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Convex Programs

Definition
Given a convex set K ⊆ Rn and a convex f : K → R, a convex
program is the following optimization problem

infx∈Kf(x).

◦ unconstrained when K = Rn

◦ smooth when f is differentiable with a continuous derivative
◦ nonsmooth otherwise.

2/20



Convex Programs

Definition
Given a convex set K ⊆ Rn and a convex f : K → R, a convex
program is the following optimization problem

infx∈Kf(x).

◦ unconstrained when K = Rn

◦ smooth when f is differentiable with a continuous derivative
◦ nonsmooth otherwise.

2/20



Convex Programs

Definition
Given a convex set K ⊆ Rn and a convex f : K → R, a convex
program is the following optimization problem

infx∈Kf(x).

◦ unconstrained when K = Rn

◦ smooth when f is differentiable with a continuous derivative

◦ nonsmooth otherwise.

2/20



Convex Programs

Definition
Given a convex set K ⊆ Rn and a convex f : K → R, a convex
program is the following optimization problem

infx∈Kf(x).

◦ unconstrained when K = Rn

◦ smooth when f is differentiable with a continuous derivative
◦ nonsmooth otherwise.

2/20



Consider
inf{1

x
: x ∈ (0,∞)}.

No x ∈ K attains the infimum.
If K ⊆ Rn is closed and bounded then the minimum is attained by
some x ∈ K.
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Some examples of convex programs

Linear Regression. minx∈Rn∥Ax− b∥2, where A ∈ Rm×n and b ∈ Rn.

In that case

f(x) = ∥Ax− b∥22 = xTATAx− 2bTAx+ bT b,

and ∇2f(x) = 2ATA ≳ 0.

Linear programming.

min cTx s.t. Ax ≤ b
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Computational models

Oracle Model. Often we allow oracle access to f,∇f,∇2f and bound
the number of oracle calls or iterations that the (usually iterative)
algorithm performs.
word RAM model. Addition,subtraction, multiplication etc take
exactly 1 time step, for numbers that can be stored in a word; usually
the input of the problem shall consist of numbers that can fit in a word.
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Membership for convex sets

Given a point x ∈ Rn and K ⊆ Rn, does x ∈ K?

⋆ Halfspaces: Let K := {y ∈ Rn : ⟨a, y⟩ ≤ b} where a ∈ Rn, b ∈ R.
We need to write down a, b, x using finite number of bits to perform
membership in K.

⋆ Ellipsoids. Let K := {y ∈ Rn : yTAy ≤ 1} for a PD matrix
A ∈ Qn×n.

⋆ Intersection of halfspaces (polytopes).
K := {⟨ai, y⟩ ≤ bi, i = 1, . . . ,m}.
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Membership for convex sets
⋆ ℓ1 ball: K := {x ∈ Rn :

∑n
i=1 |x|i ≤ r}.

It is an intersection of 2n
hyperplanes, of all {y : ⟨y, s⟩}, s ∈ {−, 1 + 1}n. No hyperplane is
redundant.

⋆ PSD matrices. Given X ∈ Rn, does yTXy ≥ 0 for all y ∈ Rn ?
Equivalent to checking whether λ1(X) ≥ 0. Can only approximately
check.

Some operations that preserve convexity:
◦ Intersection
◦ Scaling
◦ Translation
◦ Affine transformation
◦ Set sum
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Separation Oracles for convex sets

Theorem (Convexity implies Separating Hyperplane)
For all closed and convex K ⊆ Rn and x ∈ Rn \K there exists
a ∈ Rn, b ∈ R such that

⟨a, x⟩ > b and ⟨a, y⟩ ≤ b,∀y ∈ K.

Theorem (Separating hyperplanes implies convexity)
Let K ⊆ Rn be a convex set. If for every x ∈ Rn \K there exists a
hyperplane separating x from K, then K is convex.

8/20



Separation Oracles for convex sets

Theorem (Convexity implies Separating Hyperplane)
For all closed and convex K ⊆ Rn and x ∈ Rn \K there exists
a ∈ Rn, b ∈ R such that

⟨a, x⟩ > b and ⟨a, y⟩ ≤ b,∀y ∈ K.

Theorem (Separating hyperplanes implies convexity)
Let K ⊆ Rn be a convex set. If for every x ∈ Rn \K there exists a
hyperplane separating x from K, then K is convex.

8/20



Separation Oracle

A separation oracle for a convex set K ⊆ Rn is a primitive which:
1. given x ∈ K, answers YES

2. given x /∈ K, answers NO and returns a ∈ Qn, b ∈ Q such that the
hyperplane {y : ⟨a, y⟩ = b} separates x from K.

