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Gradient Descent for Function Minimization

x t+1 = x t − ηt∇f (x t ) small step in direction of the negative gradient

= arg min
x

f (x t ) + 〈∇f (x t ), x − x t〉+
1

2ηt
‖x − x t‖22︸ ︷︷ ︸

proximity term

 .

We approximate f by a quadratic function that passes
through (x t , f (x t )) and has the same gradient as f at x t .

We move to the minimizer of the quadratic function;
x t+1 is the solution of ∇f (x t ) + 1

ηt
(x − x t ) = 0.

At x t+1, the gradient of the quadratic term is −∇f (x t )
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Gradient Descent

We are also interested in constrained optimization: C is a
convex subset of Rn.

x t+1 = arg min
x∈C

{
f (x t ) + 〈∇f (x t ), x − x t〉+

1
2ηt
‖x − x t‖2

2

}
.

Why are we approximating by a homogeneous quadratic function?

Aren’t there other (better?) choices?
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Clearly, there are better Choices sometimes

Assume f is a quadratic function, i.e.,
f (x) = 1

2(x − x t )T Q(x − x t ) with Q positive semidefinite.

Then we should clearly approximate with the function itself.
Iteration becomes

x t+1 = arg min
x

{
f (x t ) + 〈∇f (x t ), x − x t〉+

1
2ηt

(x − x t )T Q(x − x t )

}
= x t − ηtQ−1∇f (x t )

Note that at x t+1: −∇f (x t ) = 1
ηt

Q(x t+1 − x t ).
With ηt = 1, we would reach the minimum in one step.
If Q is a diagonal matrix with κ = maxi Qii

mini Qii
� 1, GD is slow:

κ log(1/ε) iterations.

Alejandro’s talk: Newton iteration, αH ≺ A ≺ βH.

4



Mirror descent: choose proximity term to fit problem geometry

Nemirowski & Yudin, 1983

local curvature of f

geometry of the constraint set C

computation of x t+1 is efficient.
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Mirror Descent

Replace the quadratic term by a “distance function” Dϕ.

x t+1 = arg min
x∈C

{
f (x t ) + 〈∇f (x t ), x − x t〉+

1
ηt

Dϕ(x , x t )

}
Dϕ(x , z) = ϕ(x)− (ϕ(z) + 〈∇ϕ(z), (x − z)〉).

Dϕ(x , z) is distance from z to x with respect to ϕ;
ϕ is strongly convex and differentiable.

Bregman divergence; Lev Bregman, 1967.

at x t+1 gradient of 1
ηt

Dϕ(x , x t ) is equal to −∇f (x t ).

more generally,

x t+1 = arg min
x∈C

{
f (x t ) + 〈gt , x − x t〉+

1
ηt

Dϕ(x , x t )

}
with gt a subgradient of f at x t ; gt ∈ ∂f (x t ).
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Properties of Bregman Divergence

Dϕ(x , z) = ϕ(x)− (ϕ(z) + 〈∇ϕ(z), (x − z)〉).

distance from z to x with respect to ϕ; ϕ is strongly convex
and differentiable.

Dϕ(x , z) ≥ 0 and equal to 0 only if x = z.

∇xDϕ(x , z) = ∇ϕ(x)−∇ϕ(z).

in general Dϕ(x , z) 6= Dϕ(z, x).

convex in x , in general not conxex in z.

if Q � 0 and ϕ(x) = xT Qx , then Dϕ(x , z) = 1
2 (x − z)T Q(x − z).

So gradient descent is a special case (even with
non-homogeneous quadratic function).

7



Kullback-Leibler Divergence

directed distance between two probability distributions;
introduced in 1951.

ϕ(x) =
∑

i xi ln xi negative entropy

for x , z ∈ ∆ =
{

x ∈ Rn
≥0;

∑
i xi = 1

}
(probability simplex)

KL(x ||z) = Dϕ(x , z) =
∑

i

xi ln(xi/zi).

Proof: Since (∇ϕ(x))i = ln xi + 1

Dϕ(x , z) = ϕ(x)− (ϕ(z) +∇ϕ(z)(x − z))

=
∑

i

xi ln xi −
∑

i

zi ln zi −
∑

i

(ln zi + 1)(xi − zi )

=
∑

i

xi ln(xi/zi )−
∑

i

xi +
∑

i

zi

=
∑

i

xi ln(xi/zi ).
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The Update Rule for Mirror Descent with KL
Divergence in Probability Simplex

x t+1 = arg min
x∈∆

{
f (x t ) + 〈∇f (x t ), x − x t〉+

1
ηt

KL(x ||x t )

}
KL(x ||x t ) =

∑
i

xi ln(xi/x t
i )

At x t+1, gradient of objective must be parallel to normal of ∆
(the all-ones vector), i.e., there must be an α such that for all i
with x t+1

i 6∈ {0,1 }

(∇f (x t ))i +
1
ηt

[
ln(x t+1

i /x t
i ) + x t+1

i · x t
i /x

t+1
i · 1/x t

i

]
= α · 1

and hence x t+1
i /x t

i = exp(−ηt (∇f (x t ))i + ηtα− 1) or

x t+1
i = x t

i exp(−ηt (∇f (x t ))i)/C for some constant C.

Since x t+1 ∈ ∆, C =
∑

i x t
i exp(−ηt (∇f (x t ))i).
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Alternative View of Mirror Descent.

Bregman projection of x onto C

PC,ϕ(x) = arg min
z∈C

Dϕ(z, x)

the point z ∈ C closest to x with respect to Dϕ.

