Solving laplaciar lineor equetrais

$$
L \underset{\Sigma}{x}=\underline{d}
$$

electivel no ritye
(How rats demod α)
Given L, the loplacian of an undivected connected groph

$$
G=(V, E, \underline{\omega}) \quad \underline{\omega} \in \mathbb{R}_{+}^{E} \quad|V|=n, \quad|E|=m
$$

$\underline{d} \in \mathbb{R}^{V}$, demand vector, $\underline{d} \perp 1$

$$
\text { GOAL: fied } x
$$

Defn An ε-approximate solution $\underline{\underline{x}}$ to $L x^{*}=\underline{d}$ is \tilde{x} s.t.

$$
\left.\left\|\underline{\tilde{x}}-x^{*}\right\|_{L}^{2} \leq \varepsilon\right)\left\|\underline{x}^{*}\right\|_{l}^{2}
$$

Deh $\|y\|_{c}=\sqrt{y^{i} L_{y}}$

$$
\varepsilon=n^{-100} \log \left(\frac{1}{\varepsilon}\right)
$$

$\underbrace{\text { Electrical Energy }}_{V}\left\|f_{R}^{*}\right\|_{R}^{2}=\left\|x^{*}\right\|_{L}^{2}=\| \underline{d} U_{L^{t}}^{2}$
Exercise

$$
f^{\top} R f=x^{\top} L x=\underline{d}^{\top} L^{+} \underline{Q}
$$

Theorem Spelman - Tong 2004
We can find an ε-approximate solution \tilde{x} to $\angle \underline{x}^{*}=\underline{d}$ in tine $O\left(M \log ^{c} n \log 1 / \varepsilon\right)$.
The alforitm is randomized and succeeds w.h.p. ORIG ALGA: $c \approx 70$

$$
\begin{gathered}
L \underline{x}=\underline{d} \\
Z \approx 0.5 L^{-1} \\
0.5 L^{-1} \leq Z \leq 1.5 L^{-1} \\
B^{-1}
\end{gathered}
$$

$$
\begin{aligned}
& \|x\| A \\
= & \frac{\sqrt{x^{2} A x}}{}
\end{aligned}
$$

Preconditioned Richardson Iteration

- Want to (approx) solve $A \underline{x}^{*}=\underline{\delta}, A>0$,
- Car quicty invert B woe $\frac{A}{K} \leq B \geq A$ GOAL $\left\|\underline{x}-\underline{x}^{*}\right\|_{A} \leq \varepsilon\left\|\underline{x}^{*}\right\|_{A}$ $1=K \operatorname{Cog}\left(\frac{f}{\varepsilon}\right)$

ALG

$$
\begin{aligned}
& \underline{x}_{0}=0 \\
& \underline{x}_{i=1}=\underline{x}_{i}-\alpha b^{-1}\left(A \underline{x}_{i}-\underline{b}\right)
\end{aligned}
$$

$$
\leq e^{-\frac{2 T}{k+1}}
$$

Levant $\left\|\underline{X}_{i+1}-\underline{x}^{*}\right\|_{A} \sum\left\|I-\alpha B^{-1} A\right\|_{A \rightarrow A}\left\|\underline{x}_{i}-\underline{x}^{*}\right\|_{A}$

$$
\begin{aligned}
\underline{x}_{i+1}-\underline{x}^{*} & =\underline{x}_{i}-\underline{x}^{*}-B^{-1}\left(\underline{x_{i}}-\underline{b}\right) \\
& =\left(I-b^{-1} A\right)\left(\underline{x}_{i}-\underline{x}^{+}\right) \\
\left\|\underline{x}_{i+1}-\underline{x}^{*}\right\|_{A} & \leq\left\|I-\alpha B^{-1}\right\|_{A \rightarrow A_{i}}\left\|\underline{x}^{*} /\right\|_{A}
\end{aligned}
$$

Leman $\left\|I-\alpha B^{-1} A\right\|_{A \rightarrow A} \leq \max (1-\alpha, \mid \alpha K-1)$ when $\frac{A}{k} \leqslant B \leq A, \quad 0<\alpha<1$
Cord Choose a well, set $\|\cdot\| \leq \frac{k-1}{k+1}=-\frac{2}{k+1}$

