Mirror Descent
 based on lecture notes by Yuxin Chen（Princeton）
 Themis Kurt

川リリリ： informatik

Gradient Descent for Function Minimization

$x^{t+1}=x^{t}-\eta_{t} \nabla f\left(x^{t}\right) \quad$ small step in direction of the negative gradient

$$
=\underset{x}{\arg \min }\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\underbrace{\frac{1}{2 \eta_{t}}\left\|x-x^{t}\right\|_{2}^{2}}_{\text {proximity term }}\} .
$$

- We approximate f by a quadratic function that passes through ($x^{t}, f\left(x^{t}\right)$) and has the same gradient as f at x^{t}.
- We move to the minimizer of the quadratic function; x^{t+1} is the solution of $\nabla f\left(x^{t}\right)+\frac{1}{\eta_{t}}\left(x-x^{t}\right)=0$.
- At x^{t+1}, the gradient of the quadratic term is $-\nabla f\left(x^{t}\right)$

Gradient Descent

We are also interested in constrained optimization: \mathcal{C} is a convex subset of \mathbb{R}^{n}.

$$
x^{t+1}=\underset{x \in \mathcal{C}}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{1}{2 \eta_{t}}\left\|x-x^{t}\right\|_{2}^{2}\right\} .
$$

Why are we approximating by a homogeneous quadratic function?
Aren't there other (better?) choices?

Clearly, there are better Choices sometimes

Assume f is a quadratic function, i.e., $f(x)=\frac{1}{2}\left(x-x^{t}\right)^{T} Q\left(x-x^{t}\right)$ with Q positive semidefinite.

Then we should clearly approximate with the function itself. Iteration becomes

$$
\begin{aligned}
x^{t+1} & =\underset{x}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{1}{2 \eta_{t}}\left(x-x^{t}\right)^{T} Q\left(x-x^{t}\right)\right\} \\
& =x^{t}-\eta_{t} Q^{-1} \nabla f\left(x^{t}\right)
\end{aligned}
$$

Note that at $x^{t+1}:-\nabla f\left(x^{t}\right)=\frac{1}{\eta_{t}} Q\left(x^{t+1}-x^{t}\right)$.
With $\eta_{t}=1$, we would reach the minimum in one step.
If Q is a diagonal matrix with $\kappa=\frac{\max _{i} Q_{i i}}{\min _{i} Q_{i i}} \gg 1, \mathrm{GD}$ is slow: $\kappa \log (1 / \varepsilon)$ iterations.
Alejandro's talk: Newton iteration, $\alpha H \prec A \prec \beta H$.

Mirror descent: choose proximity term to fit problem geometry Nemirowski \& Yudin, 1983

- local curvature of f
- geometry of the constraint $\operatorname{set} \mathcal{C}$
- computation of x^{t+1} is efficient.

Mirror Descent

Replace the quadratic term by a "distance function" D_{φ}.

$$
\begin{gathered}
x^{t+1}=\underset{x \in \mathcal{C}}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{1}{\eta_{t}} D_{\varphi}\left(x, x^{t}\right)\right\} \\
D_{\varphi}(x, z)=\varphi(x)-(\varphi(z)+\langle\nabla \varphi(z),(x-z)\rangle) .
\end{gathered}
$$

- $D_{\varphi}(x, z)$ is distance from z to x with respect to φ; φ is strongly convex and differentiable.
- Bregman divergence; Lev Bregman, 1967.
- at x^{t+1} gradient of $\frac{1}{\eta_{t}} D_{\varphi}\left(x, x^{t}\right)$ is equal to $-\nabla f\left(x^{t}\right)$.
- more generally,

$$
x^{t+1}=\underset{x \in \mathcal{C}}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle g^{t}, x-x^{t}\right\rangle+\frac{1}{\eta_{t}} D_{\varphi}\left(x, x^{t}\right)\right\}
$$

with g^{t} a subgradient of f at $x^{t} ; g^{t} \in \partial f\left(x^{t}\right)$.