Separation vs. optimization. Constructing efficient (polynomial time)
separation oracles for a given family of convex sets is equivalent to
constructing algorithms to optimize linear functions over convex sets in
this family.
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Back to solving convex programs

Given c ∈ Q, find whether minx∈Kf(x) = c.

Consider f(x) = 2
x + x,K = [1,∞). What happens?

Refined goal: Given ϵ > 0 compute c ∈ Q such that

minx∈Kf(x) ∈ [c− ϵ, c+ ϵ].
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Distance to optimum versus distance to value

Consider a convex program which has a unique optimal solution
x⋆ ∈ K. Then we can ask for either

1. proximity in value, f(x) ≤ f(x∗) + ϵ, or
2. proximity in optimum, ∥x− x∗∥2 ≤ ϵ.
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Representing Functions

◦ Linear and affine. f(x) = ⟨a, x⟩+ b.

◦ Quadratic. f(x) = xTAx+ ⟨b, x⟩+ c for PSD matrix A ∈ Qn.
◦ Linear matrix functions. f(X) = Tr(XA), where A ∈ Qn×n and

X ∈ Rn×n is a symmetric matrix variable.
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Models of accessing f (again)

Value Oracle: Given x ∈ K, compute f(x).

Gradient Oracle: Given x ∈ K, compute ∇f(x),∇2f(x),∇3f(x), . . ..
Measure number of oracle calls, ideally poly(n, log(1/ϵ)).
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Examples of how (iterative) algorithms look like

Gradient descent. xt+1 := xt − η∇f(xt).

Projected Gradient Descent. xt+1 := ΠK(xt − η∇f(xt)).

Newton’s method. xt+1 := xt − (∇2f(xt))
−1∇f(xt).

Mind the gap: Run one step of Newton’s method on
f(x) = 1

2x
TMx+ bx. For all quadratic functions one step of Newton’s

method lands on the optimum!
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Unit capacity Max flow and convex optimization

Problem. Given unit capacity graph of G = (V,E), vertices s, t ∈ G
route the maximum amount of flow from s to t.

Let x ∈ RE , ∥x∥∞ ≤ 1 with constrains for all u ∈ V :
◦

∑
(u,v)∈E xuv −

∑
(v,u)∈E xuv = 0 if u ̸= s, t

◦
∑

(u,v)∈E xuv −
∑

(v,u)∈E xuv = F∗ if u = s

◦
∑

(u,v)∈E xuv −
∑

(v,u)∈E xuv = −F∗ if u = t

min ∥x∥∞ s.t. Bx = 1s − 1t.

min η log(
∑

i e
xi/η + e−xi/η) s.t.

Bx = 1s − 1t.
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Langragian Duality

infx∈Rnf(x)
s.t. fj(x) ≤ 0, for j ∈ [m]
hi(x) = 0, for i ∈ [p]

Let L(x, λ, µ) := f(x) +
∑

j∈[m] λjfj(x) +
∑

i∈[p] µihi(x).
◦ x ∈ K ⇒ L(x, λ, µ) ≤ f(x).
◦ supλ≥0,µL(x, λ, µ) = f(x), x ∈ K

◦ supλ,≥0,µL(x, λ, µ) = ∞, otherwise

y⋆ = infx∈Ksupλ≥0,µL(x, λ, µ) = infx∈Rnsupλ≥0,µL(x, λ, µ)
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◦ supλ≥0,µL(x, λ, µ) = f(x), x ∈ K

◦ supλ,≥0,µL(x, λ, µ) = ∞, otherwise

y⋆ = infx∈Ksupλ≥0,µL(x, λ, µ) = infx∈Rnsupλ≥0,µL(x, λ, µ)
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Strong Duality

Slater’s condition. There exists x̄ such that hj(x̄) = 0 and fi(x̄) < 0.

Theorem (Slater’s gives strong guality)
If all fj , hi are affine and Slater’s condition holds, then

supλ≥0,µg(λ, µ) = infx∈Kf(x)
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Examples

Linear programming. min cTx s.t. Ax ≥ b

Let L(x, λ) = cTx+ λT (b−Ax) = ⟨x, c−ATλ⟩+ ⟨b, λ⟩
What is g(λ) = infx∈RnL(x, λ) ?

max⟨b, λ⟩

s.t. ATλ = c, λ ≥ 0

It is known that in the setting of linear programming strong duality
holds.
Fact. There exist some convex programs for which strong duality fails,
but such programs are not commonly encountered in practice.
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Thank you!
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