GAUSSIAN rlimination

- Aka. CHOLESKY DEComposition: Goustion Elimination whon applied to a porithin seemi-clefincte watr.
- Want to polve $M \underline{x}=\underline{a}, m>0$ Givan $M>0$,
Theoran twere exalts a factivizatoir $M=L L^{\top}$ (f) if. \mathcal{L} is lower triangular i.e.

$$
\mathcal{L}_{i j}=0 \quad i<j
$$

$M X=\underset{\sim}{d}$ in Fwo steps:

$$
\mathcal{L} \mathcal{L}^{\top} x=\underline{d} \quad \Rightarrow \quad \mathcal{L}_{y}=\underline{d}, \quad \dot{L}^{\top} \underline{x}=\underline{y}
$$

Lemma If \mathcal{L} is lower triangular or copper triangular AND invertible, then
$\mathcal{L}_{\underline{y}}=b_{\underline{0}}$ can be solved in $O(\operatorname{nnz}(\mathcal{L}))$ time.

$$
y=\mathcal{L}^{1} b
$$

"
Forvwel/Buckward Substitution"

GAUSSIAN ELIMINATION ALGORITHM

$$
\int_{0} \leftarrow M
$$

for $i=(3 \ldots, n$

$$
\begin{aligned}
& l_{i}=\frac{1}{S(i, i)^{\frac{V_{2}^{2}}{2}} S_{i-1}(i, i)} \\
& S_{i}=S_{i-1}-\rho_{-i} \rho_{i}^{T}
\end{aligned}
$$

vel

$$
\mathcal{L}=\left[\underline{l}_{1}, . ., l_{n}\right]
$$

Note: we can eliminate variables in other orders.
\rightarrow Then \mathcal{L} is "bower tiaguker" wir.t. The elimination order, which is sufficient.
S_{i} : the Schur Complement of M wit. eleminetion of variables $1,2, \ldots, i$

CLAiM The Schur complement S_{i} does not depend on the order of elimination of the variables $1, \ldots, i$

GAUSSIAN Elimination on laplacian
(LAIM when L is loglaciian (of a comnectal graph), then each S_{i} is the Leplacion of a connected graph on vertices $\{i+1, \ldots, n\}$.

Sfor $(v, S)=$ heplacion of edges inciclent to v in S.

$$
\begin{aligned}
& C \text { ique }(v, S)= s \operatorname{tor}(v, s)-\underline{l} \underline{l}^{\top} \\
& \text { where } \underline{e}=\frac{1}{S(v, v)^{1 / 2}} S(: i, v)
\end{aligned}
$$

Leruma clípue(v,S) is a Laplacion.

GAOSSIAN ELIMINATION ALGORITIMM ON LAP.

$$
S_{0}=L
$$

for $i=1, \ldots, n$

$$
\begin{aligned}
& l_{i}=\frac{1}{S(i, i}{ }_{i=1}^{1 / 2} S(:, i) \\
& S_{i}=S_{i-1}-e_{-i} l_{i}^{2} \\
& S_{i}=S_{i-1}-S \operatorname{tar}\left(i, S_{i-1}\right)+C\left(\text { ique }\left(i, S_{0-1}\right)\right.
\end{aligned}
$$

evel

$$
\mathcal{L}=\left[l_{1}, . ., l_{n}\right]
$$

Gaussian Elimination Running Tiro

- Compute $f_{i}: \operatorname{deg}(i)$ in current graph S_{i-c}
- Compute $S_{i}: \operatorname{deg}(i)^{2}$ time
- Even in graph $\omega . m=O(n)$, $\operatorname{deg}(i)$ can reach n
\rightarrow haas toto tine n^{3} wast case

APPROXIMATE
GAUSSIAN ELIMINATION ALGORITHM??!