Properties of Bregman Divergence

$$
D_{\varphi}(x, z)=\varphi(x)-(\varphi(z)+\langle\nabla \varphi(z),(x-z)\rangle)
$$

- distance from z to x with respect to $\varphi ; \varphi$ is strongly convex and differentiable.
- $D_{\varphi}(x, z) \geq 0$ and equal to 0 only if $x=z$.
- $\nabla_{x} D_{\varphi}(x, z)=\nabla \varphi(x)-\nabla \varphi(z)$.
- in general $D_{\varphi}(x, z) \neq D_{\varphi}(z, x)$.
- convex in x, in general not conxex in z.
- if $Q \succ 0$ and $\varphi(x)=x^{\top} Q x$, then $D_{\varphi}(x, z)=\frac{1}{2}(x-z)^{T} Q(x-z)$. So gradient descent is a special case (even with non-homogeneous quadratic function).

Kullback-Leibler Divergence

- directed distance between two probability distributions; introduced in 1951.
- $\varphi(x)=\sum_{i} x_{i} \ln x_{i} \quad$ negative entropy
- for $x, z \in \Delta=\left\{x \in \mathbb{R}_{\geq 0}^{n} ; \sum_{i} x_{i}=1\right\}$ (probability simplex)

$$
\mathrm{KL}(x \| z)=D_{\varphi}(x, z)=\sum_{i} x_{i} \ln \left(x_{i} / z_{i}\right)
$$

- Proof: Since $(\nabla \varphi(x))_{i}=\ln x_{i}+1$

$$
\begin{aligned}
D_{\varphi}(x, z) & =\varphi(x)-(\varphi(z)+\nabla \varphi(z)(x-z)) \\
& =\sum_{i} x_{i} \ln x_{i}-\sum_{i} z_{i} \ln z_{i}-\sum_{i}\left(\ln z_{i}+1\right)\left(x_{i}-z_{i}\right) \\
& =\sum_{i} x_{i} \ln \left(x_{i} / z_{i}\right)-\sum_{i} x_{i}+\sum_{i} z_{i} \\
& =\sum_{i} x_{i} \ln \left(x_{i} / z_{i}\right) .
\end{aligned}
$$

The Update Rule for Mirror Descent with KL Divergence in Probability Simplex

$$
\begin{aligned}
x^{t+1} & =\underset{x \in \Delta}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{1}{\eta_{t}} \mathrm{KL}\left(x \| x^{t}\right)\right\} \\
\mathrm{KL}\left(x \| x^{t}\right) & =\sum_{i} x_{i} \ln \left(x_{i} / x_{i}^{t}\right)
\end{aligned}
$$

At x^{t+1}, gradient of objective must be parallel to normal of Δ (the all-ones vector), i.e., there must be an α such that for all i with $x_{i}^{t+1} \notin\{0,1\}$

$$
\left(\nabla f\left(x^{t}\right)\right)_{i}+\frac{1}{\eta_{t}}\left[\ln \left(x_{i}^{t+1} / x_{i}^{t}\right)+x_{i}^{t+1} \cdot x_{i}^{t} / x_{i}^{t+1} \cdot 1 / x_{i}^{t}\right]=\alpha \cdot 1
$$

and hence $x_{i}^{t+1} / x_{i}^{t}=\exp \left(-\eta_{t}\left(\nabla f\left(x^{t}\right)\right)_{i}+\eta_{t} \alpha-1\right)$ or

$$
x_{i}^{t+1}=x_{i}^{t} \exp \left(-\eta_{t}\left(\nabla f\left(x^{t}\right)\right)_{i}\right) / C \quad \text { for some constant } C .
$$

Since $x^{t+1} \in \Delta, C=\sum_{i} x_{i}^{t} \exp \left(-\eta_{t}\left(\nabla f\left(x^{t}\right)\right)_{i}\right)$.

Alternative View of Mirror Descent.

- Bregman projection of x onto \mathcal{C}

$$
\mathcal{P}_{\mathcal{C}, \varphi}(x)=\underset{z \in \mathcal{C}}{\arg \min } D_{\varphi}(z, x)
$$

the point $z \in \mathcal{C}$ closest to x with respect to D_{φ}.

- Unconstrained mirror descent

$$
x^{t+1}=\underset{x}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{1}{\eta_{t}} D_{\varphi}\left(x, x^{t}\right)\right\}
$$

$\nabla \varphi\left(x^{t+1}\right)=\nabla \varphi\left(x^{t}\right)-\eta_{t} \nabla f\left(x^{t}\right)$

- Alternative view of constrained mirror descent

$$
\begin{aligned}
\nabla \varphi\left(y^{t+1}\right) & =\nabla \varphi\left(x^{t}\right)-\eta_{t} \nabla f\left(x^{t}\right) \\
x^{t+1} & =\mathcal{P}_{\mathcal{C}, \varphi}\left(y^{t+1}\right)=\underset{x \in \mathcal{C}}{\arg \min } D_{\varphi}\left(x, y^{t+1}\right)
\end{aligned}
$$

Unconstained step followed by Bregman projection onto \mathcal{C}.