Unconstrained mirror descent

x t+1 = arg min
x

{
f (x t ) + 〈∇f (x t ), x − x t〉+

1
ηt

Dϕ(x , x t )

}
∇ϕ(x t+1) = ∇ϕ(x t )− ηt∇f (x t )

Alternative view of constrained mirror descent

∇ϕ(y t+1) = ∇ϕ(x t )− ηt∇f (x t )

x t+1 = PC,ϕ(y t+1) = arg min
x∈C

Dϕ(x , y t+1)

Unconstained step followed by Bregman projection onto C.
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Proof of Equivalence

x t+1 = arg min
x∈C

{
f (x t ) + 〈∇f (x t ), x − x t〉+

1
ηt

Dϕ(x , x t )

}
Optimality condition: Negative gradient of {. . .} in normal cone
of C at x t+1.

−
(
∇f (x t ) +

1
ηt

(∇ϕ(x t+1)−∇ϕ(x t ))

)
∈ NC(x t+1).

∇ϕ(y t+1) = ∇ϕ(x t )− ηt∇f (x t )

x t+1 = PC,ϕ(y t+1) = arg min
x∈C

Dϕ(x , y t+1)

Optimality condition: negative gradient of Dϕ(x , y t+1) in normal
cone at x t+1.

−
(
∇ϕ(x t+1)−∇ϕ(y t+1)

)
∈ NC(x t+1).

Optimality conditions are identical.
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A Second Reformulation (= the Original by
Nemirovski & Yudin, 1983)

Assume C = Rn for simplicity. Then

x t+1 = ∇ϕ∗(
(
∇ϕ(x t )− ηt∇f (x t )

)
,

where ϕ∗ is the Fenchel-conjugate of ϕ.

ϕ∗(y) = sup
z

[〈z, x〉 − ϕ(z)]

12



Convergence of Mirror Descent to minx∈C f (x)

‖ ‖, a norm

Assume f is convex and L-Lipschitz.

Assume ϕ is ρ-strongly convex wrt. ‖ ‖.

Run mirror descent for t steps starting at x0: x0, x1, . . . , x t .

Let f best,t = min0≤i≤t f (x i) and R = supx∈C Dϕ(x , x0).

Then

f best,t − f opt ≤
R + L

2ρ
∑

0≤k<t η
2
k∑

0≤k<t ηk

= L ·

√
2R
ρt

with ηk =

√
2ρR

L
√

t

13



Lipschitz Continuity, and Strong Convexity

f is convex:

f (y) ≥ f (x) + 〈∇f (x)T , y − x〉.

ϕ is ρ-strongly convex wrt. ‖ ‖, i.e.,

ϕ(x) ≥ ϕ(y) + 〈∇ϕ(y), x − y〉+
ρ

2
‖x − y‖2.

f is L-Lipschitz:

|f (x)− f (y)| ≤ L · ‖x − y‖.
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Convergence of Mirror Descent to minx∈C f (x)

‖ ‖, a norm

Assume f is convex and L-Lipschitz.

Assume ϕ is ρ-strongly convex wrt. a norm ‖ ‖.

Run mirror descent for t steps starting at x0: x0, x1, . . . , x t .

Let f best,t = min0≤i≤t f (x i) and R = supx∈C Dϕ(x , x0).

Then

f best,t − f opt ≤
R + L

2ρ
∑

0≤k<t η
2
k∑

0≤k<t ηk

= L ·

√
2R
ρt

with ηk =

√
2ρR

L
√

t
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Gradient vs Mirror over the Probability Simplex

C = ∆ (probability simplex) and x0 = n−11.
ϕ(x) = 1

2‖x‖
2
2 is 1-strongly convex w.r.t. ‖ ‖2.

R = supx∈∆ Dϕ(x , x0) ≤ 1/2 and Lf ,2 = supx∈∆ ‖∇f (x)‖2.
Then

f best,t − f opt ≤ Lf ,2 ·
1√
t

ϕ(x) =
∑

i xi ln xi is 1-strongly convex w.r.t. ‖ ‖1.
R = supx∈∆ KL(x ||x0) = supx∈∆

∑
i xi ln xi −

∑
i xi ln 1

n ≤
0 + ln n.
Lf ,∞ = supx∈∆ ‖∇f‖∞.
Then

f best,t − f opt ≤ Lf ,∞ ·
1√
t

Since ‖ ‖∞ ≤ ‖ ‖2 ≤
√

n‖ ‖∞, MD is often much better.
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Robust Regression (taken from Stanford EE364B)

minimize ‖Ax − b‖1 =
∑

1≤i≤m |aT
i x − bi | subject to x ∈ ∆.

Subgradient of objective is g =
∑

1≤i≤m sign(aT
i x − bi)ai .

Projected subgradient update (ϕ(x) = ‖x‖22) is:
Let y t+1 = x t + ηtgt . Then x t+1 = arg minx∈∆ ‖x − y t+1‖2.
Let z ∈ Rn be the orthogonal projection of y t+1 onto
hyperplane 1T z = 1.
Then x t+1

i = see drawing

Mirror descent update (ϕ(x) =
∑

i xi ln xi ) is (see slide 9):

x t+1
i =

x t
i exp(−ηtgt

i )∑
j x t

j exp(−ηtgt
j )
.
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Slide 17 from Stanford EE364BExample

Robust regression problem with ai ∼ N(0, In×n) and
bi = (ai,1 + ai,2)/2 + εi where εi ∼ N(0, 10−2), m = 20, n = 3000

0 10 20 30 40 50 60

k

10-6

10-5

10-4

10-3

10-2

10-1

100

101

f
(k

)
b
es
t−

f
⋆

Entropy
Gradient

stepsizes chosen according to best bounds (but still sensitive to
stepsize choice)
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solution is close to x1 ≈ 1/2, x2 ≈ 1/2.

What they call k , we call t .
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