$$
S_{0}=L
$$

for $i=1, \ldots, n$

$$
\begin{aligned}
& l_{i}=\frac{1}{\left.S_{i=1} i, i\right)^{1 / 2}} S(:, i) \\
& S_{i}=S_{i-1}-S \operatorname{tar}\left(i, \varepsilon_{i-1}\right)+\left(\text { ciqual } i, S_{i-1}\right)
\end{aligned}
$$

end

$$
\mathcal{L}=\left[\underline{l}_{1}, \ldots, \underline{e}_{n}\right]
$$

APPROXIMATE
GAOSSIAN ELIMINACCON HLGORITHM

$$
S_{0}=L
$$

$\pi \leftarrow$ nenelar permutation of $1, \ldots, n$
for $i=1, \ldots, n$

$$
\begin{aligned}
& \underline{l}_{i}=\frac{1}{S(\pi(i) \pi(i))^{1 / 2}} S(:, \pi(i)) \\
& S_{i}=S_{i-1}-S \operatorname{tar}\left(\pi(i), S_{i-1}\right)+C \text { lique Sarde }\left(\pi(i), S_{i-1}\right)
\end{aligned}
$$

end

$$
\mathcal{L}=\left[\underline{l}_{1}, \ldots, l_{n}\right], \pi
$$

PHEOREM Kyrg \& Sachdera 2016
We can find $\mathcal{L} \mathcal{S}^{7} \neq 0.5(L$
s.t. L is lower triangular west.

The elinuination ordering π enal $\operatorname{mzz}(\mathcal{L})=O\left(\operatorname{mlog}^{3} n\right)$.
the alyonitum is molarized and aus in tine $O\left(a \log { }^{3} n\right)$, Goel sacceeds whp.
mvtogn Coben Mre esphtimin in Expectis

COROLLARY We con find on ε-apporximate solution \tilde{x} to $L x^{*}=\Phi$ in the $O\left(\operatorname{mog} \log ^{3} n \log \left(\frac{1}{\varepsilon}\right)\right)$ wh.

IDEA Semple to approxauste Clique (v, s).
EDITORIALIRE...

NB: We allow rultiedyes!
$A L G O \quad C$ lique Sample (v, S)

$$
Y_{v} \leftarrow O_{n+n}
$$

for each multiefle (v, i)
\rightarrow pack a smadon valsielse (v, j)

w. probabilits $\frac{\omega(v, j)}{\substack{j=1}}$
(allaw $j=i$)
\rightarrow If $j \neq \varepsilon$

$$
Y_{v} \leftarrow Y_{v}+\frac{w(i, v) w(j, v)}{w(i, v)+w(j, v)} \underline{b}_{i j} b_{i j}^{\top}
$$

retan Y_{v}
$\underline{b}_{i j} \underline{b}_{i j}^{\top}:$

Bolyy Ladacion (Fowr non-zeoss)

Q: Con you coupate each sample in $O(1)$ Ftine?
A: Yes, with $O(\operatorname{deg}(v))$ preprocessing Fine. "Walker's Mathod" / "The Alias Method"

- I cheated!
- There is one more step to the algorithm.
- Before we start, we split each edloge into K multro-edges w. $\frac{1}{K}$ Fires the arigind weight.

APPROXMMTE
GAUSSIAN ELIMINATION MLGORTTEM
$S_{0} \leftarrow L$ with eclges split into $K=10 \log ^{2} n$ copies w. $\omega(\hat{e})=\frac{\omega(e)}{K}$
$\pi \leftarrow$ venelam permutation of l, \ldots, n
for $i=1, \ldots, n$

$$
\begin{aligned}
& l_{i}=\frac{1}{S_{i-1}(\pi(i), \pi(i))^{1 / 2}} S(:, \pi(i)) \\
& S_{i}=S_{i-1}-S \operatorname{tar}\left(\pi(i), \delta_{i-1}\right)+C \text { (ique Sample }\left(\pi(i), S_{i-1}\right)
\end{aligned}
$$

evil

$$
\mathcal{L}=\left[\underline{l}_{1}, \ldots, l_{n}\right], \pi
$$

ANALYSIS PLAN

1) Sample Count \& Ruming tire
2) Expected value of output
A) clique sample
B) overall : lincaity \rightarrow martingale
3) The Tail Bond from Matrix Tace Exponartids
4) Edge Sample Worms (Individual Samples)
5) Claque Norm \& Variance (Vertex Samplayy)

PART (7): Scemple count \& runing time

- Observe: Si has $\leq K m$ multiedyes

Proof: we never create more odyes then we verove cin cach climinaturer.