Proof of Equivalence

$$
x^{t+1}=\underset{x \in \mathcal{C}}{\arg \min }\left\{f\left(x^{t}\right)+\left\langle\nabla f\left(x^{t}\right), x-x^{t}\right\rangle+\frac{1}{\eta_{t}} D_{\varphi}\left(x, x^{t}\right)\right\}
$$

Optimality condition: Negative gradient of $\{\ldots\}$ in normal cone of \mathcal{C} at x^{t+1}.

$$
\begin{aligned}
&-\left(\nabla f\left(x^{t}\right)+\frac{1}{\eta_{t}}\left(\nabla \varphi\left(x^{t+1}\right)-\nabla \varphi\left(x^{t}\right)\right)\right) \in \mathcal{N}_{\mathcal{C}}\left(x^{t+1}\right) . \\
& \nabla \varphi\left(y^{t+1}\right)=\nabla \varphi\left(x^{t}\right)-\eta_{t} \nabla f\left(x^{t}\right) \\
& x^{t+1}=\mathcal{P}_{\mathcal{C}, \varphi}\left(y^{t+1}\right)=\underset{x \in \mathcal{C}}{\arg \min } D_{\varphi}\left(x, y^{t+1}\right)
\end{aligned}
$$

Optimality condition: negative gradient of $D_{\varphi}\left(x, y^{t+1}\right)$ in normal cone at x^{t+1}.

$$
-\left(\nabla \varphi\left(x^{t+1}\right)-\nabla \varphi\left(y^{t+1}\right)\right) \in \mathcal{N}_{\mathcal{C}}\left(x^{t+1}\right)
$$

Optimality conditions are identical.

A Second Reformulation (= the Original by Nemirovski \& Yudin, 1983)

Assume $\mathcal{C}=\mathbb{R}^{n}$ for simplicity. Then

$$
x^{t+1}=\nabla \varphi^{*}\left(\left(\nabla \varphi\left(x^{t}\right)-\eta_{t} \nabla f\left(x^{t}\right)\right)\right.
$$

where φ^{*} is the Fenchel-conjugate of φ.

$$
\varphi^{*}(y)=\sup _{z}[\langle z, x\rangle-\varphi(z)]
$$

Convergence of Mirror Descent to $\min _{x \in \mathcal{C}} f(x)$

|| ||, a norm
Assume f is convex and L-Lipschitz.
Assume φ is ρ-strongly convex wrt. || ||.
Run mirror descent for t steps starting at $x^{0}: x^{0}, x^{1}, \ldots, x^{t}$.
Let $f^{\text {best }, t}=\min _{0 \leq i \leq t} f\left(x^{i}\right)$ and $R=\sup _{x \in \mathcal{C}} D_{\varphi}\left(x, x^{0}\right)$.
Then

$$
\begin{aligned}
f^{\text {best }, t}-f^{\text {opt }} & \leq \frac{R+\frac{L}{2 \rho} \sum_{0 \leq k<t} \eta_{k}^{2}}{\sum_{0 \leq k<t} \eta_{k}} \\
& =L \cdot \sqrt{\frac{2 R}{\rho t}} \text { with } \eta_{k}=\frac{\sqrt{2 \rho R}}{L \sqrt{t}}
\end{aligned}
$$

Lipschitz Continuity, and Strong Convexity

- f is convex:

$$
f(y) \geq f(x)+\left\langle\nabla f(x)^{T}, y-x\right\rangle .
$$

- φ is ρ-strongly convex wrt. || ||, i.e.,

$$
\varphi(x) \geq \varphi(y)+\langle\nabla \varphi(y), x-y\rangle+\frac{\rho}{2}\|x-y\|^{2} .
$$

