
ADFOCS22 Summer 2021

Graph and Matrix Approximation via Sampling

R. Kyng Exercise Set 1 — Thursday, August 5th

Exercise 1.

Let L be the Laplacian of a connected, weighted, undirected graph G, and let B ∈ RE be the
associated edge-vertex incidence matrix. Let d ∈ RV ,d ⊥ 1 be a demand vector.

The goal of this exercise is to prove that

max
x∈RV

x>d − 1

2
x>Lx = min

f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .

We’ll break that down into a few steps.

Let f ∈ RE be an arbitrary flow that satisfies Bf = d , i.e. it routes the demand d . Let x ∈ RV
be arbitrary voltages, i.e. not necessarily electrical voltages associated with the demand.

(i) Prove that

1

2

∑
e

r(e)f (e)2 = x>d −

 ∑
(u,v)∈E

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2


Hint: use that x>(Bf − d) = 0.

(ii) Prove that

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2 ≤ 1

2

(x (u)− x (v))2

r(u, v)
.

(iii) Conclude that 1
2f
>Rf ≥ x>d − 1

2x
>Lx .

(iv) Assume we are given x̃ and f̃ such that

Lx̃ = d and f̃ = R−1B>x̃

Prove that Bf̃ = d and

x̃>d − 1

2
x̃>Lx̃ =

1

2
f̃
>
Rf̃ .

(v) Show

x̃ ∈ arg max
x∈RV

x>d − 1

2
x>Lx

and

f̃ ∈ arg min
f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .
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Exercise 2.

Consider the edge samples as defined in Lecture 1.

• We have a graph G = (V,E,w) with |V | = n and |E| = m, and with Laplacian L =∑
ew(e)beb

>
e .

• We define a matrix function Φ : Rn×n → Rn×n by

Φ(M ) = L+/2ML+/2.

• We introduce a set of independent random matrices Y e, one for each edge e, with a probability
pe = min(1, α

∥∥Φ(w(e)beb
>
e )
∥∥) associated with the edge. We let

Y e =

{
w(e)
pe

beb
>
e with probability pe

0 otherwise.

• This way, L̃ =
∑

eY e is our random, hopefully sparse, approximation of L. Let G̃ be the
graph associated with L̃.

• Let us define
X e = Φ(Y e)− E [Φ(Y e)] and X =

∑
e

X e

1. Prove that for any two matrices A,B � 0, ‖A−B‖ ≤ max(‖A‖ , ‖B‖). (We skipped this
step when proving ‖X e‖ ≤ 1

α).

2. Prove that
∥∥∑

e E
[
X 2

e

]∥∥ ≤ 1
α .

3. Conclude that there is an α = O(log(n/δ)) s.t. G̃ is a spectral sparsifier of G with probability
at least 1− δ/2.

4. Explain how we can use a scalar Chernoff bound to prove that
∣∣∣Ẽ∣∣∣ ≤ O(ε−2 log(n/δ)n) with

probability at least 1− δ/2. You may pick any constant that suits you to establish the O(·)
bound.

Exercise 3.

Recall the Matrix Bernstein theorem from class:

Theorem (A Bernstein Matrix Concentration Bound (Tropp 2011)). Suppose X 1, . . . ,X k ∈ Rn×n
are independent, symmetric matrix-valued random variables. Assume each X i is zero-mean, i.e.
E [X i] = 0n×n, and that ‖X i‖ ≤ R always. Let X =

∑
iX i, and σ2 = V ar [X ] =

∑
i E
[
X 2

i

]
,

then for ε > 0

Pr[‖X ‖ ≥ t] ≤ 2n exp

(
−t2

2Rt+ 4σ2

)
.
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Recall that in Lecture 1, we sketched a proof that for all 0 < θ ≤ 1/R,

Pr[‖X ‖ ≥ t] ≤ 2 exp(−θt)Tr exp
(
θ2σ2I

)
.

1. Prove that log(exp(θE [X i])) � θ2 E
[
X 2

i

]
, when 0 < θ ≤ 1/R.