- Hence $\frac{\mathbb{E}}{\pi(i)} \operatorname{deg}(\pi(i)) \leqslant \frac{2 K m}{n-(i+1)}$
- Toted expected neming tine

$$
\sum_{i} \frac{2 K m}{n-(i+1)}=O(K m \log n)=O(v r \log 3 n)
$$

- This aloo bounds nnz(L) $=O(a \log 3 n)$
- Exercise: Makke Nunnj thí detimairle

PART 2 : EXPECTATION
$\operatorname{LEmmA} \mathbb{E} \operatorname{Clique} \operatorname{Sample}(v, S)=\operatorname{Clique}(v, S)$

MARTINGALES
A sequence of $R V_{s} z_{1}, \ldots, z_{k}$ with

$$
\mathbb{E}\left[z_{i} \mid \text { all variables before: } z_{1}, \ldots, z_{i-1}\right]=z_{i-1}
$$

NB: Both scalar and motrix-ralued moke sense.

We can also define $x_{i}=z_{i}-z_{i-1}$, then we hare $\mathbb{E}\left[x_{i}\right.$ all before $]=0$

GOAL Show concentration of $z_{k}=z_{0}+\sum_{i=1}^{k} x_{i}$

A MATRIX MARTINGALE FOR APPROXIMATE GEE.
Let $L_{i}=S_{i}+\sum_{j=1}^{i} l_{i} e_{i}^{\top}, \quad S_{0}=L \quad L_{0}=L$ us created by Apo. G.E.
Then $\mathbb{E}\left[L_{i} \mid\right.$ all vars before $]=L_{i n 1}$
Roof: axercios.
COROLLARY $\mathbb{E} \mathcal{L} \alpha^{\top}=\mathbb{E} L_{n}=L_{0}=L$

PART (3): Tail Bond from matrix twee exponenticls
Ales outronto $L R^{T}=L_{1} \quad($ requerentitel as $\mathcal{L})$
GOAL $L_{n}-L \leq \frac{1}{2} L$ (and other ride)

$$
\Phi(M)=L^{-1 / 2} M L^{-1 / 2} \quad L_{n} \approx \approx \frac{1}{2} L
$$

FACT $A \leq B \Leftrightarrow \Phi(A) \leq \Phi(B)$ when $\operatorname{ker}(L) \leq \operatorname{ker}(A) \operatorname{kec}(B)$
GOAL $\Phi\left(L_{n}\right)-\pi \leqslant \frac{1}{2} \pi, \quad \pi=I-\frac{1 I^{2}}{n}$

- Breakthir into zes-mear mortnigale stops?
- Let $Y_{i, e}$ be the edge rample for the $i^{\text {th }}$ vertex elemination ard the $e^{\text {th }}$ multi-edye somple.
- CCiquefemple $\left(\pi(i), S_{i-1}\right)=\sum_{e} Y_{i, e}$
- $X_{i, e}=\Phi\left(Y_{\varepsilon, e}\right)-\Phi\left[\Phi\left(Y_{i, e}\right) \mid\right.$ all sumples before $\left.(i, e)\right]$
$\left.C L A^{(i \mu}\right) L_{i}=L+\sum_{j \leqslant i} \sum_{e} Y_{i, e}-\mathbb{E}\left[Y_{i, e}\right.$ lall before $]$
proot: Bxercie.
Claim

$$
\operatorname{CLAlM} \operatorname{Pr}\left[L_{1}-L \not 21.5 L\right] \leq e^{-\theta /} \mathbb{E} W\left(\operatorname{ox} 0\left(\theta \sum_{i \leq n} \sum_{e} x_{i, e}\right)\right)
$$

LEMMA "Nested Moment Trich"

- Suppose that for corolutional an $U(i)$ and everything betore

$$
\sum_{e} \log \left(\mathbb{E}_{e} \exp \left(\theta x_{i, e}\right)\right) \preceq V_{i}
$$ NB: $V_{:}$rodar

