Chapter 0.

Course Plan

Danupon Nanongkai

KTH, Sweden
Goal
Lower bounds for dynamic problems based on various conjectures.
Fine-grained Complexity & Static Problems

The real world and hard problems

I’ve got data. I want to solve this algorithmic problem but I’m stuck!

I’m sorry, this problem is NP-hard. A fast algorithm for it would resolve a hard problem in CS/math.

Ok, thanks. I feel better that none of my attempts worked. I’ll use some heuristics.

The real world and easy problems

I’ve got data. I want to solve this algorithmic problem but I’m stuck!

Great news! Your problem is in P. Here’s an $O(n^2)$ time algorithm!

But my data size n is huge! Don’t you have a faster algorithm?

Uhm, I don’t know… This is already theoretically fast… For some reason I can’t come up with a faster algorithm for it right now…

I want to analyze this **evolving data** but I’m stuck.

There is a lower bound of \(\Omega(\log^2 n) \) in cell-probe

But \(O(\log^5 n) \) will be good enough

Sorry, we don’t know how to prove big cell-probe lower bounds, and there is no such thing like NP-hardness ...
Rough Plan

1. Introduction to dynamic algorithms
 – Update & Query Time
 – Incremental/Decremental Algorithms
 – Amortization & Empty-start assumption
 – Randomization & Oblivious-adversary assumption
2. Lower bounds based on the OMv conjecture
3. Other conjectures
 – SETH, OV, dynamic OV, BMM, 3SUM, APSP, Multiphase, etc.

Optional:
- Unconditional lower bounds
- Hardness of FPT-approximation (GapETH-, W[1]-hardness, etc.)
Questions?

Acknowledgements:

Sayan Bhattacharya
Warwick

Jan van den Brand
KTH

Deeparnab Chakraborty
Dartmouth

Sebastian Forster
University of Salzburg

Monika Henzinger
University of Vienna

Christian Wulff-Nilsen
University of Copenhagen

Thatchaphol Saranurak
KTH

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 715672.