- f is L-Lipschitz:

$$
|f(x)-f(y)| \leq L \cdot\|x-y\| .
$$

Convergence of Mirror Descent to $\min _{x \in \mathcal{C}} f(x)$

|| ||, a norm
Assume f is convex and L-Lipschitz.
Assume φ is ρ-strongly convex wrt. a norm || ||.
Run mirror descent for t steps starting at $x^{0}: x^{0}, x^{1}, \ldots, x^{t}$.
Let $f^{\text {best }, t}=\min _{0 \leq i \leq t} f\left(x^{i}\right)$ and $R=\sup _{x \in \mathcal{C}} D_{\varphi}\left(x, x^{0}\right)$.
Then

$$
\begin{aligned}
f^{\text {best }, t}-f^{\text {opt }} & \leq \frac{R+\frac{L}{2 \rho} \sum_{0 \leq k<t} \eta_{k}^{2}}{\sum_{0 \leq k<t} \eta_{k}} \\
& =L \cdot \sqrt{\frac{2 R}{\rho t}} \text { with } \eta_{k}=\frac{\sqrt{2 \rho R}}{L \sqrt{t}}
\end{aligned}
$$

Gradient vs Mirror over the Probability Simplex

- $\mathcal{C}=\Delta$ (probability simplex) and $x^{0}=n^{-1} \mathbf{1}$.
- $\varphi(x)=\frac{1}{2}\|x\|_{2}^{2}$ is 1 -strongly convex w.r.t. $\left\|\|_{2}\right.$.
- $R=\sup _{x \in \Delta} D_{\varphi}\left(x, x^{0}\right) \leq 1 / 2$ and $L_{f, 2}=\sup _{x \in \Delta}\|\nabla f(x)\|_{2}$.
- Then

$$
f^{\text {best }, t}-f^{\mathrm{opt}} \leq L_{f, 2} \cdot \frac{1}{\sqrt{t}}
$$

- $\varphi(x)=\sum_{i} x_{i} \ln x_{i}$ is 1-strongly convex w.r.t. $\left\|\|_{1}\right.$.
- $R=\sup _{x \in \Delta} \mathrm{KL}\left(x \| x^{0}\right)=\sup _{x \in \Delta} \sum_{i} x_{i} \ln x_{i}-\sum_{i} x_{i} \ln \frac{1}{n} \leq$ $0+\ln n$.
- $L_{f, \infty}=\sup _{x \in \Delta}\|\nabla f\|_{\infty}$.
- Then

$$
f^{\text {best }, t}-f^{\mathrm{opt}} \leq L_{f, \infty} \cdot \frac{1}{\sqrt{t}}
$$

- Since $\left\|\left\|_{\infty} \leq\right\|\right\|_{2} \leq \sqrt{n}\| \|_{\infty}$, MD is often much better.

Robust Regression (taken from Stanford EE364B)

- minimize $\|A x-b\|_{1}=\sum_{1 \leq i \leq m}\left|a_{i}^{T} x-b_{i}\right|$ subject to $x \in \Delta$.
- Subgradient of objective is $g=\sum_{1 \leq i \leq m} \operatorname{sign}\left(a_{i}^{T} x-b_{i}\right) a_{i}$.
- Projected subgradient update $\left(\varphi(x)=\|x\|_{2}^{2}\right)$ is:

Let $y^{t+1}=x^{t}+\eta_{t} g^{t}$. Then $x^{t+1}=\arg \min _{x \in \Delta}\left\|x-y^{t+1}\right\|_{2}$.
Let $z \in \mathbb{R}^{n}$ be the orthogonal projection of y^{t+1} onto hyperplane $1^{\top} z=1$.
Then $x_{i}^{t+1}=$ see drawing

- Mirror descent update $\left(\varphi(x)=\sum_{i} x_{i} \ln x_{i}\right)$ is (see slide 9$)$:

$$
x_{i}^{t+1}=\frac{x_{i}^{t} \exp \left(-\eta_{t} g_{i}^{t}\right)}{\sum_{j} x_{j}^{t} \exp \left(-\eta_{t} g_{j}^{t}\right)}
$$

Slide 17 from Stanford EE364B

Robust regression problem with $a_{i} \sim N\left(0, I_{n \times n}\right)$ and $b_{i}=\left(a_{i, 1}+a_{i, 2}\right) / 2+\varepsilon_{i}$ where $\varepsilon_{i} \sim N\left(0,10^{-2}\right), m=20, n=3000$

solution is close to $x_{1} \approx 1 / 2, x_{2} \approx 1 / 2$.
What they call k, we call t.