- Ther

$$
\mathbb{E} \operatorname{tr}\left(\exp \left(\theta \sum_{i \leqslant n} \sum_{e} X_{i, e}\right)\right) \leqslant \operatorname{tr}\left[\operatorname{axp}\left\{\sum_{i} \log \left(\frac{\mathbb{\pi}}{\mathbb{\pi} \cdot j} \exp \left(V_{i}\right)\right)\right\}\right]
$$

$N((\exp (1++\log (A)))$ cacearn in A

LEamA $\sum_{e} \log \left(\underset{e}{\mathbb{E}} \exp \left(\theta x_{p, e}\right)\right) \leq R \theta^{2} \Phi\left[\left(\operatorname{lique}\left(\pi(i), s_{i-1}\right)\right]\right.$
Provided $\theta R \leq 1$
$\underline{\text { LELMMA }} \bar{\Phi}\left(\right.$ clique $\left.\left(\pi(i), S_{i-1}\right)\right) \leq \Phi\left(S_{i-1}\right)$
$\left.\operatorname{LEmmA} A\left(\mathbb{E}_{\pi(i)} c l i q u e\left(\pi(i), S_{i-1}\right)\right) \leq \frac{\text { Wh } S_{i-1}}{n+1-i}\right)_{\Delta I I}$
τ conlitioned on somples befreo $\pi(i)$
"LEMMAA" (NOT QUITE TRUE)

$$
S_{i} \leq 2 c
$$

Putting it Fogether

$$
\begin{aligned}
& \log \left(\frac{\mathbb{E}}{V(u)} \operatorname{axp}\left(V_{i}\right)\right) \\
& \leq \log \left(\underset{\pi(i)}{\mathbb{E}}\left(I+2 v_{i}\right)\right) \\
& \leq \log \left(z+\frac{4 \theta^{2} \Phi^{\prime}\left(s_{i-1}\right)}{n+1-c}\right) \\
& \leq \log \left(z+\frac{8 \theta^{2} R}{1+1-i} I\right) \\
& \leq \frac{8 \theta^{2} R}{n+1-i} I \\
& \left.\sum_{i} \log _{(\underset{\pi i}{ }(\mathbb{E})} \operatorname{axp}\left(V_{i}\right)\right) \\
& \leq 8 \theta^{2} R\left(\sum_{i} \frac{1}{n+1-i}\right) I \\
& =8 \theta^{2} R \log I \\
& \operatorname{PC}[\ldots] \leq e^{-\theta / 2} \cdot n \cdot e^{8 \theta^{2} R \log n} \theta R \leq 1 \\
& \text { opturnic } \theta \text { subject to } \theta^{2} R \leq 1 \\
& 0<\theta \text {. }
\end{aligned}
$$

PART (4) EDGE NORMS

LEmpht Consider iwo Laplacians L and S with the same dimensions.
If each multiedge e of $S \operatorname{tor}(v, s)$ has

$$
\left\|L^{t / 2} \omega_{-s}(e) \underline{b}_{e} G_{e}^{T} L^{t / 2}\right\| \leq R
$$

Then every possible multivedye sample \hat{e} of Cliguasanple (v, s) satisfies

$$
\left\|L^{+/ 2} \underline{\omega}_{\text {new }}(e) \underline{b}_{\vec{e}}-b_{-\hat{e}}^{\top} L^{+/ \sim}\right\| \leq R
$$

Proof: exercise.

$$
\begin{aligned}
& \text { Wees) } b_{-c} b_{e}^{2} \leq L \\
& \underbrace{2} \leq 1
\end{aligned}
$$

- Before we start, we split each cologe into

LEMMA - Original edges have leverage score

$$
\left\|w(e) \Phi\left(b_{0}, b_{e}^{\top}\right)\right\| \leq 1 .
$$

- K-wise split multi-edges have leverage score $\left\|\omega(e) \Phi\left(b_{a} b_{e}^{\top}\right)\right\| \leq 1 / k$

PART (5) CLIQUE NORM \& VARIANCE $\operatorname{LEmMA} \operatorname{Clique}(v, s) \leq \operatorname{Star}(0, s)$

