tilde{O}\left(|E| \epsilon^{-\delta}\right)$ for some fixed constant δ, there is an algorithm that computes exact MCM in time $\tilde{O}\left(|E| \cdot|V| \frac{\delta}{1+\delta}\right)$.

Proof

- Given any ϵ-approximate MCM, there are at most $\epsilon\left|M_{*}\right| \leq \epsilon|V|$ more edges that could be matched.
- Augmenting paths finds at least one more matched edge in time $O(|E|)$
- Total time: $\tilde{O}\left(|E| \epsilon^{-\delta}+\epsilon|E||V|\right)$ solving for δ yields result

Barrier to improving: only improvements known to date use interior point methods

Natural family of problems in

Problem \#4: Flow Problems

- Graph $G=(V, E)$
- Vertices $s, t \in V$

Goal
Send 1 unit of flow, $f \in \mathbb{R}^{E}$, between s and t in the "best" way possible.

If instead of sending 1 unit of flow from
s to t, route arbitrary demand problem is called transshipment and is non-trivial

Shortest Path
$\tilde{O}(|E|)$

Electric Flow
Laplacian System Solving
$\tilde{O}(|E|)$
[STO4]

Maximum Flow
$\tilde{O}\left(\min \left\{|E|^{3 / 2},|E| \cdot|V|^{2 / 3}\right)\right.$ [K73,ET75,GR98]

No improvement until 2013,
$\frac{\text { Shortest Path }}{\tilde{O}(|E|)}$

Laplacian System Solving
$\tilde{O}(|E|)$
$[S T 04]$

What should we minimize?

See Rasmus Kyng's talks

Congestion

$\max \left|f_{e}\right|$
$\|f\|_{\infty}$

The Maximum Flow Problem

Graph $G=(V, E)$

- n vertices V
- m edges E

Capacities

- $u \in\{1, \ldots, U\}^{E}$

Terminals

- Source $s \in V$
- $\operatorname{Sink} t \in V$

Value of Flow
total flow leaving s or entering t
$s \rightarrow \boldsymbol{t}$ Flow flow in = flow out for all $v \notin\{s, t\}$

Goal
compute maximum $s \rightarrow t$ flow

Flow
$f \in \mathbb{R}^{E}$ where $f_{e}=$ amount of flow on edge e

	Authors	Time for ϵ-Approximate Undirected Flow	Capacitated ($\mathrm{U} \neq 1$)
ℓ_{1}-ish	:	:	!
	[Kar98]	$\tilde{O}\left(m \sqrt{n} \epsilon^{-1}\right)$	Yes
ℓ_{2}	[CKMST11]	$\tilde{O}\left(m n^{1 / 3} \epsilon^{-11 / 3}\right)$	Yes
	[LRS13]	$\tilde{O}\left(m n^{1 / 3} \epsilon^{-2 / 3}\right.$	No
	[S13,KLOS14]	$O\left(m^{1+o(1)} \epsilon^{-2}\right)$	Yes
ℓ_{∞}	[P16]	$\tilde{O}\left(m \epsilon^{-2}\right)$	Yes
	[S17]	$\tilde{O}\left(m \epsilon^{-1}\right)$	Yes
	[ST18]	$\tilde{O}\left(m+\sqrt{m n} \epsilon^{-1}\right)$	Yes

Work more directly in
ℓ_{∞}. Reduction to and methods for box-simplex-like games.

Step 1 (Combinatorial Advance)

 Build coarse ℓ_{∞}-approximator (e.g. oblivious routing or congestion approximator) to change representation.Step 2 (Optimization Advance) Apply iterative method to boost accuracy (e.g. gradient descent, area-convex dual extrapolation, mirror prox, coordinate descent)

Note (Further Implications)
Parallel optimal transport [JST19], streaming matching [JST20], optimization methods [CST21]

Talk Plan

	Authors	Time for ϵ-Approximate Undirected Flow	Capacitated ($\mathrm{U} \neq 1$)
ℓ_{1}-ish	:	\vdots	:
	[Kar98]	$\tilde{O}\left(m \sqrt{n} \epsilon^{-1}\right)$	Yes
ℓ_{2}	[CKMST11]	$\widetilde{O}\left(m n^{1 / 3} \epsilon^{-11 / 3}\right)$	Yes
	[LRS13]	$\tilde{O}\left(m n^{1 / 3} \epsilon^{-2 / 3}\right.$	No
	[S13,KLOS14]	$O\left(m^{1+o(1)} \epsilon^{-2}\right)$	Yes
ℓ_{∞}	[P16]	$\tilde{O}\left(m \epsilon^{-2}\right)$	Yes
	[S17]	$\tilde{O}\left(m \epsilon^{-1}\right)$	Yes
	[ST18]	$\tilde{O}\left(m+\sqrt{m n} \epsilon^{-1}\right)$	Yes

- Talk 1 \& 2: Focus on $\tilde{O}\left(m \epsilon^{-1}\right)$ runtime.
- Talk 3: Discuss state-of-the art small ϵ results

Thank you

Questions?

Aaron Sidford

Contact Info:

- email: sidford@stanford.edu
- website: www.aaronsidford.com