2. Finish the proof of Matrix Bernstein by finding a suitable choice of θ.

Exercise 4

In Lecture 1, we discussed a lemma which allows us to prove that a cut sparsifier of an expander is
also a spectral sparsifier of that expander.

Lemma (Cut Approximation Implies Spectral Approximation in Expanders). Suppose G =
(V,E,w) is a φ-expander. Let H be a K-factor cut approximator of G, i.e.

1

(K + 1)
G ≤cut H ≤cut (K + 1)G.

Then H ≈poly(Kφ−1) G, i.e. H is also a spectral approximation of G.

• Prove that when H and G have wdegG(u) = wdegH(u) for all u ∈ V then H � poly(Kφ−1)G.
Hint: Use expansion and Cheeger’s inequality. Be careful about the kernels of the matrices
involved.

• Prove the full lemma. Hint: you can add self-loops to enforce degrees being equal. Cheeger’s
inequality applies to graphs with self-loops.

Exercise 5

Consider an unweighted graph G = (V,E) with

1. Use the Expander Decomposition Theorem by Saranurak and Wang to decompose the graph
into (overlapping) expanders with expansion φ = 1/ polylog n.

2. Sparsify the expanders using Benczur-Karger cut sparsification. Note the output is a weighted
graph.

3. Use the sparsified expanders to construct a (weighted) graph H = (V, F,wH) s.t.
|F | = |V | polylog(|V |) and H ≈polylogn G.

4. Bonus: Can you extend the approach to weighted graphs where the weights lie between 1 and
poly(|V |)?
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Bonus Questions

For those of you who want more, here are some extra questions. I probably won’t have time to
discuss how to solve them.

Exercise 6.

The bound obtained in Cheeger’s inequality is indeed tight. Prove that:

1. Let G be the graph consisting of two vertices connected by a single edge of unit weight. Prove
that φ(G) = λ2(N )/2 and therefore that the lower bound of Cheeger’s inequality is tight.

2. To show that the line graph proves that the upper bound of Cheeger’s Inequality is asymp-
totically tight (i.e. up to constant factors).

Exercise 7.

Sparse Expanders: In random graph theory, the graph over n vertices where each edge between
two endpoints is present independently with probability p is denoted G(n, p).

Show that for p = Ω(log n/n), that G(n, p) is a Ω(1)-expander with high probability (it is up to
you to fix large constants). Take the following steps:

1. Prove that with high probability, deg(u) = Θ(pn) for all vertices u ∈ V (G(n, p)).

2. For each set S of k ≤ n/2 vertices, argue that

P[|E(S, V \ S)| = Θ(kpn)] > 1− n−c·k

for any large constant c > 0.

3. Observe that there are at most
(
n
k

)
sets of vertices S of size k. Conclude that G(n, p) is with

high probability a Ω(1)-expander.
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Reading list

The following is a very haphazard of list of papers that I mentioned during class. It is very much
against the advice of none mentioned, none forgotten.

• My course notes: http://kyng.inf.ethz.ch/courses/AGAO21/agao21_script.pdf

• Code: https://github.com/danspielman/Laplacians.jl/

• Solving Laplacian linear equations: [ST04, KS16, JS21] and many more.

• Graph sparsification: [BK96, SS11].

• Matrix concentration: [Tro12].

• Semi-supervised learning using graphs: [ZGL03].

• Structured linear equation solvers beyond Laplacians: [DS07, DS08, KLP+16, CKP+16b,
CKP+17, CKK+18, KPSZ18, AJSS19].

• Scalar elliptic partial differential equations: [BHV08].

• Maximum flow: [DS08, CKM+10, Mad13, Mad16, KLS20].

• Minimum cost flow: [LS14, CMSV17, AMV20, vdBLL+21].

• Fine-grained complexity for spectral graph theory: [KZ20], http://rasmuskyng.com/

papers/LPto2CF.pdf.

• Heuristic solvers for Laplacians: [Mv77, BD79, Bra00].

• Expander decomposition: [ST04, SW19].
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