Pf) s tar $(v, s)=\operatorname{Cligua}(v, s)+\underline{\rho}^{\top} \geq C \operatorname{Cigqu}(v, s)$

ω	$\left(-a^{\top}\right)$
1	$\operatorname{diag}(\underline{a})$
\underline{i}	$=$0 \underline{o}^{\top} 1 $\operatorname{diag}(a)-\frac{a \underline{a}}{\omega}$ 1 $+$$\omega$ g^{\top} 1 $\frac{a a^{\top}}{\omega}$

COROLLARY Clique($v, s) \leq s$

LEMMA $\sum_{v} \operatorname{Star}(v, S)=2 S$

Proof Each edge appears in 2 stars.

COROLlARY $\underset{\pi(i)}{\mathbb{E}} \operatorname{Cugqu}\left(\pi(i), S_{i-1}\right) \leqslant \frac{2 S_{i-1}}{n+i-1}$

$$
\begin{aligned}
& \xrightarrow[2 C \bar{A}]{\substack{\text { CTOPPRD MARTINGALE }}} \\
& L_{i, e}=L+\sum_{j \leq i} \sum_{f \leq e} \psi_{j, f}-\mathbb{E}\left[Y_{j, f} \text { (all before }\right] \\
& L_{i}=\left\{\begin{array}{l}
L_{i} \text { if } L_{j, f} \text { ? } 1.5 L \text { formal }(j, f) \leq\left(i, e_{\text {last }}(\varepsilon)\right) \\
L_{i, *, e^{*}} \text { ow. where } i^{*} e^{*} \text { is the first } i, e \\
\text { such that } L_{i, e} \neq 1.5
\end{array}\right. \\
& \text { such that } L_{i, e} \notin 1.5
\end{aligned}
$$

LEMMA

1) $\tilde{L}_{i} \leqslant 2 L$
2) $0.5 L \leq L_{n}^{2} \leq 1.5 L$

U

$$
\begin{equation*}
U_{0.5 L}^{10} L_{n} 々 1.5 C \tag{2A}
\end{equation*}
$$

3) $\left\{\tilde{L}_{i}\right\}$ is a martingale

Conclusion: It suptices to show (2A)

Gausian deinic ettor os optimization

$$
\begin{aligned}
& \frac{\text { on a Caplacico quadvater form. }}{\underline{x} \in \mathbb{R}^{V} \quad G=(V, E, \underline{\omega}), L} \\
& \underline{d} \in \mathbb{R}^{v} \quad \underline{d} \perp \underline{1} \\
& \varepsilon(\underline{x})=-\underline{d}^{7} \underline{x}+\frac{1}{2} \underline{x}^{\top} L \underline{x} \quad L_{\underline{x}}=\underline{d} \\
& \underline{x}=\left(\begin{array}{l}
y \\
z \\
z
\end{array}\right) \quad d=\binom{b}{c} \\
& \varepsilon\binom{y}{z}=-\binom{b}{\underline{y}}^{\top}\binom{y}{z}+\frac{1}{z}\binom{y}{z}^{\top} L\binom{y}{z} \\
& \frac{d}{d y} \varepsilon\left(\frac{y}{z}\right)=0 \\
& y=\frac{1}{W}\left(a^{p} z+8\right) \\
& <_{0}^{0} \\
& \underline{g}=\underline{C}+\frac{b}{\omega} a \quad S=\underbrace{L_{-1}+\operatorname{ding}(a)-\frac{\underline{a}_{\underline{a}}{ }^{T}}{\omega}} \\
& \varepsilon\binom{y}{z} w . y=\frac{1}{\omega}\left(\underline{g}^{2} z+6\right) \\
& \min _{y} \varepsilon\binom{y}{z}=-\underline{g}^{\top} \underline{z}+\frac{1}{2} \underline{z}^{2} S^{z}-\frac{1}{2} \frac{b^{2}}{\omega}
\end{aligned}
$$

CLAIM 1) $g^{\top} \underline{\underline{I}}=0$ aler $\underline{d}^{\top} \underline{\underline{I}}=0$
2) S is a graph Loplacion

